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Introduction.

Principal series representations for Hecke algebras of affine type were first
investigated by Matsumoto [10]. The purpose of this paper is to give a more
detailed study (especially on irreducibility and cyclicity) of these representations.

We first recall the p-adic group case. Let G be a p-adic reductive group
and let P be a minimal parabolic subgroup of G with Levi decomposition P—=
M-N (M is a Levi part of P; N is the unipotent radical of P). Put X,(M)=
{A€Hom (M, C*)|2 is trivial on M,} where M, is the maximal compact subgroup

of M. We denote by 6= X,(M) the modulus character of P. For 1€ X, (M),
we define by

E;={f: G—C |(i) f is locally constant;
(i) flgmm)=(0""(m)f(g) (geG, meM, neN)},

the space of unramified principal series representation associated with 1. Then
G acts on E; by left translations. This representation is studied by several
authors (e.g. [4], [10]). Let B be an Iwahori subgroup of G and let H(G, B)
be the Hecke algebra of the pair (G, B). Naturally H(G, B) acts on E%, the
subspace of B-fixed vectors in E;.

Let W be the (modified, in the sense of [3; 3.5]) affine Weyl group of G
arising from Bruhat-Tits theory. We know that W=W.T (semi-direct product)
with W the Weyl group of G and T the subgroup of translations. Then we
can define H(W, q), the Hecke algebra of IV associated with a quasi-multiplica-
tive function ¢ (for the definition, see below) by generators and relations. For
each 1eHom (T, C*), Matsumoto defined a H(WW, g)-module M;, which is called
the principal series representation associated with A. It is known that H(G, B)
=H(W, ¢) for the suitable choice of a quasi-multiplicative function q. Moreover,
in the above situation, we have E¥=M, as Hecke algebra modules under the
identification of T with M/M, Hence, the study of M; may be regarded as a
natural generalization of the study of E¥ and, in view of [1] and [10], the
study of E;.
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In this paper, we give answers to the following questions in terms of a
parameter A:

(i) “When the H(W, g)»-module M, is irreducible ?” (Theorem 2.2.)
(i) “When a HW, ¢) (=the Hecke algebra of W)-fixed vector 1, of M; is
a cyclic vector ?” (Theorem 2.4.)

In the p-adic group case, as far as I know, the answer to (i) was first obtained
by Muller [117 (for more general principal series representations, but only for
split groups) by using Harish-Chandra’s commuting algebra theorem [13]. (See
for a similar proof [5].) But in contrast with the above mentioned proof, our
method is more elementary even in the p-adic group case. In fact, our answer
to (i) is easily deduced from the one to (ii) (Theorem 2.4). If we restrict our-
self to the p-adic group case, Theorem 2.4 gives necessary and sufficient con-
ditions for the cyclicity of a K-fixed vector in E; where K is a good maximal
compact subgroup of G ; this seems not to be known before. Incidentally, it
should be noted that Theorem 2.4 and its proof have a close resemblance to a
result of Kostant [8] (see also its reformulation due to Helgason [6]) in the
real group case.

The organization of this paper is the following: In §1, we review
Matsumoto’s results [10] with slight generalizations and modifications for our
later use. Then we prove the main results of this paper in §2. The content
of §3 are devoted to applications of the main results. There we shall give
answers to the followings:

(i) “When M; and L, (Lustzig’s model for principal series representations)

are isomorphic ?” (Theorem 3.4.)

(i) “When an eigenspace representation over G/K is irreducible ? ”

(Theorem 3.8.)

This paper is a corrected and enlarged version of my manuscript “ Cyclic
vectors for unramified principal series representations of p-adic reductive groups”
(unpublished). In writing this paper, I have profited much from the conversa-
tion with W. Casselman. (The notion W;, (2.2) was communicated by him in
the p-adic split group case; cf. [127].) [ would like to express my gratitude to
W. Casselman.

§1. A review of Matsumote’s resultls.

In this section, we review Matsumoto’s results. For the proofs we omit,
see [107.

1.1. Let G be a connected complex reductive group and let T be a maxi-
mal torus of G. Let X(T) be the rational character group of 7. For a char-
acter p= X(7'), we denote by ¢, the translation by p (affine transformation) on
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XTHQRQR. Put T={t,|pesX(T)} (=X(T)). LetW bethe Weyl group of (&, T).
Since W naturally acts on T (hence on X(T)), we can construct a semi-direct
product W:=W.T as a subgroup of the affine transformation group on X(T)QR.
We call this W the modified affine Weyl group of G.

Example 1.2. If G is a semisimple group of adjoint type, then W is an
affine Weyl group in the usual sense (see below).

1.3. Let 4CX(T) be the root system of (¢, T). For simplicity, we assume
henceforth that 4 is irreducible. We fix a system of simple roots I/, and a
system of positive root 4* of 4. Put

Troot={t, (@asd)>, the subgroup of T generated by t, (asd).

Then Wag :=W - T o0 18 isomorphic to the affine Weyl group of the root system
4V (the set of coroots of 4), with its generators (as a Coxeter group) S.¢ given
as follows: Put S={w. (acIl)} where w, denotes the reflection attached to «a.
We denote by —a&V the maximal root of 4Y. Then. define S.x to be SU {ss}
where s;=wsts. Put 2={weW|w-Sug-wCSax}. It is known that W is the
semi-direct product of 2 by Wa.g, hence W=02-W.q. We extend the length
function [: Wag—NU {0} to W by l(xw)=I(w) (xEQ, wEWaxg).

DEFINITION 14. A function ¢: W—C* is said to be quasi-multiplicative if it
satisfles

(1) =1 (x€2);
(i) guww=qw)g(w") if KwwH)={w)+lw") (w, w'eW).

15. Now we can define H(WW, q), the Hecke algebra of W associated with
a quasi-multiplicative function ¢. As a (-vector space, HW, )= C-e,
r~ wew
({ew} is a basis of H(W, ¢)). The multiplication law is given by
(1) Cuw Cuw =Cpw 1T WwwH=Uw)+{w" (w, weW);
(i) et=(g(s)—Dles+q(s)e; (sE€Sax).

It is known (see e.g. [1]) that H(W, ¢)= CLRIQHW g, q) where C[LQ] is the
group algebra of £2. (Note that the multiplication on the right hand side is
given by (x®eu) 2’ Qew ) =xx"Qe -1 Cwr (X, ¥ €2, w, w EWag).)

1.6. From now on, we shall fix quasi-multiplicative functions ¢ and ¢'/* on
W satisfying (¢"/%)?*=q. Define the subsemigroup 7** of T by

T+t={t,|p is a dominant character (relative to II) in X(T)} .
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Then it is known ([10; (3.2.3)]) that [(")=I®)+I(¢") for all ¢, ¥’<T**. Hence
there exists a unique element §V2=Hom (T, C*) which satisfies 6'*[ps+=¢"*|7++
since T+* generates T. We note that the group Hom (T, C*) is canonically iso-
morphic (moreover W-equivariant) to 7' and we identify both groups hereafter.

DerFINITION 1.7. For 2T, M, is the C-vector space given by
M= {f: W—C|f(wt)=A3"*t)f(w) (weW, teT)}.
It is clear that dim M;=|W/|. For s=S.s, we set

a:{ﬁ (s=wpg; Bell)
’ (s&S).

N

THEOREM 1.8 ([10; (4.1.1)]). Define the action m; of {es (s&€Sax)} and of
{es (xE8)} on My by

fswt)+(g(s)—1)f(wt) (wHas)>0)
(ea(enf Nwn={
g(s)f(swt) (w ™ ees)<0);

(male) Ywt)=flxwt) (weW, teT; feM;).
Then m; uniquely extends to the action of HW, q) on M.

We call the H(W, g)-module (via =) M, the principal series representation
associated with A.

1.9. Frobenius reciprocity. We can embed commutative semigroup rings
A*=C[T**] and A~=C[(T+")*] in HW, ¢) (Da,-t—Za.-e,) since [(tt")=i(t)+
W) for t, T+t (or (T**)™). For peT, let C, be the 1-dimensional A% (or
A~)-module induced by g

PROPOSITION 1.10 (Frobenius reciprocity; Ist form). Let E be a finte
dimensional H(I/NV, g)-module. Then we have

Homy v, (M3, E)=Hom4-(C ;512-1, E).

This is nothing but [10; (4.1.10)]. Since M; is the contragredient H(W, q)-
module of M;-1 (see [10; (4.1.7)]), the following is easily deduced from (1.10).

ProposiTION 1.11 (Frobenius reciprocity; 2nd form). Let E be as above.
Then we have

Hompy @ o(E, M;)=Hom +(E, Ci-15172) .
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COROLLARY 1.12 ([10; (4.24)]). Let E be a finite dimensional irreducible
H(W', q)-module. Then there exists A& T (resp. A’ T) such that E is isomorphic
to a submodule of M, (resp. a quotient module of Mj).

Moreover, it is known that 4 and 2’ as above are W-conjugate (see [10;
(4.3.3)]).

1.13. [Intertwining operators. First we define the c-function. For w4, put
qy?:=q"*(s) if w, is W-conjugate to s€S;
gt i=qt¥(s") if wats is W-conjugate to s’ €S,
Then define ¢, (e¢=4), the meromorphic function on 7' by

(1—(g¥*qa") A ) YA +(ga"*/gi ) At a)™")
1-2(ta)"

c (D)= QeT).
Since C[X(T)] (=the ring of regular functions on T is a unique factorization
domain, we can choose relatively prime elements e, and d, of CLX(T)] satisfying
c.=e,/d,. For example, if ¢y*=¢,"* and ¢,#+1, we may take e (N=1—g;' 20"
and d ()=1—2{,)"". We note here that the situation g¥*#¢3"* can occur only
when <{aV, X(T)>=2Z ([10; (3.1.10)]).

For seS with s=w; (3<II), define the linear map A(s, A): M, — M, by

g f(ws)HepH—gs)f(w)  Ww(B>0)

(A(s, D > w)= (1.13.1)
Fws)+(es(A—Df(w) (w(B)<0)
(feM;; weW)

for A with ds()+0. Then we have

THEOREM 1.14 ([10; 4.3.2)1). If dz(H+0,
(i) A(s, HeHompyap, (M3, M;. ;).
(i) Als, s. DA, H=esg(Des(A™)-1d where 1d is the identity map on M;.

PROPOSITION 1.15 ([10; (4.3.4)1). Let w=s, - s; (s;€S) be a reduced expres-
sion of weW. If d()#0 (>0, w(a)<0), the operator
Alw, D) :=A(s1, Sp++ Sg. DA(Ss, S5+ S ) - AlS, A)

is well-defined (independent of the choice of the reduced expression) and belongs
to HomH(W,q)(Ml; Mw.Z)-

Especially, if 2 is regular (i.e., W;, the stabilizer of 2 in W is trivial),
A(w, 2) is well-defined.
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Let f; be the element of A; which satisfies f,(e)=1 and f;(w)=0
(weW, w+e).

LeMmaA 1.16 ([10; (4.3.4)D). If 2T is regular,

(A(w, Df w=H=1
(Alw, Df )(x)=0 (xw™, [x)Zlw).

and

Now we can prove the following propesition which is implicit in [10;
(4.35)]. (In the p-adic group case, see [4].)

ProprosiTION 1.17. If 2T is regular, M, = EEQVC(W.“_H_;/Z as A--modules.

ProoOF. Since 07 A(w™?, w.2) by (1.16), Hom -(C(y.25-15-172, M3)#0 for all
weW by (1.10). But w.A (weW) are all distinct. This implies the above
decomposition.

REMARK 1.18. It is known that f,=M; is an A--eigenvector. More
precisely, mi(e,)f =26 %) *@)f; for t=(T+*)"* ([10; (4.1.9)]). Hence the above
argument shows that the element A(w™?, w. )f,.,=M; gives a natural basis of
the C(y.1y-15-1/2-component of M;.

1.19. We define 1;€M; by 1;(w)=1 for all weW. We note that 1; is
characterized by the properties 1;(e)=1 and
miled)li=g(s)lz  (s€S5). (1.19.1)
(This can be easily proved by induction on /(w).) The decomposition of 1;

with respect to the natural basis defined in (1.18) is given as follows:

ProposiTiON 1.20. If 2T is regular, we have
Li= 2 co(DAW™, w. Dfw.; (1.20.1)

where e (D)= TI  calA).

a>0,w(a)>0
Proor. We note first that
Als, D1=cs(D)l;.2 for s=wgzeS (1.20.2)

which is a direct consequence of the definition of A(s, 2). Let w, be the longest
element of W. By evaluating at w, and using (1.16), we see that the coefficient
of A(w3Y, wo. Dfw.2 in the above decomposition is 1. In view of (1.14) (ii) and
(1.20.2), we can easily prove (1.20.1) by downward induction on (w).

In the p-adic group case, see [4; 3.87.
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1.21. For our later use, we remark here that there exists a non-zero homo-
morphism from M; to M,.; for any 2T, weW. In fact, let w’eW be the
element of minimal length such that w’.A=w. 2. Then it is easily seen that
A(w’, 2) is well-defined (cf. [7; Addendum]).

§2, Irreducibility and cyelicity of principal series representations.

Matsumoto proved the following theorem.

THEOREM 2.1 ([10; (4.35)]). Assume AT is regular. Then M; is irredu-
cible if and only if ¢(De(A1)#0, where c(A)= ];_[oca(l).

In this scction, we first give a refinement of the above result. For A= T,
put W,={weW|w.2=2. We define by W, the normal subgroup of W,
generated by {w.|d(A)=0 (a=4)}. Now we can state one of the main results
of this paper.

THEOREM 2.2. For 2&T, M; is irreducible if and only if

(i) e(De(2~H)#0; and
(i) Wi=Ww,

where e(A)= 1;[0%@)-

In the p-adic group case, as far as I know, this theorem seems to be essen-
tially due to Muller [117. But Muller’s proof is not applicable to the general
case (i. e. the Hecke algebra case). Incidentally our proof of Theorem 2.2 depends
on the criterion for the existence of certain cyclic vectors (Theorem 2.4), which
may be viewed as an analogue of the real group case (Kostant [8]; see also
Helgason [6] for the reformulation in terms of e-functions).

To prove (2.2), we first show

LEMMA 2.3. For 2T, M, is irreducible if and only if l,., is a cyclic
vector of M,.; (i.e., nw,l(H(VT/, Nl a=My.;) for each weW.

PrOOF. Note that M; is irreducible if and only if M,.; is irreducible by
(1.21). Hence we have only to prove the “if” part. Suppose l,.; is cyclic for
each weW. Let E be a non-trivial irreducible submodule of M;. By (1.12),
there exists weW and a surjective homomorphism M, — E. As 1,, is
cyclic, its image in E is non-zero. Therefore (1.19.1) shows that 1,€E, which
implies E=M; by the cyclicity of 1;.

In view of e(Qe(1"Y)= 1;[Aea(7.), (2.2) is a consequence of the above (2.3) and

the following theorem.
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THEOREM 24. The vector 1; of M; is cyclic if and only if

(i) e)+0; and
(i) W/z:Wu)-

This theorem gives an information about the composition series of M; and
seems to be new even in the p-adic group case. (In [4], some weaker result is
proved.) The proof of our Theorem 2.4 to be given below “resembles” that of
the real group case (see [8]; especially the use of harmonic polynomials and
the matrix P7).

In the rest of this section, we give a proof of Theorem 2.4,
LEMMA 2.5, The vector 1; is cyclic if and only if (AN ;=M;.
PrOOF. The cyclicity of 1, is equivalent to the following condition :

(*¥) For any finite dimensional irreducible H(W, g)-module E and for any
@ cHomy 4w, (M;, E), $(1;,)=0 only if @=0.

But we can embed E in M, for some p<T by (1.11). Hence (1.10) shows that
(%) is equivalent to

(#x) For any peT and for any ¥eHom,+(M;, C,-151s2), ¥(1,)=0 only
if ¥=0,

in other words, to the condition z;(A%)],;=M,.
LEMMA 2.6. The vector 1; is cyclic if and only if (A7) ;=M,.

Proor. This follows from (2.5) since rew)li=qwe)l; and A -ey,,=
2w, AT ([10; (3.2.6)]).

REMARK 2.7. Let W={w,, -, w,t(n=|W|). Then (2.6) shows that 1; is
cyclic if and only if det [m(e;)12(w;)1ci.7s27#0 for some ty, -, {,=(TH)L

2.8. In the case for regular 2, (1.20) and (2.6) show that 1, is cyclic if and
only if ¢(2)#0. Hence it is convenient to consider the “generic module M (R)”.
Let R be the group ring C[T]. (We identify R with C[X(T)], hence in par-
ticular, e,, d,€R.) Let Q(R) be the quotient field of R. For é=Hom (T, R%),
we can construct a H(W, g)-module (or R®H(W, g)-module) MR) (a free R-
module of rank n=|W|) as in (1.7). We note that an element 2T defines
“specializations” R — C and M{R)— M;.. (H(W, g)-homomorphism). Here A&
is the composite of £ and 2. The intertwining operator A(w, &)=Homzg g 7. (Me(R),
M, {(R)QQ(R) can be defined as in (1.11)-(1.14). In general, A(w, &)
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& Hom ey iy, p(Me(R), My, «(R)). Now let » be the natural inclusion map TG
C[T]=R. If 2T is regular, the image of A(w, ») under the “specialization”
by 4 is A(w, 2). Noting that we can define 1, f,€ M{(R) ((=Hom(T, R*)) as
in (1.15) and (1.19), we see that (1.20) implies the expression of 1, by
{Aw™, w. 9)fw.,}, a Q(R)-basis of M (RYKQR), i.e.,

PrOPOSITION 2.9. We have lnzwgwch(w", W. D) fw.y Here e¢,=

¢ EQ(R).

a>0,w (a)y>o

2.10. Let {f, w}wew be a R-basis of M,(R) defined by f, »(w)=0un, w
(Kronecker’s delta). In particular, fq,e=fy. Note that

Tyledly= >0 (@ale)l, Xwify,w -

Let J be the ideal of R generated by det [mylee N )w)] (LEd, jEn;ty, -, ta
e(T+ ). Put V()={p=T|p is a common zero of J}. Then, by (2.7), 1; is
cyclic if and only if 2&V(J). In view of (1.16), the transition matrix of base
change of M,(RY®QQ(R), from {f, w}wew to {Aw™, w. D w.g) wew, I8 uni-
triangular for a suitable ordering. Therefore we have

det [( 011, )w;)]=det [en - ((w;. )73 ()]
= II cu TT07%t:) det [w,(t)™"]

and J=e¢™*-detlw;(,)]t, -, taET D pugem since Il e,= II e%/?=¢™?% Put
weW a>0

I={det Lw(t)1ts, -, 1 €T * Drigear- We note that I=<ddet [w,;¢)]|t, -, ta E

T pagear =<det Lwi(@ )11 41, -+, $rE RDpugear. Let Fo (= d™) be the element of R
defined by

[ 1—13! if <aV, X(T)Y=Z
Tl i <Y, X(Ty=2Z.
By the definition, d, divides £, (see (1.13)).

LEMMA 2.11. Any element of I is divisible by ™ (f . = 1;[0 fa)

Proor. Since f, (asd*) are relatively prime (see [27]), it is sufficient to
show that det[w,(¢,)] is divisible by £2/? (acd*; t,, ---, t,T). But, for pe X(T)
and weW, Wt p)—wawlty)=w(t,)(1—17<"¥®>) is divisible by f,. Therefore it
can be easily seen that det[w,(¢;)] is divisible by F2/* since n/2= [{w  \W|.

Put F={¢/f**|¢<l}. Then we have J=e™2-(f/d)*/?- F (e= 1;[Oea, d= I;Iod“>’

For 1T, let Wiy be the normal subgroup of W, generated by {w,!|f.(2)=0}.
(This is the maximal subgroup of W, generated by reflections.) Now we can
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state the key lemma.

LEmMA 2120 V(E)=2eT\W,;#=Wat.

It can be easily seen that Theorem 24 is an immediate consequence of
Lemma 2.12. In fact, we have W DW:;::2DW ¢, and

- WaEWineEs 2eVE)  (by 2.12);
Win#zWa, & 2eV(f/d).
Thus the expression J=e™®-(f/d)"'?-F implies the theorem.
2.13. Proor oF LEMMA 2.12.

Step. 1. We first show that 1 (the identity element of T') is not contained
in V(F). Lett be the Lie algebra of T. Then for peX(T), (exp(sZ)tp)=
exp(sdp(Z)) (seC; Ze&t), Here dpet*=Hom (i, C) is the differential of p.
Note that

(exp(s Z))(t p)—(exp(s Z)(to)=sd(Z)+(terms of higher degree in s).

Here 0 is the zero weight, i.e., f,=e. Hence, for any homogeneous element
¢ S*(1t) (the algebra of polynomial functions on 1), we can find an element ¢<
R (=C[T7) which satisfies ¢(exp(sZ))=sie ¢ H(Z)+(terms of higher degree in s).

LemMa 214, () For ¢y, -, $neSHW), detlwigpy)] is divisible by TT(da)™".
(1) Put dF:<det[wi(¢'j)]/};[O(dCX)n/ZI(/’b <, P ES¥ O s igens.  Then dF
=S(1).

ProoF. The proof of (i) is similar to (2.11) and is omitted. Let S*{)" be
the subalgebra of S*{1) consisting of W-invariants and let H be the space of
harmonic polynomials (see [147] for the definition). It is known that

SEFH=S*O"-H (=S*HVQRH) (2.14.1)

and dim H=n (=|W|). Let {¢¥, -, ¢F} be a basis of H consisting of homoge-
neous polynomials. Then (2.14.1) implies that dF is a principal ideal of S*(1)
generated by det [w{(¢¥)]/ };’(da)”/z. As a graded vector space, H=H*( 3, C)

{the cohomology ring of the variety of Borel subgroups of &). Hence its Poincaré
polynomial PH(x)ZZk}xk-dim H, (H, is the homogeneous component of H of

1 (Note added on September 11, 1981) After submitting this paper, I learned that R.
Steinberg (On a theorem of Pittie, Topology 14 (1975), 173-177) had obtained a related
result. This includes (2.12) if G is simply connected. Moreover, we can give an-
other proof of (2.12) by using the Steinberg’s result and by noting the fact that I2=I.1
is the discriminant of R over R¥ (the subalgebra of R consisting of W-invariants).
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degree k) is given by the following formula (see e.g. [16]):
l__xmi+1

) ({ is the semisimple rank of G; my, -+, my

are the exponents of W [2]).
But

deg det [w(¢pF)]1=deg ¥ --- ¥
=§k-dim H,
d

:WPH(x)I.Z‘zl

=(1/2)X (my+1) -+ (1) 3m,

=(1/2)nN (n=|W|, N=|4*|; see [16]).
On the other hand, deg };Io(da)"/z is clearly (1/2)nN. By (i), we have
det Lwi(9F)1/ go(da)”/ze C. Of course dF is not the zero ideal.

Let ¢y, ---, ¢, be elements of R satisfying ¢,(exp(sZ))=s* o8 H(Z)+-(terms
of higher degree in s). Then for a regular element Z of t,

det [w(¢)1(exp(s2))/Flexp(s Z£))"*
:det[wi(gbf)](Z)/g(da)(Z)"’H—(terms involving s).

Taking the limit s —0, we see that det [w(¢;)1/f** does not vanish at 1 by
{2.14). Thus we have proved that 1 V(F).

Step 2. Let @ be a free Z-module of finite rank. A function on @ is called
polynomial if it can be expressed as the restriction of an element of SHQzC)
to Q. Set P=T® - BT (direct sum of n-copies of T) and define the map
D: P> R by t=(, -, ta)— DE)=det [w,(,)]/F~%. Then the argument in
Step 1 implies that the function on P defined to be =y, -+, t,)— D)) is a
non-zero polynomial on P. Let A€ T be an element of the center of G (i.e. W,

=W). We can see easily that D))= f__[l,?(ti)D(t)(l) for t=(t,, .-+, tp)EP.

Step 3. Now we consider arbitrary 1€ 7. Put M=Z,(2)° (the connected
component of the centralizer of A containing 1). The Weyl group of the pair
(M, T) is canonically isomorphic to Wiy Set di=4*N4;, where 4; is the
root system of the pair (M, T). We put L(R)=R&E - BR (direct sum of n-

copies of R). The group W naturally acts on L(R). Set e;=(0, ---, 0, 1, 0, -, 0)
€L(R). Put L=@C-¢;, An element p<=T defines a “specialization” L(R)—
L (Xgiei— 2gi(wes). We regard t=(t,, -+, t,) (,=T) as an element of L(R).
Then we have
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WiDA - Awa®y=det [wit,)]eiA - Aene ALR).

Let {xi, -+-, xn} be a representative set of W, \W (m=|Wu,\W ). The coefficients
of wix;EA - Awlx ) r=|Weanl=n/m; We;3={wi, -+, wi}) with respect to the

canonical basis {ex, A - A€k, t1sr,<c<rpsn OF /T\L(R) are {det[wilts I} 15 <<t sms
which are divisible by H f”z (apply (2.11) for M). We define D,(£)(=D;(ty, -, t2)),

the element of /\L(R) (1<z<m) by

D@O=(II i) wixON - Awixi(d),
acd™ 2

D)= > nDM(xi(tkl); U xi(tkr>>ek1/\ o Neg,

15k <hes
where Dy(t], -, tny=detfwi()]1/ 1'[ frl*eR (), -, t.eT). As 11is contained in
the center of M, we have s 4y

D= 3 (i Ay o @ D)

15 k1< kyS
X Da(x4(tsy), 5 2alte, D(Dex A - Aes, (see Step 2).

If x;€W.\W,, we may assume x;(47)=4}. Then it can be easily seen that
Dy(xiy), -, xN()==+Dy(t:, -+, ti)(x7t. p) for p=T and t;, -, €T, In
particular, Dy(x@1), -+, %M=Dy, -, t2X1). Hence, the linear independ-
ence of characters over polynomials ([10; (3.4.2)]) shows that DDA --- A
D,.(6)#0 on P if and only if W;=W;;,. Noting that £,()#0 (asd™\4}), we
have D@®)(Dei A -+ ANe,=(non-zero constant) X DDA -+ ADL{#)XA). Thus we
have seen that D@)(A)=0 as a function on P if and only if W,#W;;. This
completes the proof of Lemma 2.12.

§ 3. Applications.

3.1. Let (Wag, Sag) be the Coxeter system of the affine Weyl group of type
4Y. We can identify W.g with the modified affine Weyl group of G.g, 2 con-
nected semisimple group of adjoint type associated with 4 (see (1.2)-(1.3)). A
Coxeter subsystem (W', S”) of (Wa.x, Sax) is called special if it satisfies War=
W' Troot. Put Wee: =W+ Tyeigne. Here Tyeign: is the group of translations by
weights of 4 (hence W DWa.r). We note that W, is canonically identified with
the modified affine Weyl group of the simply connected covering group G of
Gaa. As in (1.3), there exists a finite subgroup 2 of W satisfying Wee=92 -W.g.
It is known that all special subsystems are conjugate under 2.

Now we consider the case where W=W.s and the quasi-multiplicative
function ¢'%: Wag — C* is constant on S,z until (3.5). For H(W, g)-module
(z, E), a vector ve E is called special if it has the property



Principal series refresentations 941

nlev=q(sly  (s€S")

for some special subsystem (W7, S’). Then we have

PROPOSITION 3.2. For AsHom(Trooe, C%), M, is generated by all of its special
vectors if and only if e(R)+0.

PrOOF. Let 2~ be an element of Hom (Tweignt, C*) such that |z =2
We extend ¢'* to (¢™)'%, the quasi-multiplicative function on W by (g™)**(xw)
=¢"*w) (xR, weW.g). Consider the HW,., ¢*)-module M;~ By (24), 1;~
generates M~ if and only if e(2")#0 since W~ is always a reflection group
(C15]). ‘Noting that e(I")=e(d), we can see that z~(C[Q211;~ generates My~
as a HWa.g, @)-module if and only if e()#0 (see (1.5)). But it is clear that
7~ CLLA1,~ coincide with the linear span of all special vectors of Mj~. Since
Mi~=M; as HW .z, ¢)-modules, the proof of (3.2) is complete.

3.3. In [9], Lusztig defined a new model of principal series representations
for H(W.g, ¢), which will be denoted by L;(A€Hom (Treo, C*)) in this paper.
It is known that dim L,=|W|. Moreover he defined a non-zero intertwining
homomorphism p,: L; - M; ([9; 8117). We do not go into details of the defini-
tion of L,. For our purpose, it is sufficient to note the following fact which
is a direct consequence of the definition: The image of L, under p,, pi(L3)
is generated by all special vectors of M,. Thus, in view of (3.2), we have
proved

THEOREM 34. The intertwining homomorphism pp: L, — M, is an isomor-
phism if and only if e(2)+0.

Of course, L, is irreducible if and only if M; is irreducible.

Example 35. In the rank 1 case (4={=a}), p; is an isomorphism except
when A(t.)=¢ *. This agrees with Lusztig’s observation.

3.6. We apply the results (2.2), (24) to the p-adic group case. For the
notation used below, see Introduction and [7]. In [77, the eigenspace repre-
sentation P s(w;) associated with an algebra homomorphism o, : H(G, K)—
C (1€ X,A{M)) and a non-zero intertwining homomorphism, the Poisson integral *
P Ey— Py glw)” (or @, El-s — Pr ¢lw;)) are defined for a p-adic reductive
group G. Choose a modified affine Weyl group W and a positive real valued
quasi-multiplicative function ¢ satisfying H(G, B)=H(W, g). Then [7; 3.2]
(see also its Addendum) and (2.4) show

THEOREM 3.7. The Poisson integral ®5: E; — Pg glw)” (or Py Efor —
Py o(w))) is an isomorphism if and only if
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(i) e H=+#0; and
(i) Wi=Waw.

Since dim Pg ¢lwz)?= (W] ([7; 2.80), (2.2) and (3.7) imply the following
theorem.

THEOREM 3.8. The eigenspace representation Py o(@,)” is irveducible if and
only if

(1) e(e(AH=+0; and

iy W.=W.

Compare (3.8) with [6; 12.2].
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