On L-dimension of coherent sheaves

By Takao FuuTa®

(Communicated by N. Iwahori)

In old days some geometers considered “Riemann-Roch Problem” as the
following one: Let L be a line bundle on a variely V. Then, how is the structure
of the graded algebra tEBH"(V, tL)?
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Unfortunately, this turned to be not at all easy. Thus, nowadays, because of
the brilliant success of Hirzebruch, “Riemann-Roch” means almost always a
result on XV, tL), not on HYV, tL) itself.

One of the most fundamental tools to study the original problem in general
is the notion of L-dimension due to litaka together with his fibration theorem for
the rational mapping defined by [fL]| (see [1]). Generalizing his theory, we
consider L-dimension of a coherent sheaf &, which is defined by the asymptotic
behaviour of A°(F[tL7) when t—oo. This enables us to avoid non-singularity
assumption in many cases, and thus our theory works in positive characteristic
cases too.

However, our analogue of the fibration theorem is less satisfactory than that
of litaka. This reflects a real difficulty in the classification theory of algebraic
varieties, which takes the form of the existence of quasi-elliptic surfaces in 2-
dimensional cases. (See (3.16).) A

This paper is organized in the following way. In section 1 we review a
couple of theorems of Bertini type in arbitrary characteristic cases. In section 2
we introduce the notion of L-dimension of coherent sheaves. In section 3 we
establish a fibration theorem of Iitaka type.

Notation, Convention and Terminology.

Usually we work in the category of K-schemes of finite type, where K is an
algebraically closed field of any characteristic. Occasionally we assume K to be
sufficiently big, that is, every object involved is defined over a subfield K’ of K
such that tr.deg (K/K")=o0. Some arguments work in other categories too, €. g.,
that of complex analytic spaces. Any way, an object of our category will be

*)This article was completed when the author was a Miller Fellow at the University
of California, Berkeley, during the term 1979-1981.
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called a space, and is considered to be a local ringed space.

Basically we employ a similar notation as in [EGA] and [H]. A space is
said to be irreducible if the underlying topological space is so with respect to its
Zariski topology. Variety is an irreducible, reduced space. Point means a closed
point. The meaning of “generic point” is similar to that of [W]. Line bundles
and invertible sheaves are confused with linear equivalence classes of Cartier
divisors, and their tensor products are denoted additively.

Finally we list up our notations which may not be standard.

Supp (&) : The support of a coherent sheaf ¥ on a space S.
Fpr: The pull-back of & to a space T by a given morphism T—S. Similar
notation is used for line bundles, linear systems, etc.
GtL]: =FQL®, where L is a line bundle.
p4: The rational mapping defined by a linear system A.
BsA: The intersection of all the members of A.

A is identified with a finite dimensional vector subspace of H(S, [/1]) A

member of A is the zero-scheme of a section in this subspace.

A morphism f:T7T—-S is said fo be birational, if there is an open dense
subset U of S such that f~3(U)=U as open subschemes of T and S respectively.
Of course, if both T and S are varieties, this is equivalent to say K(S)=K(T).

§1. Bertini theorems for coherent sheaves.

In this section we make a review of several tools which are used in the later
sections. Most of them are well known to experts, possibly except differences in
terminology. But it may not be easy for beginners to find proofs. So we give
outlines of them too.

(1.1) THEOREM. Let S be a space and let F be a cohevent sheaf on S. Then
there exists a locally finite family {X.} of irreducible subsets in S such that any
irreducible component of the support of any subsheaf of F is one of Xa.

PROOF. Any ascending chain of subsheaves of & is locally of finite stable
range. By the standard argument of Noetherian decomposition, we prove the
theorem.

(1.2) COROLLARY. Let S, & be as above and let A be a linear system on S.
Then, Supp (Ker 0a)CTBs A for a general member D of A, where 34 is the
natural homomorphism F[—DI—F induced by the defining section of D.

ProoF. Let {X,} be the associated components of & as in (1.1). Take D so
that DD X, for any « with X,a@Bs A. Then D satisfies the desired condition.
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In order to visualize the power of this fact, we need a theory of dualizing
sheaves.

(1.3) NoTATION., F(S) denotes the category of coherent sheaves on a space
S. F<F(S) means that & is an object of this category. If T is a locally closed
subspace of S, then prcs denotes the restriction functor F(S)—F(T). prcs(¥F) is
often denoted by &y for F€F(S). If ¢:S—U is a closed embedding, there is a
functor ¢4 : F(S)=F({U). For FF(S), ¢xF is denoted by & by abuse of notation.

(1.4) THEOREM. There exists a contravariant functor D%: F(S)—F(S) for every
space S and every integev q, which satisfies the following conditions.

a) If T is an open subspace of S, there is a natural functorial isomovphism
Dhe pres=pres° Di.

b) If ¢: S—U s a closed embedding, there is a natural functorial isomorphism
DEetu=1r40 DL,

¢) If S is a manifold of dimension n, there is a natural functorial isomorphism
DY) =ExtB5U*, ws), where wg is the sheaf of Kaehler n-differentials on S.

OUTLINE OF PROOF. First we remark that the above conditions determine
the functor 9% uniquely. Indeed, take an affine covering {T.} of S such that
each T, is a locally closed subset of A¥«, Take an open mneighbourhood U of
T=T, in which T is closed. Then, by the conditions a), b) and ¢), we have
DD r=ExtJ7UF, wy)r for each FeF(S), and 94(F) must be obtained by patching
them.

Set D% (F) be the right hand side of the above equality. If this is independ-
ent of the choice of the embedding TCUC A", then 9%F) is well-defined and
we are done. Thus, what we should show is the existence of a natural isomor-
phism 9% (F)= D% (F) for any other embedding TCVC AX.

Step 1, the case in which U is a closed submanifold of V. The above iso-
morphism is obtained by the natural isomorphism &xtf,¥(Oy, wy)=wy and
Exth Oy, w,)=0 for p=M—N.

Step 2, the case in which V=UXA¥-¥ with me¢y=¢;, where = is the pro-
jection V—U and ¢y, ¢y are embeddings of 7 in V and U. The problem is local
with respect to U, so we may assume U to be affine. Then we have an embedd-
ing o:U—V such that cey=¢y and z-oc=idy. Now we have 2% y,=9% ,«»
=9% y, where the last isomorphism is obtained in Step 1.

Step 3, the general case. We have a closed embedding TCU XV induced by
ey and ¢p. Moreover, TCUXVCUX A" is also closed. Hence we have 9%
=% vuad =D} yxy by Step 2. Similarly we have D% ,=9% .-

Step 4. Finally we check the cocycle condition. Namely, if TCU, TCV
and TCW are three embeddings, then the isomorphisms among 9% « should make
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a commutative triangle. This is easily seen in case UCVCW. Examining Step
2, we see this for TCU, TCUXV and TCUXVXW. In the general case we
use the following diagram:

7 N\ 7/ \
N

REMARK. We sometimes write 97 in stead of 9% when there is no danger
of confusion.

(1.5) COROLLARY. Let 0—F—G—4—0 be an exact sequence in F(S). Then
this induces a natural long exact sequence -+ —DTHF)—DUIH)—>DUG)—DUF)
__,‘@q—l(‘_q[)_,

(1.6) COROLLARY. Suppose S to be a closed subspace of a manifold P. Then
DUR)=ExtY5U*, wp) where N=dim P.

(1.7) COROLLARY. Suppose in addition that P is proper over K. Then, for
any F<F(S), there is a spectral sequence with EP‘=H?YS, 9~UF)) converging to
the dual of H™?YS, F).

Indeed, this is just the well known Exi-spectral sequence in view of the
Serre duality on P.

(1.8) THEOREM. dim (Supp (@UFW=q. In particular, DYF)=0 for ¢<0.

ProOOF. We may assume S to be an open subset of A¥ since the problem is
local and because of the property a) in (1.4). We use the induction on ¢. The
assertion is clear for g<0 because the homological dimension of @, is N for x€S.
So, assume that Supp (9%F)) has a component X with dim X>¢=0. Let x be a
generic point on X. Then, by (1.2), we can find a hyperplane H such that H>ax
and the induced homomorphism #: F—F is injective. Let C=Coker (k). Then
DYF)—D(F)—PTHC) is exact, where the first homomorphism is 9%h). Hence
Supp (@2 4¢))DSupp (Coker (PUR)DXNH where the second inclusion follows
from the Nakayama’s Lemma. This implies dim Supp (@4 {C)=dim X—1>¢—1,
contradicting the induction hypothesis.

(1.9) THEOREM. The support of DXF) is contained in the union of irrve-
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ducible components of Supp (F) with dimensions =q. In particular, 9YF)=0 for
q>dim Supp (F).

Proor. It suffices to show the following claim for each point x on S: if d
is the maximum of the dimensions of the components of Supp(Z) containing zx,
then 99%),=0 for ¢>d. This problem is local, and we may assume that S is a
locally closed subspace of A¥ and d=dim Supp (&). We use the induction on d.
The assertion is clear for d=0. Suppose d>0. Let H be a general hyperplane
section such that x<H. Let h:9—<F be the induced homomorphism and let
K=Ker (h), =Im (h) and c=Coker(#). Then Supp(X)C{x} by (1.2) and
dim (Supp (C)=d—1. So DHK)=0 for ¢>0 and this implies PUI=DYF) for
g>0. We have also the exact sequence 9YF)—IUI)—D?(C), and the last term
vanishes at x for ¢>d by the induction hypothesis. Hence QUh),: 9UF),—DUF),
is surjective. Since x < H, this implies 9%F),=0 by Nakayama’s lemma.

(1.10) DEFINITION. Let ¥ F(S) and let X be an irreducible subset of S. We
define the rank of 9 at X, denoted by rky(F), as follows.

If X@Supp (%), then rky(F)=0.

Suppose X to be a component of Supp(ZF). Let d=Ker (Os—&nd (F)). Then
F may be considered to be a sheaf on T, the subspace defined by the ideal 4.
Of course Supp (F)=Supp(T). Let 71 be the sheaf of nilpotent functions on T
and let F,=3/F/J17*'F. Then, in a neighbourhood of a generic point x of X, &;
looks like a locally free sheaf on X of rank »;, We define & X(EF)Z; ¥ )

In general, we define rkx(¥) to be the maximum of 7kx(¢) where ¢ runs
through all the subsheaves of & such that X is a component of Supp(¢) (If no
such subsheaf ¢ exists, then rkz(F)=0.).

(L.11) THEOREM. Let X be an irreducible subset of a space S with dim X=g.
Then rkx(QUE))=rkx(F) for any F=F(S).

Proor. This is clear if Xa&Supp(F). Suppose that X is a component of
Supp(#). We may consider the problem in a neighbourhood of a generic point
x of X. Letting the notations as in (1.10), we infer that rkx(F;)=rkx(DUZ,))
since &; is locally free at x. In view of the exact sequence (=9 I+ F)
—DUF )= DUV F) = DI F)—» D1 (F;) and DY F),=0 (cf. (1.8)), we infer
easily rkx (DU F)=rkx(T'F) by the descending induction on j, proving the
assertion as a special case j=0.

Now we consider the general case, in which XCSupp (F). Let ¢ be a sub-
sheaf of & such that X is a component of Supp (). Then 9UF)—PUG)— DV NF/Q)
is exact and 99Yg/4),=0 for a generic point x on X. Hence rkx(QUF))
Zrkx(DUG)=rkx(@). Thus we see rkx(DUFN=rk(F).
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In order to show the inequality of the converse direction, we let 4 be the
kernel of the natural homomorphism @gz—&nd (DUF)) and let H=Ker (F—
Iomog(A, F)). Then Supp (PHF))=Supp (Os/A)DSupp (). So dim (Supp (I))
=g, which implies rkx(H)=rkx(DYI)). Hence it suffices to show DUT),=DUH).
at a generic point x on X.

Now the problem is local and we may consider everything in a small neigh-
bourhood U of x. Let a,, ---, an be sections of 4 on U such that .4 is generated
by them. We define subsheaves 4o, 4, «-, Hn of F inductively as follows.
Set J,=4. For j>0, set 4 ;=Ker (¢;), where ¢; is the homomorphism 4 ;_;—3;_,
induced by a;. Then =4 by definition. We prove DUF),=DUIH). by
induction on j, which is obvious for j=0. So suppose j>0. Let 4,=Im (¢p;) and
c;=Coker (¢;). Then DUIH; )—D(IH)—D?"C;) is exact. Hence DUH;.1)x
—QU9,), is surjective at x by (1.8). On the other hand, 9UIN—DUI ;1)
—DUIH—DT S, is exact. DY ;=0 by definition of ¢; and by the induction
hypothesis. This implies that 9%J;),—DUIHK; 1), is a zero map. Then, by the

above exact sequence and by (1.8) we infer that DU 4 ;_,)= DU4 ;) at x, completing

the induction. g.e.d.

(1.12) COROLLARY. X is a component of Supp (DF)) if and only if there
exists a subsheaf @ of F such that X is a component of Supp (G).

(1.13) DEFINITION. F<F(S) is said to be unmixed if any irreducible com-
ponent of the support of any subsheal of & is a component of Supp(%). In
particular, if & is a sheaf on a variety V with Supp(Z)=V, then & is unmixed
if and only if & is torsion free.

(1.14) COROLLARY. & is unmixed if and only if any g-dimensional component
of Supp (DHF)) is a component of Supp(ZF) for every q. In particular, if & is a
sheaf on a variety V with Supp(F)=V, F is torsion free if and only if
dim (Supp (QUFN)<q for every g<dim V.

(1.15) THEOREM. Let & be a coherent sheaf on S. Then theve is a unique
subsheaf T of F with the following property:
a) No component of Supp(T) is a component of Supp(F).
b) The quotient F/T is unmixed.

This will be called the unmixed part of .

Proor. For an affine open subset U of S, let Ny be {ec=HYU, )|¢=0 at
any generic point of each component of UNSupp (%)}. Let 9y be the subsheaf
of ¥y generated by Ny. Letting U run through all the affine open subsets of S
and patching Ty together, we obtain a subsheaf 9" of . It is easy to see that
g has the desired property a) and b).
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Now we prove the uniqueness. Let ¢ be another subsheaf of & having the
property a) and b). Consider the image & of the homomorphism ¢—F—F/q.
Then Supp (J)CSupp (€) contains no component of Supp (F)=Supp(F/I). Hence

J=0 since F/I is unmixed. This implies ¢C 9. Similarly we infer TCg.
Thus ¢=4.

(1.16) THEOREM. Let F be an unmixed sheaf on a space S and let A be a
linear system on S such that Bs A=@. Then Fp is unmixed for a genevic member

D of A.

PrOOF. Let X, ---, X, be the irreducible components of Supp (¢). Then,
by (1.12), any g¢-dimensional component of Supp(9YF)) is one of X; Let
0: F[—D]—-F be the homomorphism induced by D. Of course Z,=Coker (9).
We take D in such a way that a) § is injective, b) D0) : DHF)—QUF[—DJ)
=9UF)D] is injective for every ¢, ¢) any (g—1)-dimensional component of
D\Supp (9YF)) is a component of one of {DNX;} for every ¢, and d) any
component of DN\X; is a component of DA\Supp(¥). Then, by a) and b) we
infer that 0-9YF)—9YI[—D])—PTYF,)—0 is exact for any g¢. So
Supp (DY Fp))=DN\Supp (PXF)). Let Y be a component of Supp (9 HF)) with
dim Y=¢—1. ‘Then, by ¢), ¥ is a component of one of {DNX;}. Hence, by d),
Y is a component of D\Supp(F)=Supp(Fp). Thus F, is unmixed by (1.12).

(1.17) COROLLARY. Let f:S—V be a surjective morphism onto a variety V.
Let F be a generic fiber of f. Then Fp is unmixed if F€F(S) is so.

PrOOF. We may assume V to be locally closed in AY. Taking a generic
hyperplane and applying (1.16), we prove the assertion by induction on dim V.

(1.18) COROLLARY. Let f, S, V and F be as above. Suppose that F is irre-
ducible and is non-singular at ils generic point. Then F is reduced if S is so.

Proor. (1.17) implies that ©p is unmixed, and has no embedded component.
The assertion follows easily from this.

(1.19) DEFINITION. Let f: VW be a surjective morphism between varieties.
We call f a fibration if the rational function field K(W) is algebraically closed in
K(V), where we identify K(W) with a subfield of K(V) via f*.

(1.20) THEOREM. Let f: V—W be a surjective morphism belween varielies.
Then f is a fibration if and only if a generic fiber F of fisa variety. Moreover,
if fis proper and V is normal, rkw(f+Or)=1 is also equivalent to them.
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Proor. Thanks to [N], we may assume f to be proper.

Let V’ be the normalization of V and let f” be the induced morphism V'—W.
Then f is a fibration if and only if f/ is so, and F is birational to a generic
fiber F7 of f/. By (1.18) we infer that F is a variety if and only if F’ is so.
Thus we may assume V to be normal.

Suppose that f is not a fibration. Let X be the normalization of W in the
algebraic closure of K(W) in K(V), and let g:V—X and = : X—W be the natural
morphisms. By assumption = is not birational. Hence rkw(zx@x)>1. On the
other hand, we have a natural injection ©y—g«Oy, and s0 74O xC4(gxOy)=f+Oy.
Thus we see rky(f«Oy)>1.

Suppose that #&p{(f«0y)>1. Let Y=3Cpec (f5Oy) and let ¢: V—Y and a: YW
be the natural morphisms. Then F=f"*(x)=¢ (a (x)) for a generic point x of
W. o is not birational by assumption. So « *(x), and hence F, cannot be a
variety. Moreover, f is not a fibration since K(Y) is a non-trivial algebraic
extension of K(W) in K(V).

Thus, it suffices to show that F is a variety assuming f to be a fibration.
For this purpose we recall the following.

(1.21) THEOREM. Let A be a linear system on a mormal variety V with N
=dim 4, Bs A=g. Let W be the image of the rational mapping p4 defined by
A. Then, a generic member of A is of the form p¢Z, where Z is a sum of
different prime divisors, p=char (K) and e is a non-negative integer. (If p=0,
then p°=1 always) If dim W =2, then Z is irreducible. If dimW=1, then the
number of components of Z is equal to the degree of W in P¥.

For a proof, see [Z], p. 30 or [W], Chap. IX.

(1.22) Proof of (1.20), continued. Assuming f to be a fibration, we prove F
to be a variety by induction on dimW. If W is a curve, this follows easily from
(1.21). So assume dim W=2. Thanks to Chow’s lemma, we may assume W to
be projective. Let H be a generic hyperplane section on W and let D be the
corresponding member of f*|{H|. Then, by (1.21), D=p°Z with Z being a prime
divisor. We infer ¢=0 since otherwise there is ¢ K(V) such that ¢& K(W) and
¢PeK(V). Hence D is a variety by (1.18). To complete the proof by induction,
we need only to show that K(H) is algebraically closed in K(D).

Taking a generic Lefschetz pencil belonging to |H| and considering the
graph of the associated rational mapping, we obtain a morphism f*:V*—-W+
together with a morphism j:W*—P?, such that f* is birationally equivalent to
f: V=W and that B %x)=H and (B-f*)"Yx)=D for a generic point x on P
We may consider all these things to be defined over a subfield X’ of K with
tr. deg (K/K')=o00, since K is sufficiently large, except the value ¢ of the coordi-
nate on P! at x, which is transcendental over K’. Denoting by K”( ) the K”-
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valued rational function field, we have K'()(H)=K' W) and K'Y D)=K'(V*).
Therefore K'({)(H) is algebraically closed in K'(#)(D). Since K'(:)CK, this implies
that K(H) is algebraically closed in K(D). g.e.d.

(1.23) REMARK. The arguments in this section work in the category of
complex analytic spaces too, after an obvious change of the meanings of the
terminology. However, the definition (1.19) is not approproiate in this context.
We should define f to be a fibration if its general fiber is a variety. If V is
smooth, this is equivalent to say that F is connected, because F is smooth.

§2. L-dimension of coherent sheaves.

From now on, every space is assumed to be proper over K.

(2.1) DEFINITION. Let L be a line bundle on a space S and let ¥ be a
coherent sheaf on S. We write #(L, )<k if and only if there exists a polynomial
¢(t) of degree k such that A(F[tL])=<¢(t) for any ¢>»0. In particular, (L, 9)
=}k means that, for any polynomial ¢(¢) of degree <k—1, there are infinitely
many positive integers {f;} such that A%F[{;L1)>¢(,;). Conventionally we define
(L, Fy=-—co if and only if ASF[tL])=0 for any ¢>0. «(L, Os) is denoted by
£(L, S), or occasionally by x(L).

For a normal variety V defined over a field of characteristic zero, our defi-
nition of (L, V) turns to be equivalent to that of Iitaka [I] (see also [UJ).

(2.2) PROPOSITION, Let 0—F—G—H—0 be an exact sequence of cohevent
sheaves. Then w(L, F=e(L, HEMax (L, F), (L, 4)).

Obvious by definition. The following two results are also obvious.

(2.3) PROPOSITION. Let L and &F be as in (2.1) and let E be a Cartier
divisor such that the associated homomorphism F[—E1—F 1s injective. Then
(L, =e(L+E, F).

(2.4) PROPOSITION. &(L, F)=k(tL, F) for any positive integer 1.

ProBLEM. Does the equality hold always?

(2.5) THEOREM. «(L, ¥)=dim (Supp (F)).

ProOF. We use the Noetherian induction on Supp(&). Let T be the sub-

space of S defined by the ideal Ker (0s—&nd (F)). Then ¥ may be regarded as
a sheaf on T. Of course Supp (T)=Supp(F). Set n=dim T.
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Step 1, the case in which T is a variety and F=0;. We may assume
HYT,mL)+0 for some m>0. So we have a non-zero section 6 € Honp(Or[—mL7,0r).
Since T is a variety, ¢ is injective and ©,=Coker (d) is supported on a proper
closed subset of 7. By the Noetherian induction hypothesis we have a polynomial
J(t) of degree =n—1 such that A%Op[tL])=¢() for any {=a, where a is a con-
stant. Then AYO[tLDSANOLE—m)LD)+h" Ot LSRN0 t—m)L])+¢(t) for

t=a. Iterating we obtain A%O[(tm+HLN=hYOLFLD+ St‘_,g[)(sm—{—j) for a<j<
$=1

a-+m—1. The latter term is a polynomial in ¢ of degree =n for each j. Now
it is easy to find a bolynomial ¢ of degree =<u such that %Ot L]=¢() for
any t=a.

Step 2, the case in which 7 is a variety and & is general. We use the
induction on r=rk;F. We may assume that there is 6&€ Hom (O —mL], &F) for
some m>0 such that 6+#0 at a generic point of T, because otherwise (L, &)
=r(L, I)<n where T is the torsion subsheaf of #. § is injective since Or is
torsion free, and 7kyC=r—1 where c=Coker (). If =1, then «(L, C)<n since
Supp (C)#T. If r>1, then #(L, C)=n by the induction hypothesis on r. On the
other hand, we have £(L, ©;[—mL])=<n by Step 1. Combining them and using
(2.2) we prove (L, F)=n.

Step 3, the case in which T is irreducible. V=T, is a variety. Let JI be
the sheaf of nilpotent functions on T. Then Z1#=0 for some g>0. Set
F=TF/T*'F. Then &F/s are sheaves on V. So #(L, F;)=n by Step 2. Now,
using (2.2), we prove (L, 9F)<n by the descending induction on j. In parti-
cular (L, F)=n.

Step 4, the general case. We should consider the case in which 7T is re-
ducible. Let Supp(T)=X\Y where both X and Y are proper closed subsets of
T. Then there is a subsheaf ¢ of & such that Supp(¢)=X and Supp(F/@=Y.
(L, )<n and x(L, ¥/9)<n by the Noetherian induction hypothesis. So
8L, F)=n by 2.2). g.e.d.

(2.6) In the algebraic category, we have the following more general result.

THEOREM. Let L be a line bundle on a algebraic space S and let F be a
coherent sheaf on S such that dim (Supp(&))=n. Then, for every integer p, there
exists a polynomial ¢(t) of degree =<n such that h?(FtLN= () for t>0.

OUTLINE OF PROOF. We use the induction on n. Let T be the subspace
defined by the ideal Ker (Qs—&nd (F)) as in (2.5).

Step 1, the case in which 7 is a projective variety. Take a sufficiently
ample line bundle H on T such that both H and H+L are very ample. Let A
and B be general members of |H| and |L+H] respectively. Then we have
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exact sequences (-9 —H]—-F—F,—0 and 0—F[—H—L]—-F—F3—0. In view
of them we infer that A?(F[G+DLD)=h?(FTL—HY)+h?(Fp[¢+D)LDH=h?(F[tL])
AP F L) +RP(F[E+1)LT]). Applying the induction hypothesis we infer
that the last two terms are bounded by a polynomial of degree =n—1 for ¢»0.
This implies that AP(F[¢L7]) is bounded by a polynomial of dgree <n for ¢>»0.

Step 2, the case in which T is a variety. By Chow’s lemma there is a
projective variety V together with a birational morphism z: V—T. Let a: &
— 7 *F be the natural homomorphism and let K=Ker («), 9=Im (a), C=Coker (a)
and % ;=R'm(n*F). Then X, ¢ and {4} ;5o are supported on proper subsets of
T and we can apply the induction hypothesis to them. In view of the Leray
spectral sequence with EP=H™T, Rizy(az*F[tLy1)=HT, 4, [tL]) converging
to H?*(V, n*F[tLy]), to which Step 1 applies, we infer that AP(ruz*ZF[tL]) are
bounded by a polynomial of degree =n. Using 0—d—mun*F—C—0 and 0—XK
—F—9--0 we prove the assertion.

Step 3, the case in which T is irreducible. Same as in Step 3 in (2.5).

Step 4, the general case. Using a similar argument as in Step 4 in (2.5), we
prove the assertion by induction on the number of irreducible components of 7.

NoOTE (added to the first version of this article). The above argument is the
same as in Binicd and Ueno [J. Math. Kyoto Univ. 20 (1980), 381-3897. According
to them, the result was proved by D. Leistner (Regensburg) in the analytic case
too.

(2.7) COROLLARY. Let m:V—S be a birational morphism between algebraic
varieties. Let L be a line bundle on S and let F be a cohevent sheaf on S. Then
kL, F=n=dim S if and only if k(Ly, z*F)=n.

PrROOF. Let a: F—men*F be the natural morphism and let K=Ker («),
J=Im («) and ¢=Coker («). Then X and ¢ are supported on proper subsets of
S. In view of the exact sequence 0—I—rm,n*F—C—0, we infer that «(L, J)=n
if and only if &(L, men*F)=x(Ly, z*F)=n, since (L, C)<n. From the exact
sequence 0—AX—F—I—0, we infer that #(L, F)=n if and only if &(L, 9)=n,
because both A%x[tL7]) and hYx[¢tL]) are bounded by a polynomial of degree
<n. Combining them we obtain the assertion.

(2.8) COROLLARY. Let L be a line bundle on a projective variety V such that
(L, VY=n=dim V. Then, for any very ample divisor H on V, there is a positive
integer m such that \mL—H|#@.

ProOF. We may assume H to be general in |H|. So H%V,:tL—H)
—HYV, tL)—HH, tLy) is exact. h%V,{L)>h"H, tLy) for t>0 since «(L, V)
=n>k(L, Oy) by (2.5). Combining these facts we obtain the assertion.
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REMARK. The above argument is originally due to Kodaira [K].

(2.9) THEOREM. Let L be a line bundle on an irreducible space S. Suppose
that k(L, F)=n=dim S for a coherent sheaf & on S. Then &(L, @)=n for any
cohevent sheaf @ such that Supp (¢)=S.

ProOOF. First we consider the case in which S is reduced. We claim
#(L, S)=n. Indeed, otherwise, one could prove x(L, F)<n for any coherent
sheaf & on S by a similar argument as in Step 2 in (2.5). Thus, S is algebraic
even if we work in the analytic category. (See [U], p. 54) Thanks to Chow’s
lemma and (2.7), we may assume S to be projective. For a given &, take a
sufficienty very ample line bundle H such that there exists an injection ©g[ —H]
—¢ (Note that, any such homomorphism which does not vanish at a generic
point of S is necessarily injective.). Then &(L, @)=&(L, Os[—H]). By (2.8) we
have m>0 such that |mL—H|+=@. So h%S, tmL—H)=h"S, (t—1)H) for any
t>0. This implies #(L, ©s[—H1)=n. Thus we prove the assertion.

In general case, let 97 be the ideal of nilpotent functions on S and set F;
=JVF/TNF and ¢;=T¢/TIg. k(L, F,)=n for some j since otherwise x(L, &F)
<n. Hence, by the above step, #(L, )=n for any % & F(S,.q) with Supp (#)=S.
There exists j such that rksT7¢>0 and rks77*1¢=0, since Supp(2)=S. Then
Supp (¢,)=S and so #(L, ¢)=n. A¥J¥+*'g[tL]) is bounded by a polynomial of
degree <» by (2.6). Now, using the exact sequence 0—T+'¢—Jig¢—G,—0, we
infer that «(L, 317¢)=n. This implies £(L, ¢)=n, since J1°¢ is a subsheaf of &.

g.e.d.

(2.10) THEOREM. Let f: V—W be a surjective morphism from an irreducible
algebraic space V onto a variety W. Let F be a generic fiber of f and let L be

a line bundle on V and let F be an unmixed sheaf on V with Supp (9) V. Then
(L, F)Se(L, Fp)-+dim W.

To prove this, we need the following

(2.11) LEMMA. Let F be an unmixed sheaf on a projective irreducible space V

such that Supp(F)=V. Then HAG[—H]=0 for any sufficiently ample line bundle
H on V, unless dim V=0.

Proor. In view of (1.7), we infer that HYGT—H]) is dual to HYDYF[H)
for any sufficiently ample . On the other hand, 9°(&)=0 by (1.8) and (1.14).
Thus we obtain the assertion.

(2.12) LEMMA. Let V, & and L be as in (2.10) and let o:V—P¥ be a mor-
phism such that dim p(V)>0. Let H be the pull back of the hyperplane section.
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Then, there is a positive constant ¢ such that HYG[tL—sH]D=0 for any s, t>0
with s> ct.

PRrOOF. First we consider the case in which V is projective, using the
induction on dim V. When V is a curve, H is ample on V, and we have ¢, such
that HY(F[—c¢,H])=0. We have also ¢, such that ¢,H—L is very ample on V.
Then, it is easy to see that c¢=c;+c, satisfies the condition. So suppose dim V=2.
Let D be a generic hyperplane section on V. Then, by (1.21) and (1.16), D is
irreducible and F, is unmixed. So, by the induction hypothesis, we have ¢>0
such that H°(D, Fp[tL—sH])=0 for any s, t>0 with s>ct. Then HYD, F,[tL
—sH—uD])=0 for any s, t>0, =0 with s>c¢t. In view of the exact sequence
0—g[—D]—F—F,—0, we infer that A%G[tL—sHH=<ANGtL—sH—D])= -
Zh%F[tL—sH—uD]) for any s, t>0, u>0 with s>c¢t. The last term is zero
for u»0 by (2.11). Thus we see HYF[tL—sH])=0.

Now we consider the general case. By Chow’s lemma, there is a projective
irreducible space V' together with a birational morphism z: V/—V (This means
that there is an open dense subset U of V such that z=~YU)=U.. Let ' be
the unmixed part of #*%F (cf. (1.15)). Then we have a natural homomorphism
a: Fompn*F—ryF. Clearly a is an isomorphism at a generic point x of V.
This implies Ker (@)=0 since & is unmixed. On the other hand, by the first
step, we have ¢>0 such that HYg'[tL—sH])=0 for any s, >0 with s>ct.
Combining them we obtain HY<[tL—sH])=0.

(2.13) PROOF OF THEOREM (2.10). x(L, ¥)=0 implies (L, Fp)=0 since F is
generic. Therefore we may assume x(L, Fz)=0.

Step 1, the case in which W is a curve. Let H be a very ample line bundle
on W and let D be a generic member of f*|H|. Then D is a union of d generic
fibers of f, where d=deg H. Hence x(L, Fp)=«(L, Fp), which we set &.
h%(Fp[tL]) is bounded by a polynomial @(t) of degree £ for any t>»0. Using the
exact sequence 0—F[—H]-F—Fp—0, we obtain ANF[L—jH])—hY(F[tL—
GHDHDSR(F [ L—THD=hY Gt L])<¢(t) for any t>0, j=0. Iterating we
see W(FULD=hN(F[tL—ctH)+ctp@t)=cte(t), where ¢ is a constant as in (2.12).
Thus we prove g(L, F)<g-+1.

Step 2, the case in which W is a projective variety. We use the induction
on dimW. We may assume dim W=2 by Step 1. Similarly as before, let H be
a very ample line bundle on W and let D be a generic member of f*|H|. Then,
D is irreducible by (1.21) and &, is unmixed by (1.16). AD) is also a variety.
Hence we can apply the induction hypothesis to obtain (L, Fp)=u(L, Fp)
+dim f(D). Now, by a similar argument as in Step 1, we infer &L, F)
=w(L, Fp)+1=e(L, Fp)-+dim W.

Step 3, the general case. By Chow’s lemma we have a projective variety
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W’ together with a birational morphism ¢ : W’—W. Taking a suitable component
of VxwW’, we find an irreducible space V’ together with morphisms f: V/'—W’
and 7: V/'—V such that gof'=fex and that = is birational (in the sense as in
(2.12)). Let &' be the unmixed part of z*& (cf. (1.15)). Then, we have a natural
injection F—r+F’ as in (2.12). On the other hand, we infer £(Ly., F)=x(L, Fr)
+dim W by Step 2, since F is isomorphic to a generic fiber of f’, the restriction
of ¢’ to which is isomorphic to ¥y Thus we get the assertion because x(L, &)
Zk(L, 7:F)=r(Ly., F).

(2.14) COROLLARY. Let f:V—W be a fibration of algebraic varieties. Let
F be its generic fiber and let L be a line bundle on V. Then (L, V)=x(L, F)
+dim W.

(2.15) REMARK. The author suspects that (2.10) is true in the analytic cate-
gory too. -Actually, its corollary (2.14) is true in this context. For a proof, see
[UJ, p. 59. There you will find an additional assumption that V and W are
smooth. But the argument found there works without this assumption, provided
that we have a fibration theorem of litaka type for singular varieties too. This
will be done in the next section. (Caution: If V is not normal, our (L, V) may
be different from that of litaka and Ueno.)

§3. L-dimension of varieties and litaka fibration.

Let L be a line bundle on a variety V. In this section we want to study
the behaviour of the rational mappings p.n for t>0. Keeping to be careful
about singularities, we follow closely the idea of litaka. First we make the
following observation.

3.1 Let A be a linear system on V. Then, there is a normal variety V'
together with a birational morphism z: V'—V, an effective Cartier divisor E on
V'’ and a linear system A’ on V' such that s*A=E+ A’ and Bs A'=@. Moreover,
the image p4(V') is independent of the choice of such V'.

Proor. Let £ be the invertible sheaf [4] and let A be the subspace of
HYV, r) corresponding to A. Let 1:0,[A]—-C be the natural homomorphism
and let @ be the Op-ideal Im (A)XL72. Let V* be the blowing up of V with
center @ and let E* be the exceptional divisor on V*, whose defining ideal J is
the pull back of @. J is invertible and J=Im (AR L7}, where 2*: Op[A]l— Ly
is the pull back of X A*®J™! defines a linear system /A* on V* such that
Bs A*=@ and A,=E*+A* Let V’ be the normalization of V* with the
natural morphism =z: V'—V and let E and A’ be pull backs of E* and A*



L-dimension of coherent sheaves 229

respectively. Then this V’, =, E and A’ satisfies the desired conditions.
The uniqueness of p(V") is shown as follows. Let R be the graded sub-
algebra of G(V, L):t@ HV, tL) generated by A. Then p,(V’) is canonically

isomorphic to Proj(R), which is obviously independent of the choice of V.

DEFINITION. py(V’) is called the /mage of the rational mapping p, and is
denoted by p«V). V' is called a good graph of pu.

(3.2) Now, let L be the given line bundle on V. Let p, be the rational
mapping defined by the linear system [¢{L|, for t>>0. Let V, be a good graph
of p, and let W, be the image of p,. Then clearly K(W,)CK(V,)=K(V), where
K(X) denotes the field of rational functions on X. (If [¢L|=@, p, is not defined
and our statement means nothing.)

(3.3) LEMMA. If s is a multiple of t, then KW ,)CK(W,) as subfields of K(V).

ProoOF. Let R, be the graded subalgebra of G(V, L) generated by HV, tL).
Set s=ct and let ®° HV, tL)—H"(V, sL) be the natural morphism and let T be
its image. Let R’ be the subalgebra of G(V, L) generated by 7. Then R'CR;
and we have a surjective rational mapping W,=Proj(R;)—Proj(R’). " On the
other hand, Proj(R’) is the image of Proj(R.,)=W, by the natural Veronese
embedding P(HY(V, tL)CP(S°HYV, tL))DP(T). Hence Proj (R")=Proj (R,)=W,.
Combining them we prove the assertion.

(3.4) LEMMA. There exists a positive integer m such that KW,)=KW,) for
any positive multiple t of m.

Indeed, otherwise, we would have an infinite strictly increasing sequence
KW, )CKW,)C - of subfields of K(V). This is impossible since K(V) is
finitely generated over K.

(35) Take m>0 as in (3.4) and set =V, W=W, and @=pn, and let =
be the natural birational morphism I—V and let F be a generic fiber of Q.
First we claim that dim W=«(L, V).

Indeed, we have A%V, tL)=dim (the degree t part of Rn)=h’W, m™*H) for
any sufficiently large multiple ¢ of m, where H is the hyperplane section on
WcP(HXV, mL)). Thus &(L, Vy=x(H, W)=dim W.

Actually, we will see the equality holds.

(3.6) LEMMA. The image of the natural homomorphism H(V, tL)—H(F, tLp)
is of dimension one for any t>0 with |tL|#@.
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PROOF. Suppose to the contrary for some t. Let s=mt. Modifying V, if
necessary, we may assume that the natural rational mapping V,—V,=["is a
morphism. By the choice of m, K(W,)=K(W,) and we have a birational mapping
W—Wn. Let y be the generic point on W, which lies over the generic
point @(F) on W. Let F, be the generic fiber over y. Then V,—V, restricts
to a birational morphism f: F,—F. ©p is unmixed by (1.17). From this we infer
that 0p—f+Op, is injective. So H(F, sLp)—HYF,, sL) is injective. By the
choice of s we infer that dim (Im(H%V, sL)—HYF, sL))=dim (Im (H*(V, tL)
—HYF, tL)))=2. Combining them we obtain dim (Im (HXV, sL)—HF,, sL))=2.
This is impossible by definition of p,.

3.7y Let n*|mL|=F+A4’, where E is the fixed part of =z*|mL|. Of
course @*H=[A"]. Now, we write E=F,+F, in such a way that every prime
component of E; maps onto W while any component of E, maps onto a proper
subset of W. By (3.6), we infer that tE, is a fixed part of z*|tmL| for any
t>0, since every component of it meets F. On the other hand, for a sufficiently
large 0, we have De@*|0H| of the form D=F,+D’ with I’ being an effective
divisor, since @(E,) is a proper subset of W. Putting things together we infer
that A%V, tmLYShL, tH-+tD)y=h°(W, @.0p[t(0+1)H]). This implies «k(mL, V)
=«(H, O, 0p)<dim W by (2.5). Since A%V, tL)<h%V, tmL), this proves (L, V)
<dim W,

(3.8) Now, combining the preceding arguments, we obtain the following

THEOREM. Let L be a kine bundle on a variety V. Suppose that x(L, V)=0.
Then there is a positive integer m with the following properties:
a) dim W=x(L, V), where W is the image of the rational mapping pimp.
b) Let @ :I—W be the morphism from a good graph I' of pimy and let F be a
generic fiber of @. Then dim (Im (HYV, tL)—=HYF, tLp)<1 for any t>0.
Moveover, the triple I W and @ is independent of the choice of m up to
bivational equivalence.

DEFINITION. The above W will be called [itaka L-model of V.

(3.9) COrROLLARY. (L, V)=1\i[>aox (dim pr (V). In particular, &(L, V)=0 if
and only if h"V, tL)<1 for any t>0 and =1 for some t>0.
(3.10) COROLLARY. Let d be the greatest common divisor of the set {t>0]

[tL|+@}. Then, there are positive constants ci, ¢s and a such that ¢ i*<h"V, tdL)
=cit® for any t=a, wheve k=r(L, V).
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Indeed, the lower bound is obtained by an argument as in (3.5) and the upper
bound is obtained by (3.7).

(3.11) Unlike the classical case (cf. [I] or [U]), we can not guarantee that
the morphism @ is a fibration in the sense (1.19). However we have the following

THEOREM. Let X be the set {xV| V is not normal at x}. Suppose that
dim Y <x(L, V). Then @ in (3.8) is a fibration. Movreover, a generic fiber F of
@ satisfies the condition (L, F)=0.

PrOOF. Let JA,=@.(©r[tL7]). It suffices to show rkyA,<1 for any :=0.
Indeed, rkw(A)=1 implies that @ is a fibration by (1.20). rkw(A)=1 implies
that 4%F,, tL)<1 for any point y on an open dense subset of W, where F, is
the fiber ever y. Therefore, h°%(F,, tL)=<1 for any #=0 and for any yeW off a
union of countably many proper closed subsets of W. Hence (L, F)=0 for a
generic fiber F.

Assume rky(A)=2 for some t=0. Then, rky(An:;)=2, where m is as in
(3.8) and (3.4). So, replacing L by mL if necessary, we may assume m=1 in
order to derive a contradiction. Thus we write z*L=0*H+E,+E, as in (3.7),
take 6>0, De®@*|§H| with D=E,+ D’ as there, letting the notations as before.

Let X} be Im (HYV, tL-+sL)y—>HI', tL-+sL)). Since sE, is a fixed part of
z*{sL| for any s=0, X; comes from a subspace X, of HY[, tL-+sH-+sE,) for
any s=0. Adding sD’, X, maps onto a subspace X! of H[, tL-+sH-sD)
=H"W, A[s(1+0)H]). Thus we get a homomorphism a,:Ow[—s(1+6)H]
RLX{]—A;, where X7 is regarded as a trivial vector bundle on W. Let ¢ be
the subsheaf of i, generated by the images of a;, s=0. Of course ¢ is coherent
on W, and we claim that rky(g)=1.

To show the claim, let x be a generic point of W and let F be the fiber
@ (x). Then, the germ (J,), corresponds to HYF, tLm=HYF, tE,. Let ¢ be
the restriction to F of the defining section € H*{, E;) of E,, which is unique
up to scalar multiplication. (3.8), b) implies that the image of HV, sL)—~H%F, sL)
=H%F, sE,) is the one-dimensional subspace generated by ¢®° for any s=0. On
the other hand, if I; be the subspace of H°(F, tL) corresponding of Im (a)s,
I,Qe® comes from HYV, tL+sL) by definition of a;,. Hence we infer that I, is
independent of s. So ¢.=/,, and rky(@)=dim ¢,=1.

Let @ be the unmixed part of the quotient sheaf .4,/¢ (cf. (1.15). @ is
torsion free on W, and is a quotient of 4;.). Then we have the following
commutative diagram :
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HYI, tL+sH) —> HY[, tL+sH+sE,) — HYI, tL+sH-+sD)

| !

\4
HW, ALsH]) HW, ALs(1+0)HT)
HW, 8[sH]) HYW, 8{s(1+6)H]),

where the middle and lower horizontal maps are defined by the multiplication of
the section of HYW, s0H), which corresponds to sD by @* So the lower one
is injective because @ is torsion free. Since H is ample, the vertical mappings
are surjective for s>0.

Let Y, =H(I',tL+sH) and let o: Y, —HYI, tL-+sH+sE,) be the mapping
as in the above diagram, defined by “adding sE,”. By definition of ®, we see
that ¢7*(X;) maps to zero in HYW, ®[s(1-+0)H]). Because of the injectivity of
the lower horizontal mapping, this implies that ¢ %(X;) maps to zero in
HW, 8[sH]). Since the vertical map is surjective for s3>0, we obtain
dim (Y,/o " { X )= h* (W, B[sH]). On the other hand, Y /07X, is isomorphic to
a subspace of H*{[, tL+sH+sE,)/X,. Hence dim(Y /o Y X)<h(, tL+sH+sE,)
—dim X, <A, tL+sL)—h%V, tL+sL). Thus, we see that AU, tL+sL)
—h%V,tL+sL) is bounded from below for s3>0 by a polynomial of degree
&(L, V), since rky(B)=rky(A)—rkw(@)>0.

On the other hand, consider the natural homomorphism Opy—r4«Qr, and let
C be the cokernel of it. Then A%, sL)—h%V, sLYSh%C[sL]), and this is
bounded by a polynomial of degree <&(L, V), since Supp{(C)C2 (cf.(2.5)). Thus
we obtain a contradiction, which proves rkw(A,)=1 for any t=0. g.e.d.

DEFINITION. When the theorem applies, @ : ['->W is called [ifaka fibration.
This is uniquely determined by L up to birational equivalence.

(3.12) COROLLARY. If k(L, V)=dim V, then p\ny ts a birational mapping for
some m>0.

(3.13) CorROLLARY. If V is normal, then @:I—W 1is a fibration such that
&(L, F)=0, where F is a generic fiber of ®.

This is essentially the classical fibration theorem of litaka (cf. [I]).

(3.14) THEOREM. Let V and L be as in (3.11) and let d be asin (3.10). Then
there are positive constants ¢ and a such that h°(V, td L)—h"V, ¢—1)d L)< ct*?
for any t=a, where k=xk(L, V).

ProOF. We employ the same notation as before. In particular, let m be the
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integer as in (3.8). A%V, tdL) is a monotone increasing function on ¢. There-
fore, replacing L by mL if necessary, it suffices to consider the case in which
m=1.

By an argument as in the final step of the proof of (3.11), A, tdL)
—h%V,tdL) is bounded by a polynomial in 7 of degree <g—1. So we may
assume ['=V. .

Let A be a generic member of @*|(1+8H|. Then we have h%[ tL)
=h"(I', tH+tEy) < h°(, tH+(t—1)E,-+D) < h([, ¢ — DH + (t — DE,) + h°(A, tH
+(¢—DE; -+ D) < hXL, ¢—1)L) + %A, tH+tD). So h*I, tL) — h*[, ¢—1)L)
ShYA, tH+tD)=h"W, @,04t(1+86)H]). Since @(A) is a divisor on W, the last
term is bounded by a polynomial of degree dim @(A)=r—1 by (2.5). This proves
our assertion.

REMARK. This result, together with (3.10), means that the asymptotic
behaviour of A%V, td L) is like a polynomial of degree .

QUESTION. Does the estimate (3.14) hold to be true without the assumption
dim X <g(L, V) ?

(3.15) REMARK. Perhaps it is not difficult to generalize the preceding results
in the case in which V is an irreducible unmixed (: =0y is unmixed) space.

(3.16) So far, we haven’t seen no great difference depending on p=char (K).
But now it is the time to discuss it.

As a version of the strong Bertini theorem in p=0, we can prove that a
generic fiber of an litaka fibration is normal. Actually, thanks to the theory of
resolution of singularities due to Hironaka, we can take I” to be smooth and then
F becomes smooth. However, if »>0, F is not necessarily normal even if I is
taken to be smooth.

In p=0, litaka fibration is a fundamental tool in the classification theory of
algebraic varieties, in which we apply the theory to the case L=K, the canonical
bundle of a smooth variety V, and define the Kodaira dimension #(V) of V as
£(Ky, V). In this case F turns to be a smooth variety (taking I” to be smooth)
of Kodaira dimension 0. Thus, we reduce the classification problem to i) the
classification of varieties of Kodaira dimension dim ¥, 0 and —oo, and ii) the
study of the structure of fibrations with generic fiber being a manifold of Kodaira
dimension zero (Note that, dim F<dim V if 0<&(V)<dim V.).

This method encounter several troubles in case p>0. First of all, we have
no resolution theory of singularities which is as powerful as that of Hironaka in
case p=0. In particular, there is no guarantee that /" can be taken to be smooth.
There are still other troubles. Indeed, even if I is smooth, F need not be
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normal. We can just show that F is a locally Gorenstein variety with #(KF, F)
=0, where Kj is the dualizing sheaf of F. This result may seem not bad as a
“general nonsense”, but the problem is more delicate than one might expect.

As a simplest example of such phenomena, consider the case in which dim V
=2 and x(V)=1. Then, by the general theory, we infer that F is either a) a
non-singular elliptic curve, or b) a rational curve with one node, or ¢) a rational
curve with one ordinary cusp. However, as a matter of fact, it turns out that
only the cases a) and ¢) are possible, and in case ¢), p must be 2 or 3 (cf. [M]
and [T]). The reason is of subtler nature than our general theory. Moreover,
the condition on p in case ¢) is probably related to the theory of complex multi-
plications of elliptic curves.

We should expect similar phenomena in higher dimensions too. To determine
which candidates among those that have the property required by our general
theory do really appear as generic fibers of litaka fibrations is surely a very

interesting, but perhaps difficult problem even in the next simplest case dim V=3,
Vy=1.

(3.17) Finally, we will prove the following

THEOREM. Let f: V—W be a surjective morphism between varieties and let L
be a line bundle on W. Then (L, WYSr(L, V). Moreover, if dim 2 <«&(L, V)
where 3 is the set {x&W|W is not normal at x}, then the equality holds.

ProOOF. We follow closely the idea of Ueno (cf. [U], p. 61), keeping to be
careful about positive characteristic phenomena. The inequality is clear since we
have a natural injection Oy—f«Oy. So consider the second assertion.

We may assume W to be normal. Indeed, let ¥V’ and W’ be normalizations
of V and W respectively and let f:V’—W’ be the induced morphism. If
k(L, W)=x(L, V"), then (L, W)=r(L, V) by the first inequality, and so dim X
<g(L, WN=r(L, w+«Ow:), where z is the morphism W'—W. Let C be the cokernel
of the homomorphism Op— @y and apply (2.2) to 0—Ow—rsOw.—C—0. Since
k(L, O)<k(L, nsOw) by (2.5), we infer that (L, z4Ow)=&(L, Ow). Thus we get
(L, Wzx(L, V).

Clearly we may assume V to be normal. In addition, considering the Stein
factorization of f as in [U] if necessary, we may assume f to be a finite mor-
phism. Now, our proof proceeds in several steps.

Step 1, the case in which f is Frobenius. This means the following: Let
F: y=Spec (K)—x=Spec (K) be the morphism defined by the p-power map of
the field K, where p=char (K). Then, f: V—W is equivalent to WX y—W in the
category of x-schemes. In this case we write symbolically V=F “}(W). Note
that K(W) is the image of K(V) by the p-power map £—&P, where we identify
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KW) with a subfield of K(V) by f* In other words, K(V) is the field of the p-
power roots of all the elements of K(W).

Let ¢ be any local section of f:0p, which is a sheaf of @p-algebra. Then
¢? lies in the image of the natural homomorphism Owy—/f+Oy. This gives rise to
a mapping HXV, tL)y=H"W, f+Oy[tL])—HW, tpL). Though this map ¢ is not
K-linear, one can easily verify that ¢((,), -+, ¢({,) are linearly independent if
{5, Care so in HYV,tL). Thus we have A%V, tL)Zh'(W, tpL) for any
t=0. This implies x(L, V)=g(L, W).

Step 2, the case in which K(V)/K(W) is purely inseparable. Defining F~«W)
inductively by F-¢-W)=F-¥F-¢W)), we find an integer s such that K(F-s(W))
DK(V)DKW). Since f is finite, we may identify V with the normalization of
W in the fleld K(V). So we have a surjective morphism F*(W)—V. This implies
(L, VYZx(L, F*(W))=k(L, W), the latter equality follows from Step 1.

Step 3, the case in which K(V)/K(W) is separable. The assertion is proved
by the same argument as in [U], p. 62.

Step 4, the general case. Clearly we may assume p=char (K)>0 by Step 3.
Let K’ be the subfield {a€K(V)|a?*cK(W) for some e>0} of K(V). Then
K(V)/K’ is a separable extension and K’/K(W) is purely inseparable. Let W’ be
the normalization of W in the field K’. Then f factors to the composition of
natural surjective morphisms V—W’'—W. In view of Step 2 and 3, we infer
that &(L, V)=«&(L, W")=x(L, W). qg.e.d.

Appendix

As an application, we generalize a result of Zariski (cf. [Z2]).

THEOREM. Let L be a line bundle on a normal variety V such that (L, V)
=1. Then the graded algebra tEBOH"(V, tL) is finitely generated.
=z

PrROOF. Let @:I—W be an litaka fibration associated with L (see (3.8) and
(3.11)). To prove the theorem, we may assume that V=I"and W is a smooth
curve.

For an effective divisor E on V, we define @.F to be the maximal effective
divisor E’ on W such that E—Q@*E’ is effective on V. Then, using x(Lz, F)=0,
we infer that H%(V, tLY=HYW, @.4) for any =0 and any d=|tL].

Take a member D of laL]| for some ¢>0. For each xsW, let @*(x)
=>¢;X; be the prime decomposition as a Weil-divisor on V. Let d; be the co-
efficient of X; in the divisor D—@*@,D. Set r(x)=Min;(d;/p;) and let b(x) be
the least positive integer such that b(x)r(x)=Z. Note that r{(x)=0 and b(x)=1
except at most finite number of points on W. Let m be the least common
multiple of {6(x)} ,ew. Then we easily see @ (E+imD)=0@ E+iD.(mD) for any
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t=0 and any effective divisor E which is proportional to D.
Now, for each j=0, 1, ---, am—1, let j* be the least integer such that j’=0,
=j (modam) and |j/Li*@. Take E;=|[j/L]|. Set Mj:gBOHO(V, (7’'+tam)L)

and N;= g}oH“(W, DLE;+tD.(mD)). Then, by the above observation, we see

My=N, as graded algebras. Moreover, M,;=N; as their graded modules for each
J. Since @u(mD) is ample on W, N, (resp. each N,) is a finitely generated
algebra (resp. No-module). So M, (resp. each M) is a finitely generated algebra
(resp. M,-module). This implies that IEZBOH"(V, z‘L):E}jBMj is a finitely generated
algebra. q.e. d.

COROLLARY. Lef V and L be as above. Then, there exist a positive inieger
m, d and constants co, ¢y, , Cmo1 Such that h%V, (j--tm)L)=dt--c; for each
7=0, -, m—1 and for any sufficiently large integer t.
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