p-adic L-series at s=0

By Benedict H. GrROSS

To the memory of Takuro Shintan:

The p-adic L-series we will consider in this paper are analogous to the
complex L-series of Artin: they are associated to finite dimensional linear
representations of the Galois group of a totally real number fleld. These L-
series are known to be meromorphic functions on Z,; we will give a conjec-
tural formula for the leading term in their Taylor expansions at s=0. This
conjecture (2.12), which expresses the leading term as the product of a p-adic
regulator and an algebraic number, was inspired by Tate’s formulation of
Stark’s conjectures for Artin L-series [11, 12, 13].

Following Stark and Tate, we will also present a stronger conjecture (3.13)
for the first derivative of abelian L-series at s=0. One consequence of this
refinement would be the explicit construction of classfields using special values
of p-adic analytic functions.

Finally, we will prove that all of our conjectures are true for the p-adic
L-series of Kubota and Leopoldt: those associated to l-dimensional representa-
tions of the Galois group of Q. The ingredients of the proof are: an analytic
formula of Ferrero and Greenberg [3], a transcendence result of Brumer [1],
and some results from the p-adic theory of Gauss sums [7].

I would like to thank J. Tate for his generous help and for many stimulat-
ing discussions on the subject of Stark’s conjectures. Finally, I would like to
dedicate this paper to the memory of T. Shintani, whose contributions in the
theory of L-series remain as an inspiration to us all.

§0. Notation and conventions.

We will follow the notation of Tate [13] fairly closely. If X is an abelian
group and R is a ring we will denote the R-module RQ X simply by RX. If
fi+ X—Y is a group homomorphism we will use the same symbol to denote the
induced homomorphism of R-modules f: RX—RY. If ¢ is an involution of X
we let X-={xeX:z(x)=—x}.

We will use the symbols £ and K for number fields; usually & will be a
subfield of K. We denote places of % (even archimedean ones) by the symbols
v, q, --- and places of K by symbols P, Q---. For each place B of K welet Ky
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denote the completion at $B; if P is finite we let NP denote the cardinality of
the residue field of Kjy.

For a finite rational prime p we let C, denote the completion of an alge-
braic closure of Q, We define the p-adic functions exp,(x) and log,(x) by
their convergent power series expansions on 2pZ, and 1+pZ,, and extend the
latter uniquely to a homomorphism log,: Z¥—Z3.

§1. A p-adic regulator homomorphism.

To define regulators for p-adic L-series at s=0, we need an analog of the
homomorphism 4 used in the proof of the S-unit theorem. We begin by con-
structing a theory of p-adic absolute values.

Let K be a number field and let 4% denote the idéle group of K. Define
the homomorphism

D o Ak —> Q¥
(ap) — TI sign(ag)s II (VP)-ordptow)
B real P finite

Then ¢(a)=(Ng,ea)* for all principal idéles aeK* Hence ¢ is an algebraic
Hecke character of K.
To obtain the usual absolute value map:

(1.2) Il AR/K* — RY

we apply a construction of Serre and Tate [9, §77 to the character ¢ at the
infinite place of @. Namely, we define

(1.3) l\all—:gb(a)'N(mmm(am)-

The restriction of || || to the subgroup K% is the normalized local absolute value,
for which we have the formulas:

Nggyirla) B complex
(1.4) lals=1 sign(a)-a B real
(NP)-ordmte Q¥ finite .

To obtain p-adic absolute values we simply apply the same construction of
Serre and Tate to the character ¢ at a finite place p of @ This gives a con-
tinuous homomorphism

(1.5) I Wy AR/K* — Q3

a——> P(a) Nexoq piapan) .
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In this case however, the image is totally disconnected, so the kernel of || ||,
contains the connected component of the identity in A%/K*. This component
is precisely the kernel of the Artin homomorphism »g: A%/K* —-> Gal (K/K)e®
of global class field theory. Hence the map | ||, factors through a Galois
character

| lp: A%/ K* ——s Q3

(1.6) 7’1{\ /x

Gal (K/K)®® .

Since Gal (K/K)® is compact, y takes values in Z%. It is not difficult to show

that y~* gives the Galois action on T pGn=lim trpn.
n
If we restrict | |, to the subgroup K%, we obtain a local absolute value

I g K ——= 23

%) K»\ /Xm

Gal (Ky/Ky)™

where 7y is the reciprocity map of local class-field theory and y3' gives the
local Galois action on T,Gn. We have the following formulas:

1 B complex,
sign (@) B real,
(V) -erdn e %% finite, not dividing p,

(1.8) lals, p=
](NSB)"’“W")NKYB/QP(a) B divides p.

By (1.5) we have the product formula:

(1.9 ];[Hallm,p:l for acK*.

The p-adic absolute values || fs,, are not as sensitive as the real absolute
values || |a. For example, if ¢ is a totally positive unit in the real guadratic
field K=Q(/%), then |le]ly ,=1 for all places PB. But the condition {e[y=1 for
all places P implies that ¢ is a root of unity.

On the subgroup

(1.10) (K% = {eckK*: |els=1 for all B dividing oo}
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however, the p-adic absolute values are quite sensitive. We use the symbol
(K*)~ to denote this subgroup as it is the intersection of the minus spaces of
all complex conjugations on K*. The torsion subgroup of (K*)~ is the group
¢ of roots of unity in K*.

PROPOSITION 1.11. Let ¢ be an element of (K*)~. Then the following three
conditions are equivalent:

a) ¢ is an element of px.

b) lele=1 for all finite places B.

c) llels, » 78 @ root of unity for all finite places .

Proor. Since || Iy and || lly,, are group homomorphisms, they map px into
the torsion subgroups of R¥ and Z% respectively. The former is trivial and
the latter consists of the roots of unity in Q3. Hence a) implies b) and c).

The fact that b) implies a) is well-known. To show that ¢) implies b) we
use the explicit formulas in (1.4) and (1.8). If P does not divide p then |els ,
=|ells is a positive rational number. If it is also a root of unity in Z% then
lelle=1. If P divides p and |ellp, ,=C is a root of unity, we must have Ng,q,(e)
=p%. But s(K*)", so all of the conjugates of ¢ have complex absclute value
1. Hence ¢=0 and [elg=NPo48©=1. O

Let S be a finite set of places of K, which contains all places dividing oo
and p. Let Ugx denote the S-units of K* and let Us, x=Us, x\(K*)". Let
Ys x denote the free abelian group on the set S and let Xg r denote the sub-
group of elements of degree 0. Since S and K will usually be fixed, we will
write U, U~, X, and ¥ when the meaning is clear.

Recall the homomorphism 2 used in the proof of the S-unit theorem [13,§17:

(1.12) 2:U— RY
er—> > log|ells-B.
BES
By the product formula, the image of 2 lies in RX, and Dirichlet’s theorem

asserts that A induces an isomorphism 1: RUZRX.
In a similar manner, we may define the p-adic homomorphism

(1.13) Ayt U —>Q,Y
e 3 log,lella .
Again the image lies in Q,X by the product formula (1.9). Using (1.7) one can

show that the image of A, is contained in the subgroup »"Z,X, where p*
exactly divides the number of roots of unity in K(yzp).
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PrOPOSITION 1.14. The induced map 2,: QU-—Q,X is an injection.

Proor. We must show that the kernel of 2, on U~ is equal to the sub-
group pg. Clearly, px is contained in the kernel. Conversely, it 2,(e)=0 then
lells,p is in the kernel of log,(x) for every P in S. This kernel is just the
roots of unity in Z% Since ¢ is also an S-unit, we see that |efs,, is a root of
unity for all finite places P of K. Hence ¢ is a root of unity by (1.11). O

In attempting to strengthen (1.14), we are led to our first conjecture:

CONJECTURE 1.15. The induced map 2,: QU —Q,X is an injection.

Let @ denote the algebraic closure of @ in C,. An equivalent form of
(1.15) is the conjecture that the map 2,: C,U —C,X is an injection. In this
direction, we have the following result from transcendence theory.

PROPOSITION 1.16. The map A,: QU-—C,X is an injection.

ProoOF. Let u=3w;&e; be an element in the kernel of 1, where the ¢;
are in U~ and the a; are algebraic numbers. We may further assume that the
a; are linearly independent over Q. Since A,(u)=0 we have >a;log,leiln, =0
for all places P in S. By Brumer’s p-adic version of Baker’s theorem [1], this
implies that log,le;ls, ,=0 for all 7. Hence |e;lly,, is a root of unity in Z7% for
all places P in S; since ¢; is an S-unit this implies, by (1.11), that ¢; is a root
of unity in K* Since this holds for all 7, »=0 in QU-. O

Although we have stated conjecture (1.15) for an arbitrary number field K,
it suffices to prove it in the case where K is a CM field: a totally imaginary
quadratic extension of a totally real field. In general, X will either contain no
CM-field or a maximal one Ky, In the first case (A*)"=<{(Z%1> and conjecture
(1.15) is trivially true. In the second, every element ¢ in (J(*)~ is contained in
K¥%, : each complex conjugation of K takes ¢ to ¢”'. Since the diagram

Q,Uz — = QX
(1.17) i l ;
Ap
QuUz oy —= QpXkey -

is commutative, where j is induced by the inclusion K#y—I/* and z'(ED an-i)
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= ZD)aC(SBED[KgB : Ko, o) 1s injective, we may assume, without loss of generality,
|

that K=Ky

In this case, let ¢ be the involution of K which induces complex conjugation
at every infinite place and enlarge S, if necessary, so that it is stable under .
Then U~ is just the minus eigenspace of z on U. Since the map 2, is c-equiv-

ariant, its restriction to U- takes values in Z,X-, the minus eigenspace of
Z,X:

(1.18) Apr U —>Z,X".

ProPOSITION 1.19. Assume K is a CM field. Then the following three state-
ments arve all equivalent to conjecture (1.15).

a) The map Ap: Z,U™ — Z,X" has finite kernel and cokernel.

b) The map 2,:Q,U~ — Q, X" is an isomorphism.

c) The map Ap: CrU™ — C, X" is an isomorphism.

ProoF. Since U~ and X- are finitely generated abelian groups, the equi-
valence of a), b), and ¢) is standard. Clearly b) implies (1.15), the converse fol-
lows from the fact that the @,-vector spaces @,U/- and Q,X have the same
dimension. To see this, note that the map A4 is also r-equivariant, and gives
an isomorphism RU- = RX-. Hence the abelian groups U~ and X~ have the
same rank. O

If part a) of (1.19) is true, the kernel of 1, is the subgroup of p-power roots
of unity in K* and the order of the cokernel of 1, is an interesting arithmetic
invariant. We may refine this invariant as follows. Define the homomorphism

(1.20) g: U — X~
e— > fyordy(e) B,
ST

where fy is the degree of the residue field at B over the prime field. Com-
paring g with the map 2, we see it induces an isomorphism g: QU™ T QX".
Define :

(1.21) Ry=R, x s=det (Lg ™ |Q,X").

The regulator R, is non-zero if and only if the conditions in proposition (1.19)
are satisfied; its p-adic valuation then determines the order of the cokernel
of A,
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§2. p-adic L-series.

Let £ be a totally real number field and let 2 be an algebraic closure of k.
Let E be a fleld of characteristic zero and let V be a finite dimensional vector
space over E with a linear action of Gal (k/E). We assume that the repre-
sentation

@.1) o Gal (B/E) —> Autx(V)

factors through the Galois group of a finite extension K of Z.

We say the representation V is totally even if every complex conjugation
in the Galois group acts as 1,; we say the representation V is totally odd if
every complex conjugation acts as —ly. In both cases the field K may be
chosen to be a CM field.

Let S denote a finite set of places of %k, containing the set S.. of places
dividing oo. Given an embedding a: E—C we let V' denote the complex repre-
sentation obtained by change of base. Let L(V?* s)=Lx(V* s) be the Artin
L-series of V<« without Euler factors corresponding to primes in S, defined as
in Tate [13, §11.

Let n be a negative integer. Then there is an algebraic number as(V, n)
in E such that

2.2) Ly(Ve, n)=ag(V, n)®

for all embeddings «: E—C. When dim V=1 the existence of ag(V, n) follows
from results of Siegel [10] on the rationality of partial zeta values. In the
general case one first reduces to the case S=S..; the existence of as(V, n)
then follows from Siegel’s results and Serre’s variant of Brauer induction, which
takes the parity of V into account [14, Appendix]. For arbitrary S and n=-1
we have as(V, n)#0 if and only if V and » have the opposite parity.

Now assume that the set S also contains all divisors of p. Given an em-
bedding 8: E—C, we may define the p-adic L-series of V# relative to S. This
is a meromorphic function L, (V?, s)=L, s(V#, s) on Z, which is characterized
by its values on the dense set of strictly negative integers. Let

2.3) w: Gal (k(uap)/ k) —> (Z/2pY —> Z%
be the Teichmuller character. We then have the formula:
2.4 Ly sl "@VE, my=as(V, n)f

for all n=<—1, where ag(V, n) is the element of E determined by (2.2). When
dim V=1 the existence of a function satisfying (2.4) follows from results of
Deligne and Ribet [2], [8]. In the general case one can construct L,(VE, s)
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using their results and Serre’s variant of Brauer induction [5], [14]. One
suspects that the identity (2.4) also holds when n=0, but at present this is only
known for abelian (or, more generally, monomial) representations V.

By parity considerations, the function L (w®V?#, s) is non-zero if and only
if the representation V is fotally odd. For the rest of this section we assume
that this is the case, and factor the representation through the Galois group
G=Gal (K/k), where K is a CM field.

Write the Taylor expansions of L(V?, s) and L (o®@V?, s) at s=0 as follows:

(2.5)

L(Ve, §) ~ L(V*)sTV®
as s—0.

L (@0QV?E, s) ~ L(VE)sp¥H

We will give explicit formulas for the integer »(V*) and the complex number
L(V*) and will conjecture similar expressions for 7,(V#) and L, (V#).

Let Sk denote the places of K dividing those in S and let U-=Us x and
X =X5, be the groups defined in §1. The Galois group G acts on U~ and
X~ ; the latter representation is simply the minus component of the permutation
representation on Sg. The homomorphisms A, 1, and g defined in §1 are G-
equivariant. Hence we have an isomorphism of Q[GJ-modules:

(2.6) QU =QX = p@% (Ind§,1)~

where G, is a decomposition group for the place p in G.
Let V* denote the contragredient to V and let

2.7 r(V)=dimg(VRE X" )°=dimz Homg(V*, EX").
If V is irreducible, »(V) is the multiplicity of V* in the G-decomposition of
EX-. By (2.6) and Frobenius reciprocity :

2.8) r(V):pEES dimgV e,

Notice that we also have the formulas:
2.9 HV)=dimc(V*QCX ") =dime (VPRC,X)*
for all a¢: E—C and §: E—C,.
Define the regulators
2.10 { R(V*)=det (1Q2g"" | (V*QCX)%)
Ro(VE)=det 1®g7* | (VARC,X7)%).

The former is a non-zero complex number which Tate denotes R(V¢, g™1) in
[13, §1]. The latter is non-zero in C, if and only if 2, induces an isomor-
phism on the (V*)f-isotypical components of C,U~ and C,X".
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PROPOSITION 2.11. There is an algebraic number A(V) in E* such that for
all embeddings a: E—C we have

a) W Va=r(V)

b) L(V®)=RV*A(V)~.

CONJECTURE 2.12. Let A(V) be the algebraic number defined by (2.11). Then
for all embeddings B: E—C, we have

a) r(VEY=r(V)

by L (VE=R,(VHAV)E

A few remarks are in order. Proposition (2.11) is proved in Tate [13, 2.6]
when #(V)=0; the quantity which we call A(V) is his A(V, g7)~*. The general
case reduces to this one: we have rg (V)=0 since V is totally odd and the rela-
tion between A(V) and As (V)=as.(V, 0) is given by formula (2.16). Following
the methods in Tate [13, §27 one can also show that the statements of (2.12)
are compatible with the behavior of p-adic L-series under the operations direct
sum, inflation, and induction of representations. Similarly, the conjecture is
independent of the choice of S containing the divisors of co and p: there is an
obvious relation between the quantities defined for S and those defined for S*
=5U {p4.

Note that the truth of conjecture 2.12 for all odd representations V of G
implies the truth of conjecture 1.15 for the map 2, and the CM field K. For
(2.12) implies that R,(V#)#0, hence 2, induces an isomorphism on the (V*)A-
isotypical components. With this point of view, we can return to deal with
some of the questions raised in § 1. Our method follows that of Greenberg [4].

PROPOSITION 2.13. If »(V)=1 then R,(VF)=0 for all embeddings §: E—C,.

Proor. By the hypothesis, each irreducible component W of (V¥ occurs
with multiplicity less than or equal to one in C,U~ and C,X". To show the
regulator is mon-zero, it therefore suffices.to show 2, is not identically zero on
the (W)-component. Since this component may be defined over @, this follows
from (1.16). O

COROLLARY 2.14. Let K be a CM field with maximal real subfield K, Let
T denote the set of places of K, dividing p which split in K. Assume that
Aut (Ko contains an abelian subgroup G, which permutes the places in T transi-
tively. Then the map A,: C,U —C,X" is an isomorphism and R, g, s#0.

Proor. First let S consist precisely of the divisors of co and p. Under
the hypotheses made in (2.14) one can show that the multiplicity of each irre-
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ducible representation V of G=<(G,, r> in QX- is either zero or one. In the
former case, R,(V#)=1, in the latter R,(V#)=0 by (2.13). The result for general
S follows easily. O

It may be helpful to unwind the statements in (2.11) and (2.12) a bit further.
First note that by the definitions of 2 and g we have

(2.15) R(V)= TI (~log pyyt=""

Preo
where p, is the characteristic of the residue field at p. The complex number
L(V?) can be easily calculated from the value Lg (V¢ 0)=ag(V, 0)*+0. Put-
ting this all together, we obtain the formula

(2.16) AWV)=(=1y®- 1T det (1—a,| Vi yery. fimve.g e (V,0).
= .
Proo
For example, suppose V has dimension 1 and corresponds to a totally odd
quadratic character y of Gal(2/k). Then E=Q and K is a quadratic extension
with % as its maximal real subfield. By the analytic class-number formula

(2.17) @s(3 O=1m L (s)/Culs)=25R*/WQ .

Here g is the degree of %, h”‘:hK/h;Z is the relative class number, W is the

order of pug, and Q=Card Us., x/1txUs., ») is the unit index. We remark that

h* is an integer, @ is equal to 1 or 2, and 25= g (1—y¢(®)). The regulator
PESo

R(y) associated to this representation is just the regulator R, g s defined by
(1.21). Hence conjecture 2.12 becomes the statements :

a) ords-, L (wy, s)ir(x):Card{peS cy(p)=1}.

b
b) lim Lyay, s)/s@=(—1y®- I (=) 11 fi- W*/WQ - RQ.

(=S
PACOES ] Xp=1

Some theoretical evidence for these identities is provided in [6].

§ 3. The first derivative of abelian L-series.

In this section we assume that the CM field K is an abelian extension of
the totally real field 2. Let W denote the order of .

Let n be the exponent of G=Gal(K/k) and assume that F contains the
n'*-roots of unity. Then all irreducible FE-linear representations of G have
dimension one and are given by characters y: G—E*. The character y is totally
odd if and only if y(r)=-—1.

Let S be a finite set of places of & which contains all divisors of co and p,
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as well as all places which ramify in K. Let y be a totally odd character of
G; if p ramifies in K we put y(p)=0, otherwise we let y(p=y(o,). By (2.3) we
have the formula:

3.1) rp)=Card {peS: y(p)=1}.

If 7(y)=0 then conjecture (2.12) is true, by formula (2.4). In this case A(y)
=a(y, 0) and R(yf)=1 for all f: E~C,. In this section we will examine con-
jecture (2.12) in the case when #(3)=1; to insure that »(y)=1 for all characters
x of G, we make the further assumption that S contains a (finite) place p which
splits completely in K.

Instead of using the abelian L-functions, it is convenient to formulate our
results with the partial zeta-functions of K/k (all defined relative to the set S).
For ¢=G we define the complex function: :

(3.2 LU, s)y=Ls(o, s)z(a%):lNa‘S.
This series converges for Re(s)>1 and has a meromorphic continuation to C,
regular outside s=1. The values of (s, s) at negative integers are rational
numbers and W{(s, 0) is an integer [27, [10].

The p-adic partial zeta functions (e, s)=C, s(o, s) are also meromorphic
on Z, and regular outside s=1. Let d=[k(usp): k]; then for all hegative
integers n=0 (mod d) we have:

(3.3) Lo, n)=L(s, n).

The existence of such a function follows from results of Deligne and Ribet [2],
[81.

Write S={p}\UT; then T contains all places dividing oo and all places
which ramify in K/k. In particular, Card (T)=2. We may define the complex
partial zeta functions relative to T and find £(g, s)=1—0,Np~*)X (0, s)=(1—Np~)
«Lr(o, s). Hence

(3.4) for all =G

Lo, =0
{ Lo, 0)=log Np-Lr(o, 0)
Using (3.3) we may conclude that
(3.5) Lolo, B)=0  for all s&C.

If the splitting place p does not divide p, then T also contains all divisors of p
and we may define the p-adic partial zeta functions relative to 7. In this case
we find {p(o, $)=(1—{Np>=*)p, (0, s), s0

(3.6) e, O=log,Npl, r(a, 0) if p does not divide p.
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Now define the group:
3.7 U,={esK*: |¢la=1 if O does not divide p}.
Then U, is a subgroup of Uz, x of rank [K: £]/2; its torsion subgroup is px.

PropoSITION 38. Let B be a divisor of v in K. Then there is a unique
element u=u(P) in QU, such that

3.9 —{(o, O=log |u’ls  for all o=G.

The following two statements are then equivalent:

a) —Co(o, O=logpllu’lls,, for all o <G.

b) Conjecture (2.12) is true for all totally odd characters y: G—C% with
r(p=1; for all totally odd characters with r()=2 we have ry(x)=2.

ProOOF. Since {'(o, 0)=log Nplr(a, 0)=log NR{r(c, 0) the element u=QU,
satisfying (3.9) is uniquely determined by the condition:

ordg(u?)=ord,-1m(u)=Lr(a, 0).

If we let =XC(c, 0)c~* in Q[G], then u generates the rational ideal R’=
1\5(1—1)012.

Let y: G—C% be totally odd, and choose m so that the ideal P™™ is

principal with a generator « in U. Let vsﬁ@)a in QU,. When r{y)=1 we
find the formulas:

AG=—1» %300, 0)
(3.10)

1
R(p= ?;‘:“X(G) logplv7 s, 5+

The first follows from (2.16). To prove the second, note that the divisor D=
%x(a)%" generates the one-dimensional space (yQC,X )¢ Hence i,g (D)=

R,(¢)+D; a short computation then yields (3.10). Note that R(y)#0 by (2.13).
Since v generates the rational ideal $-*/2 we have u=0v? in QU,. Hence

(3.11) AQWRO)=—23(0")r(0”, 0)- Ty(o) logsliv7ln. »
=—x() logpllulls, » -

This identity actually holds for all characters y of G; when y is not totally
odd or when r(y)=2, both sides of (3.11) are equal to zero.
But condition a) of (3.8) is equivalent to the statement
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a’) Liloy, O=—2 (o) logplu’lls.»

for all characters y of G. Combining this with (3.11), we see that a) is equiv-
alent to b). O

To state a refined form of conjecture (2.12) when r{y)=1 we need a result
of Tate [13, 4.17.

PROPOSITION 3.12. Let ucQU,. Then the following three conditions are
equivalent :

a) Wu=1Qe, where ¢ is in U, and X/& generates an abelian extension
of k.

b) u=1&3d, where & is in U, and L is an abelian extension of k.

¢) For all prime ideals q of k, relatively prime to W and S, we have (6,— Nq)u
=1Qeq for a unique e, in U with ¢,=1mod qOx.

CONJECTURE 3.13, The element u=u(D) in QU, determined by proposition
3.8 satisfies the three equivalent properties of proposition 3.12 as well as the
identities: {3(o, 0)=—log,lu"ls., for all ¢ in G.

As presented, this conjecture depends on the extension K/%, the finite set
S={p}\UT, and the choice of prime P dividing p. It is clearly independent of
PB: one can take u(P)=u(P)’. If it is true for S it is true for the set S*=
SU {p*}. One can take u*=(1—o,)u. Finally, if K’ is a subfield of K con-
taining % and conjecture (3.13) is true for (K/k, S), it is also true for (K’/%, S)
[13, 4.77.

The consequences of conjecture (3.13) are particularly striking when the
completion k,=Kg is isomorphic to @,. Let W, be the order of tq, and write
Wo=m-W.

PROPOSITION 3.14. Assume that conjecture 3.13 is true and Kp=Q,; then

a) The ideal BVe? has a unique generator « in U, which lies in the sub-
group p%-(1+2pZ,) of K§=Q%.

b) All of the conjugates a’ of « also lie in the subgroup of the completion
at P. ‘

¢) For each 6 =G we have the analytic formula
(3.15) o= p"tr<e. 9 exp (—W ,{4(a, 0))
=exp (=W L'(o, 0)-expy(—W,L5(a, 0))  in Ky.

Proor. By (3.9) and a) of (3.12) we have an element e, with (e)=P"?,
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Hence ¢™ is a generator of $$%»%, But ¢™ lies in the subgroup pZ%-pw-(1-+2pZ,)
of @F Hence we may multiply ¢™ by a unique root of unity { in K* such
that a={e™ lies in pZ-(1+2pZ,).

To prove b), choose an ideal a prime to S with o.=og. Since %/¢ is
abelian over £ by a) of (3.12), we have &¢%%® in (K*)¥ by Kummer theory.
Hence af¥e=({)%a~Ne, (¢™)%a~No=(g% V)™ igin (K*W», Since the latter group
clearly injects into p?-(14+2pZ,), a is also contained in this subgroup of the
completion.

By (3.13) we have the formula:

—W  Cola, O=log,la’ s, ,=log(la’ls-°)  in Ks.
Since ||a®lly-a’ lies in (1-+2pZ,), we find after exponentiation that:
eXPp(—WpC;;(U: 0)):llaallm'a” in Km .

Part ¢) then follows from the formula ||a?|ls=p"F2‘r¢@-2 O

§4. Gauss sums and the abelian case.

In this section we will prove conjecture (3.13) when k=Q. We will use
this to show that conjecture (2.12) is true for all abelian representations V of
Gal (Q/Q).

Let K be a complex abelian extension of @ of conductor (m) and let p be
a finite place of @ which splits completely in K. By the Kronecker-Weber theo-
rem, K is contained in the subfield F of Q(u,) which is fixed by the decom-
position group of p. Let S consist of the places of @ dividing oo, p, (), and
p and write S={p}YT. By the remarks following (3.13) it suffices to prove
conjecture (3.13) for the set S. Similarly, we may assume that K=F.

Let ¢ be the rational prime which generates the ideal p. Under the Artin
isomorphism Gal (Q(gt,,)/Q)=(Z/m)* the Frobenius element ¢, corresponds to the
class ¢ (modm). Let f be the order of this element in the Galois group; we
have the field diagram:

7
N
.1 K G=(Z/my*/[{q> .
~
Q

For ae(Z/m)* we let v, denote the corresponding element of G: this depends
only on the coset of ¢ mod<{g). We let {a/m) unique rational number between
0 and 1 which is congruent to a/m (mod Z).
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The most interesting case of (3.13) is when ¢=p. Here we need two an-
alytic formulas; the first due to Hurwitz and the second to Ferrero and Green-
berg [3]:

f . J X
42 Celow 0= 3 (3 —<plasm)=L— S pasmy,
4.3) Ci(oa, O)= él log,I'o{ p'a/md=1og,( 1{[1 I(piam) .

Let B be a divisor of p=(p) in K. To produce the element u=u(P) in
QU, we appeal to the theory of Gauss sums. Let © be the ring of integers of
Q(un) and let y @ (O/BOY*— 1y, be the m'* power residue symbol. Let ¢: Z/p—p,
be a nontrivial additive character, and define the Gauss sum:

4.4 =— -1 T .
(4.4) 8= Dot (T a)
This element is denoted g(l/m, PO, ¢oTr) in [7].

It is easy to check, using Galois theory, that g lies in the subfleld K(g,) of

Q(pnp), and that conjugation by an automorphism of g, multiplies g by a root

of unity. One also has g'*"=p/=N(P0O) and Stickelberger’s theorem gives the
ideal factorization :

@.5) (gl S
Let h=+/(—1/p)p if p is odd and h=(1+7) if p=2. Then the element d=g/h/
lies in the abelian extension L=K{(y,,) of @, and the image u=1&0 in QU, .
actually lies in QU,. By (4.2) and (4.5) this is precisely the element () which
satisfies (3.9); by its very construction it satisfies b) of (3.12).

To complete the proof of conjecture (3.13) when g=p, we must show that
oe, O=log,|u"®y , for all ¢, in G. By (4.3) and the definition of u, this
is equivalent to the p-adic identity:

4.6) logp(ilj: I'pra/my)=log,(g’®)

which follows from the main result of Gross-Koblitz [7, 1.7].

The case when p=(g) with ¢=#p is similar, but less difficult as no results
from p-adic analysis are needed. We again construct a Gauss sum g using a
divisor B of p in K and let d=g/h’ in Q(ps,). In this case we take u=1&3d
only if (p) ramifies in K, otherwise we take u=(—0c,) 1®d. It is easy to
check that this element has the requisite properties.

We now turn to a proof of conjecture (2.12) for all totally odd abelian
representations V of Gal(@/Q). Since the conjecture is compatible with direct
sums, we may assume that V is irreducible. Hence V has dimension one and
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is given by an odd character y: Gal (@/Q)—E*. We may also assume that S is
minimal, so S consists only of the places co and b.

There are then only two possibilities: 7(3)=0 or r(3)=1. In the former
case the conjecture is true by formula (24); in the latter it follows from our
proof of conjecture (3.13) and proposition (3.8).
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