On Stark’s conjectures on the behavior of L(s, ) at s=0

By John TATE
To the memory of Takuro Shintani

In this paper, we discuss some conjectures of H.M. Stark [17; II, IV], [19]
on the leading coefficient of the Taylor expansion of an Artin L-function L{s, %)
at s=0. Some special cases of these conjectures were found independently by
Takuro Shintani, [16], who also made an important contribution by developing
new formulas for the coefficient in question, in terms of the double gamma func-
tion. His death is a great tragedy; I would like to dedicate this paper to his
memory.

QOur discussion is mainly a reformulation, with perhaps some slight added
precision, generality, and unity, of ideas of Stark and Shintani, I hope it may
help make these very interesting ideas more accessible. Our point of view has
already helped inspire two separate p-adic analogs of the conjectures: one by
B. Gross [8], at s=0, and one by J.-P. Serre, at s=1, [12], [21]. Gross’ ideas
in that connection have in turn suggested to us the consideration of the non-
archimedean analog of the conjecture “over Z” of Stark which we discuss im-
plicitly in §4 and explicitly in §5.

In the course of our discussion we mention a few new results whose proofs
will be published in [21]. That reference also contains the details of many
arguments which are only sketched here.

§1. The main conjecture. We begin by fixing some assumptions and
notation.

bk is a number field (finite extension of the rational field @),
K/k is a finite Galois extension,
G=Gal (K/%) is the Galois group.

We denote places of % (even archimedean ones) by symbols like p, q, --- and
those of K by B, £, ---. For each place p of 2 we let G,CG denote a decom-
position group for p, well determined up to conjugation. If p is finite (i. e, non-
archimedean), then I, denotes the inertia group and o, the Frobenius substitution
generating G,/I,, well determined modulo I,.

S is a finite set of places of k%, including the archimedean ones.
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V is a finite-dimensional C-linear representation space for G.

¥y G—C is the character of V:y,(o)=Tr(c|V).

Vé={xeV]|ox=x YocG}.

V* is the contragredient to V; y=g,.

L(s, V)=Lg(s, y,, K/k) is the Artin L-function associated to V (or to %),
but with the Euler factors corresponding to primes p in S removed. Thus

L(s, V)= ILdet (1—a,Ny*] vin-t, for R(s)>1.

It is important for the reader to remember that many of the things in our
discussion, like L(s, V), X and U below, etc., depend on the choice of S, even
though we usually write just L instead of Lg, etc. It is known that L(s, V)
has a pole of order dim V¢, i.e, a zero of order —dim V%, at s=1. From this
fact and the functional equation relating L(s, V)and L(1—s, V*) it follows that
L(s, V) has at s=0 a zero of order

7(V)=—dim (V&) + gsdim (VO

Let L(V)eC* be the first non-zero coefficient of the Taylor expansion of L(s, V)
at s=0, so that
L(s, V)~ L(V)s7 | as s—0.

Stark’s basic idea is that L(V) can be expressed as the product of a “regu-
lator” R and an algebraic number, which he denotes by ©. His regulator de-
pends on choices, but is always the determinant of an 7(V)X#(V) matrix whose
entries are linear forms in the logs of the absolute values of S-units of K at
places of K above S, with coeflicients coming from the representation V. To
define the regulators we introduce

U=Us x={acK|lals=1 YB I S}, the group of S-units of K.
Y:YS'K:;BE,% ZDP is the free Z-module with basis the set of places P of K
above S.

X=X r is the submodule of Y consisting of the elements SBZl)SngBSB with

Enquo.

For any ring R and any Z-module M we shall denote the R-module RQ,M
simply by RM. This notation will be used mainly with R=@ (rational field),
R (real field), or C (complex field).

Let 1: RU—~RX (or CU—-CX) be the R- {(or C-) linear map such that

A1Qe)= 3, log [ellaP,  for eclU

where |¢|ls denotes the normed absolute value of ¢ at P (the ordinary one if B
is real, its square if P is complex, and given by (NP) " where n=ordge if B
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is finite). The “S-unit theorem” states that 2 is an isomorphism.

The group G acts on U and on X and A: CU—CX is a C[G]-isomorphism.
(Our convention is that G acts always on the left, even though we sometimes
write «¢ instead of o(a), for a=K and =G, so that a®??=(a")’. The action
PB*=0¢P on places is that for which [a’|.s=]als.)

For a homomorphism ¢: T—T’ of C[GJ-modules we denote by

ov: Homg(V*, T) — Homg(V*, T7)

the linear map induced by ¢. For a C[GJ-homomorphism f: CX—CU, the map
(Af w=Avfr is a linear transformation of the space

Homg(VH#, CX):(V(?CX)Gz(V(XZ)X)G
into itself, and we put
RV, £YZdet Gy
This is an »(V)X#»(V)-determinant. Indeed, we have
CXDC=CY = é}s Indg,C,
hence
Homg(V*, C X)PHome(V*, C)szEBS Home (V*, C),

and so dim Homg(V*, CX)=—dim V- P5‘_,Sdirn VG":r(V), as claimed.
=
Put

RV, ) _ gy BV )

AWV, f= LV) w0 L(s, V)

For a=Aut C we define V¢ and f* by the “base change” a:C—C. Perhaps
the simplest form of Stark’s conjecture is

(1.1) MaiN CONJECTURE (first form): For all asAut C we have
A=, fH=AWV, f)*.

Clearly, for given f, R(V, f) and A(V, f) depend only on the isomorphism
class of V, hence only on the character y,. If yisa character of G, we some-
times write R(y, f) and Aly, f) with the obvious meaning. A fancier form of
the conjecture is

(1.2) MAIN CONJECTURE (second form): Let E be a field of characteristic
0, isomorphic to a subfield of C. Let y: G—E be the character of a representa-
tion of G in E or in an extension field of E. Let f: EX—EU be an E[GJ-
homomorphism. Then there exists a (unique) element Aly, /)EE such that, for
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every homomorphism B: E—C, A(y, f)P=AGE, 5.

While it is sometimes convenient theoretically to consider f’'s of the above
generality, it is not at all necessary. The rational representation spaces @X
and QU for G become isomorphic (canonically, via 2) after the base extension
Q—R. Hence, as Herbrand observed, ([9], see also [1]) they are isomorphic,
though not canonically so, i.e, there exist G-isomorphisms f:CX=CU which
are defined over @ in the sense that f(QX)=QU, or equivalently, f*=f for all
acsAut C.

(1.3) MAIN CONJECTURE (third form): Let y be a complex valued character
of G and let Q(y) be the subfield of C generated by its values y(a), 6 &G. Let
f be defined over @ as above. Then Ay, [YEQ(), and Aly, f)=AQ, [V for all
reGal (Q)/Q).
(Note that each y(¢) is a sum of roots of unity, so that Q(y) is an abelian
extension of Q.)

It is easy to see, for a given V, that if any one of the three forms of the
conjecture is true for V and one isomorphism f,, then all three forms are true
for V and every homomorphism f. The point is that 2f=2f,g, where g=f3'f,
so AV, f)=A(V, fo)det gy; and det (g4.)=(det gy)*.

The third form of the conjecture is essentially that given by Stark. Instead
of using a map f to define the regulator R(y), Stark [17, IL] uses what he calls
a system of Artin units (eg). This is a family of elements eg U, one for each
place B of K above S such that ¢}=e¢,y for all =G and each B[S, and such
that the only relation among the e is TIp—ey®=1, where ny=[Ky: R]. It is
not hard to show that Stark’s regulator R(y, (ey)) is equal to our R(y, f) where
f:CX—CU is the G-isomorphism defined over @ obtained by restricting to X
the homomorphism ey of ¥ into U. Hence Stark’s O(y, (e3)) is equal to our
A(y, f)"*. While Stark has never published a general statement quite as precise
as (1.3) he has formulated its equivalent in many special cases [17, Iv], [19],
[207, especially in the case r(y)=1.

§2. Functorality; independence of choices. In this section we discuss
various formal properties of the Main Conjecture.

(2.1) PROPOSITION. If the conjecture (1.1)-(1.3) is true for a given character
x with one choice of S, it is true for y with any other choice.

Indeed, suppose S*=S\U {p} is the set obtained by adding a new place p of
k to S. Let us indicate quantities associated with the choice S* by adding a
star to the symbol. For example, we have
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r*(V)=r(V)+r, V), where 7, (V)=dim Ve,

L*(s, V)=Py(g~)L(s, V),  where ¢g=Np,
and
Py(T)=det 1—a,T|VH=1—T)"Qu(T), say,

where Qy(1)#0 satisfies Q,.(1)=(Q»(1))* for acAut C.

For the leading coefficients we have
L*(V)=(log ¢)"Qv(1)L(V).

On the other hand, let U,=U*/U and Y ,=X¥*/X=@y,Z%B. The map 1*:
CU*—CX* induces an isomorphism 1,: CU,—CY, such that (log ¢)~'2, is defined
over @, as one sees from the formula log ||lels=—f,(log ¢) ordge, f, denoting the
residue degree of K/k at p. Thus, if we use an f*: CX*—~CU* which is defined
over @ and carries CX into CU and induces #45'logq on CX,, then R(V, f*)
=(log ¢)*R(V, f) and AV, f%=Q,(1)"*A(V, ). This shows that the conjecture
is true for V with S* if and only if it is true for V with S.

As function of y the quantity R(y, f) obeys the same formalism as Artin’s
L-functions, and consequently the same is true for A(y, f):

(2.2) PROPOSITION. Let f: CX—CU be a G-homomorphism.
(8) If y and y» are characters of G, then A(pi=+ye [)=ACGu [)AG: 1)
(b) If y is a character of a subgroup H of G, then

A(ndGy, /)=A, f).
(c) If ¢ is a character of a quotient group G’'=G/H, then
A(nfigy, f)=Aly, fICXH).

Indeed, (a) is obvious, and (b) follows from the existence of a functorial

isomorphism
Homg(Ind%V, CX)=Homg4(V, CX)

if V is a realization of y. .

Let F=KZ be the fixed field of H, and let Xz (resp. Up) be to F as X
(resp. U) is to K. Then (c) is obvious, once we explain how to identify Xp
with a subgroup of X in such a way that the diagram

UFC—‘—_'UK
A i

RXy C———— RXx
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is commutative, and CXp=(CX)¥. This is achieved by the imbedding
B — %:, [Ky: Fu. 1%

for places B’ of F above S.
Let 15 denote the trivial representation of G.

(2.3) PROPOSITION. Suppose f is induced by an injective G-homomorphism
fo: X—=U. Then

A1y, =TS

where h=|Pic Og| is the “S-class number” of k.

By 2.2 (¢c) we can suppose K=Fk, G={1}. Let x; be a Z-base for X=X, and
let u; be a base for U=U, modulo torsion. Suppose

;{ﬁ;:E Aj;Xi, and fxizzbijﬁj’
where ; is the image of u; in QU. Then

R(lg, f):det );f on CX=det (aﬁ)-det (bij) s
and
+det (a;;)=R, the “S-regulator” of %

+det (b)) = : fX):ﬂJ"ﬁ ,

where U is the image of U in QU and w is the order of the kernel of U—U.
The proposition follows upon combining these formulas with the formula

hR
L(la)———w—

which is derived via the functional equation from the familiar formula for the
residue of L(s, 1¢)=C:(s) at s=1.

(2.4) COROLLARY. The Main Conjecture is true for permutation representa-
tions.

By (2.3) the conjecture is true for the trivial representation 1y of each sub-
group H of G, hence, by (2.2) (a) and (b) it is true for any sum of representa-
tions of the form Ind %(1g).

If ¥ is a character Wlth rational values, there is an integer b>>0 and per-
mutation characters y, and y, such that by=y,—y,. ~ Hence the Main Conjecture
is true for by. This is the content of Theorem 1 of [17, I]. However, using
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methods of Ono [11] and Lichtenbaum [10] involving the cohomology of class
field theory and results of Swan on integral representations of G, one can prove

(2.5) THEOREM. The Main Conjecture (1.1)-(1.3) is true for rational charac-
ters .

For the proof, see [21] and also [4].

(2.6) THEOREM. The Main Conjecture (1.1)-(1.3) is true for characters y such
that r(y=0.

Indeed, if 7(3)=0, then R(y, f)=1 and A(y, f)=1/L(0, ). The fact that
L0, y%)=L(0, p)* for a=Aut C was shown by Siegel [13], and later, by a dif-
ferent method by Shintani [14], in the abelian case. The general case follows
by Brauer induction ; see [21].

§3. The case 7(y)=1: In this case Stark’s conjecture is especially striking
for it is equivalent to the existence of an S-unit ¢ of K with suitable absolute
values at the places above S.

For an irreducible character y of G, let

1
oy= jlc%)l— Ug();x(a‘l)o

be the central idempotent in C[G] which acts as identity on a realization of g
and kills the other types of irreducible representations of G.

Let ¢ be a set of irreducible characters of G such that »(y)=1 for each
ye%x and such that y€xX > y*€x for all aeAutC. Suppose that a=(ax),
yE%, is a family of complex numbers such that agay=(a;)?® for acAut C. Put

6&(3): E a'/.L(S; X)ei >
AEX
a Dirichlet Series with coefficients in @[G].

(8.1) THEOREM. Suppose y=QY is such that e;yeX for each ysX. The
following statements are equivalent:

(i) There exists a (unique) usQU such that
Au)=050)y= 2 ax L', ylesy .
AEX
(iy The Main Conjecture (1.1)-(1.3) is true for all y=X such that azezy+0.

Let f: QX QU be a G-isomorphism. For ye=, let ¢ be the scalar by
which Af acts on e;CX. (Note that ¢;CX is irreducible because »()=1.) If V
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is a realization of y, then Homg(V*, CX)=Homg(V*, ¢;CX) is one-dimensional,
and (2f)r acts on this space by the scalar ¢y, Hence c,=det (Af)y=R(y, f)=
Ay, FILYO, y). Let u=f(x), where
ay

= A

Then
lu:/lfx:ZEExTCé%ezyzz;xazL’(O, 1ezy .

Thus (i) is equivalent to v QU which is the same as x=QX, i.e., x=x* for
all acAutC. Since the non-zero ones among elements ayezy lie in distinct
irreducible subspaces of CX they are linearly independent, and since Acyar=(ax)"
and ¢,.,=(e,)", the condition x=x* means that A(y®, f)=A(y, f)* for the y’s
such that a,e;y+0, and this is (1.1) for those ¥’s.

If % does not contain the trivial character y=1 we can take y to be a basis
element P of ¥ in (3.1). One would like then to conjecture a condition on the
coefficient vector a=(ay) which would be sufficient to ensure that @LQ)$ is in
AU instead of only in AQU. Such a conjecture might be called a conjecture
“over Z”, as opposed to (1.1)-(1.3) which is only “over @”. 1t would predict the
existence of e=K* such that |ell,=1 for all @ not conjugate to B over k, and
such that, for suitable b=(b)=y(1)|G| *(ay) and each o=G,

log fellov= 3 b:L'0, )3 1(07),
TE B

where Gy is the decomposition group of . If PR is archimedean and lies over
a real place p of %, and we identify &, with R, such a conjecture would yield
an analytic formula for an S-unit p=|ells€ K\ R, namely

) r=exp( L0, 0 3 10).

In case K/k is abelian, Stark has given what seems to be the “correct”
conjecture “over Z”. Before discussing this in §4, however, we mention that
T. Chinburg [3] has examined numerically 5 non-abelian cases, each with k=@,
|G1=48, and X a set of 6 irreducible characters coming from two-dimensional
representations p: G—GL,(C) which are “tetrahedral”, in the sense that the
image of G in PGLC) is isomorphic to A, In each case Chinburg found 6
independent units » such that (x) holds with an accuracy of 107** and whose
conjugates have suitably small absolute values. On the basis of these data
Chinburg has formulated conjectures “over Z”. The cases treated by him are
examples in which L(s, y) corresponds to a modular form of weight 1, in accord
with the theory of Langlands and Deligne-Serre [7]. Stark [19] has given the
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modular version of the conjecture “over @” in this case, and views it as giving
an explicit construction of the non-abelian extension K/@ corresponding to a
new form, whose existence was proved by Deligne and Serre.

§4. The conjecture St (K/%, S). In case G is abelian, which we assume
from now on, Stark [17, IV] has given an ingenious conjecture “over Z” for
which there is a great deal of evidence. The conjecture has an extra feature,
in that the S-unit ¢ whose existence is predicted is required to have a special
property which we now explain.

Let px be the group of roots of unity in K, let W=|pux| be its order, and
let Ag,, be the ideal in Z[G] consisting of the elements a such that {*=1 for
all {&pux. Let e—& denote the canonical map K*—QK*; knowledge of & deter-
mines ¢ up to an element < ug.

(4.1) PROPOSITION. Let (0;), 1€l, be a system of generators for G, and for
each i€l, let n,€Z be such that {i={" for all {epg. Let ueQK*. The
following conditions on u are equivalent.

(1) There exists e< K* such that Wu=¢ and K(e'W) is abelian over k.

(ii) There is a field LDOK such that L is abelian over k, and an element
BeL* such that u=f in QL*.

(iii) For almost all (i.e., all but a finite number of ) primes p of k there is
an element e, & K* such that (6,—Np)u=§,, and such that ¢,=1 (mod pOg).

(iv) For each a=A there is an e, K* such that au=4g,, and for each a, b
€A we have &)=¢g.

(v) There exist ecK* and e, K*, 1<, such that Wu=g, % ™i=s¥ Viecl,
and e ti=e%iT™ for 4, jel.

SKETCH OF PROOF. (i) = (il). Put f=eY7, L=K(f).

(ii) > (iii). Put ep:ﬁ"vL‘N", where of < Gal (L/k) is the Frobenius substitution
of p for L/k.

(i) > (iv). Use that the elements o¢,—Np generate Ag,, (indeed, W=
ged (1—Np), for o,=1; [5]), and note that ef3~V*=¢f» ~¥* because both sides are
=1 (mod p).

(iv) > (v). Put e=¢yp and e;=¢4, ;.

(v) > (i). Exercise in Galois theory.

Let

0(s)=0s, K/k(s)zlé Lg(s, pez= gg(l—a?lfvp_s)_l

(the last for Re s>1) be the C[G]-valued function of a complex variable s such
that for each XECJ (the character group of G), we have y(6(s))=L(s, x*). Thus
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0(s)= 2, Ls(a, s)o™?
aEG
where {s(o, s) is the “partial zeta function”, defined for Res>1 by

Cs(o, S)=( > oi'Na™*,

a4, S)=1, ag=¢

the sum being over the non-zero integral ideals a of O, prime to S whose image
o, under the Artin map is o.

The following remarkable conjecture has been formulated by Stark [17, IV]
in case p is archimedean. Suppose that S contains a place p which splits com-
pletely in K. Let T=S—{p}, and suppose that T is not empty and contains the
places which are ramified in K. Let UT=U% r denote the group of elements
aclU=Ug, r such that

lalla=1 for Q|T, if |T|=2

lalls is constant for Qlq, if T=/{q}.

(4.2) CONJECTURE St(S, K/k). Suppose v, S, and T are as above. Let Llp.
Then

(L) There is an element u=u(P)esQU such that
— G5B, if |T|=2

Au=
—0O(B—1570),  if T=@

and such that u satisfies the equivalent conditions (1)-(v) of (4.1).
() There is an element e=eP)eUT such that

(@) loglle?|lg=—Ws(e, 0),  for each c=GC
by L%, X):—%.on(a) log lle®lly,  for each =G,

and such that K(eY7) is abelian over k.

Note that (ITa) and (IIb) are equivalent. Moreover, if ¢ satisfies (II) then
u=W~'% satisfies (1) and vice versa; hence (1) and () are equivalent. Stark’s
formulation is (ILb). The operator §’(0)=2L’(0, y)e; is defined as a sum over
all characters y of G but in (1) we can replace it by the sum over the y such
that (=1, because ez kills X if »(3)=0, and L’(0, y)=0 if »(3)=2. Hence, by
(3.1) the existence of u=QU satisfying the equations of (1), but not necessarily
the conditions (i)-(v) of (4.1), is equivalent to the Main Conjecture (1.1)-(1.3) hold-
ing for each y such that »(y)=1. Conjecture St(K/k, S) is independent of the
choice of P dividing p, via e(P°)=e(P)?; and it is in fact independent of the
choice of splitting place p=S because of ‘
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(4.3) PROPOSITION. Conjecture St(K/k, S) is true if S contains two places
v and q which split completely in K.

If G,=G.=1, then L'(0, )=0 for y+1, and §’(s, 0)=n""C(0) for each c&G,
where n=|G|=[K:k]. If |S|=3, then {’/(0)=0 and (I) is true with e=1. If
S={yp, q}, then {"(0)=—"nlog l|7ll,/wn, where w is the number of roots of unity
in k, h=[Pic Og| is the “S class-number” of k&, and 7 generates the group
O% mod p,, with {i7ll,>1, so that log |5ll, is the “S-regulator” of k. After can-
cellation of log ||n{l;, equation (Ila), with e=%", reads m=Wh/wn. This in an
integer! Indeed, w divides W obviously, and » divides h because K/k is split
completely in S and unramified outside S, so that the reciprocity law gives a
surjective homomorphism Pic Og—G. Moreover, ¢'/7=¢}/*, where g,=7"'", so
that K(e'") is indeed abelian over k.

(4.4) COROLLARY. St(K/k, S) is true if K=k.

(4.5) COROLLARY. St(K/k, S) is true if k has more than one complex place.
If v is non archimedean it is true if k is not totally real.

Suppose q&S. Then
O sutai(s)=(1—0q"Ng=")05(s) .
Differentiating, putting s=0 gives
Os5u0)=1—a7)05(0).

Hence, if u satisfies (1) for S, then (1—o7")u satisfies (I) for S\Uq. In partic-
ular,

4.6) St (K/k, S) implies St (K/k, S")  for any S'DS.

Suppose kCK'CK. Let G'=Gal(K’/k). Then Og x:/x(s) is the image of
05, x:(s) under the homomorphism C[G]—C[G’] induced by the natural map
G—G'.

(4.7) PROPOSITION. St(K/k, S) implies St (K'/k, S) for kCK'CK.

If ueQUg i satisfies (I) for K/k and B, then u'=NK,K.ueQUS,K, satisfies
(1) for K'/k and B'=Ng,x.B. (To verify that u’ satisfies 4.1 use (iii), with
8£:NK/K16D->

(4.8) THEOREM. St(K/k, S) is t%ue if k=Q or if k is imaginary quadratic.

This is proved by Stark [17, IV] if p is archimedean. For p non-archimedean
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it is true for £ imaginary quadratic by (4.5), and for k=@ by Stickelberger’s
factorization of Gauss and Jacobi sums, see [8].

Shintani’s Theorem 2 of [16] is a version “over @” of St(K/k, S), in case k
is real quadratic, the splitting place p of k& is archimedean, and K is a quadratic
extension of an abelian extension of @, but is not itself abelian over . It
would be interesting to investigate whether his methods can be used to prove
St(K/k, S) in that case.

(4.9) PROPOSITION. St(K/k, S) is irue if |S|=2.

Let S.. denote the set of archimedean places of 2. By (4.8) we can assume
[Swl=2. Since S.CS this means S=S.={, q}, say, with G,={1}. Since K/%
is unramified outside S, it follows that —1 is a local norm at every place except
possibly at q. Hence —1 is a local norm at ¢ also, which means G,=1. Hence
the conjecture is true by (4.3). '

The following seems to be the explanation of Stark’s remark near the bot-
tom of p. 199 of [17, V1.

{4.10) PROPOSITION. Suppose [K: kl=2. Let n=|S|—1=|T}|, and let m=
202, Then St(K/k, S) is true with an ¢ in condition (L) such that e=a™, where
a is an element of K such that K(a'V) is abelian over k.

We can suppose n=2 by (4.9), and we can suppose G,=G for each qT
by (4.3). Let G={1, z}. We can suppose k2 has at least 2 archimedean places
by (4.8) and consequently, that ¢ is a complex conjugation and acts like —1 on
roots of 1. With these assumptions one shows

— n—-2

1 Zz- >: |Coker|2 W(lognmlm)(l_ﬂ

where y is the non-trivial character of G, Coker denotes the cokernel of the
natural homomorphism Pic Oy, ,—Pic Og &, and % is the generator of Us x/¢x
such that {yllg>1 (here Us, x means the group of elements a=Ug x such that
a'=a'). For details see [21]. Thus we can take a=xn~'c°ker’, Since a'*"=1
and piT=1, K(a'")/K is abelian (cf. (4.1), (v)).

Let T.={q&T|G, is of order 2}. As Stark suggests ([17, IV], p. 199), one
can use (4.10) to prove that St (K/k, S) is true whenever G is generated by the
G, for q=T,. It might be interesting to consider the general case of G such
that G*=1.

05(0) =10, (

(4.11) The “real” case; numerical confirmation. Suppose p is real. Then we
can make the identifications Ky=Fk,=R, and W=2. Suppose the conjecture
is true. Replacing ¢ by —e if necessary we can suppose £>0, and ¢ is then
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unique. Let P(x)=Tlsea(x—e")=2 2 o(—1)ta;x™ % n=|G]|, be the field equation
for ¢ over k. Since 4/¢ is abelian over £ we have ¢°>0 for each o<G, and
formula (Ila) is equivalent to

g7=¢ W00 for g=G.

Calculating {5(o, 0) to high accuracy gives approximations &, to ¢°. The sym-
metric functions &; of these &, then approximate the «; in k,. Since [ella=1
for 2} p (assuming |S|=3, which is no harm by (4.9)), the «; are algebraic

2
integers, and satisfy Haillqg(?> for each archimedean place q=+p, as well as

lo;—é; |, <10~ for a large N. For N sufficiently large, these conditions deter-
mine «; uniquely, once &; is given; and if N is somewhat larger than necessary
for unicity, then the probability of finding an a;, given a random real number
@;, is very small. Thus the conjecture can be well-tested by computing the &;
very accurately and then miraculously finding the a;€0;. One can also try to
check then that the resulting P(x) splits in K, and that the splitting field of
Q(x)=P{(x* is abelian over k.

In essentially this way the conjecture has been tested by Shintani and Stark
in many cases with k& real quadratic [16] [17; I, IV] [18]1 and in one case with
k cubic [17, V1.

§5. Conjecture BS(K/k, T). In case the splitting place p=S is non-archi-
medean the conjecture St (K/k, S) can be conveniently reformulated, and leads
to a refinement of an idea of A. Brumer; hence the name BS (Brumer-Stark).

Let T be a non-empty set of places of 2 containing the archimedean places
and the places ramified in K. Let K7 denote the group of a<K* such that
lalla=1 at each Q above T, if |T|=2, or such that |a|s is constant at places
£|q, if T={q}. Suppose p&T splits completely in K (G,=1), and put S=T\J {p}.
Then

B5(s)=(1—Np~*)0r(s)
and consequently
05(0)=(log N,)8.(0) .

According to Siegel [13], and also Shintani [14], we have 6-(0)=@Q[G].
Since log [|u]s=—(log NR)ordgu, and NPR=Np, the condition 4.2 (1) on ucQK*
is equivalent to u€QKT and (u)=R7®, where (u)=[IQ **cQIy is the
“ideal” of u (here Jx denotes the ideal group of K and the homomorphism
u—{(u) from QK* to QJIx is the unique extension of the one from K* to Jx
which associates to each asK* its ideal (e)=Jy).

Let 47 x/» denote the subgroup of Jx consisting of the ideals % of K such
that UIT®=(u), with u=QKT satisfying the equivalent conditions (i)-(v) of
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(4.1). As we have just discussed, if p&T, G,={1}, and PIp, then
(B5.1) St(K/k, T\I{p}) is true & PEIr &/

On the other hand,
(5.2) We have (@)=4r ki for each asK*.

Indeed, put u=a’r®<@K*. Then u satisfles condition 4.1 (iv) with ¢;=
a®?t® for each ae= A. (Here we use the deep result of Deligne-Ribet [67], and
also of Barsky and Cassou-Nogués, [2]), that afr(0)eZ[G] for each a=A.)
Moreover, uQKT in view of

(6.3) LEMMA. For each subgroup HCG, let TH1=2,eq0<Z[G]. Then for
each q=T

0, i IT|=2

[quﬁr(O)Z{ . .
a multiple of [G], if T={a}.

Indeed, for each character X#1 of G we have y([G,1070)=x[G.HLO, y™H
=0, because L(0, y )=0 if y is trivial on G, If [T]1z=2, then L(0, y)=0 for
x=1 also.

These considerations motivate

(5.4) CONJECTURE BS(K/k, T). We have b1 x;y=8x. In other words, for

each ideal U of K, theve is an a€ KT such that K(a''") is abelian over k, and
such that AVIrO—=(g).

The idea that the operator W@,(0) kills the ideal class group Pic Og is due
to A. Brumer and generalizes the Stickelberger factorization of Gauss sums (see
Coates [5], for example). The idea that /% is abelian over k, which generalizes
the fact that the Gauss sums lie in cyclotomic fields, is, as we have seen, due
to Stark. Hence it seems reasonable to name this conjecture Brumer-Stark.
From 5.1 and 5.2 follows

(5.5) PROPOSITION. Let P be a (finite or infinite) set of places of k disjoint
from T such that each p=P splits completely in K and such that the primes P
of K above P generate the class group Pic Og. Then BS(K/k, T)is true if and
only if St(K/k, T\J{p}) is true for each pP. In particular, BS(K/k, T) is
equivalent to St(K/k, T\J{p}) holding for all splitting p&T.

Thus, “St” for non-archimedean p is equivalent to “BS”, and the results
(4.3)~(4.10) for “St” yield corresponding results for “BS” which we don’t bother
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to list.

As B. Mazur remarked, “BS” has an obvious function-field analog. This has
been proven by P. Deligne. He uses “l-motives” to establish property 4.1 (iii)
for u, via the theorem of Weil expressing L-series as characteristic polynomials
of the Frobenius morphism ; see [217 for details.

Taken all together, the evidence for the conjectures seems to me over-
whelming.
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