Maximal ideals in the algebra of holomorphic functions

By Hiroji Ochiai and Niro Yanagihara

(Communicated by T. Kimura)

1. Introduction.

Let Ω be a domain of holomorphy in the complex Euclidean space \mathbb{C}^N , and let $H(\Omega)$ be the algebra of all holomorphic functions in Ω . $H(\Omega)$ is equipped with the topology of uniform convergence on every compact subset of Ω .

Let M be a maximal ideal in $H(\Omega)$. A well known theorem of Igusa [3] states

THEOREM IG. The following four conditions (i)-(iv) are equivalent for M:

- (i) M corresponds to a point of Ω .
- (ii) M is closed.
- (iii) $H(\Omega)/M \cong \mathcal{C}$.
- (iv) M is finitely generated.

By Theorem IG, we know that, if M does not correspond to any point of \mathcal{Q} , then $H(\mathcal{Q})/M$ must be a proper extension of \mathcal{C} . In § 3, we will determine the field $H(\mathcal{Q})/M$ for this case.

In § 4, we compactify Ω so that M corresponds to a "boundary point" of Ω . The maximal ideal M can not be finitely generated in this case. We will determine generators of M, for the one-variable case (i.e., for the case N=1), in § 5.

2. Preliminaries.

Let M be a maximal ideal in $H(\Omega)$. Take and fix a function $f_0 \in M$. Let $\{A_n\}$ be the set of all irreducible components of the analytic set $\{f_0=0\}$.

Suppose there is a finite collection of functions $f_1^1, \dots, f_{m_1}^1$ in M such that the irreducible components $\{A_{nn_1}\}$, $A_{nn_1} \subset A_n$, of the analytic set $\{f_0 = f_1^1 = \dots = f_{m_1}^1 = 0\}$ have the property

$$0{\leq}\dim(A_{nn_1}){<}\dim(A_n)$$

for every n and n_1 whenever $\dim(A_n) \ge 1$.

Suppose we can continue the procedure further up to the k-th step $(k \ge 0)$,

i.e., there are finite collections of functions in M

$$f_0, f_1^1, \dots, f_{m_1}^1, \dots, f_{1}^k, \dots, f_{m_k}^k \subset M$$

such that, if $\{A_{nn_1\cdots n_j}\}$, $0 \le j \le k$, be the set of all irreducible components of

$$\{f_0 = f_1^1 = \dots = f_{m_1}^1 = \dots = f_1^j = \dots = f_{m_j}^j = 0\}$$

then for every $(n, n_1, \dots, n_{j-1}, n_j), j=0, \dots, k (n_0=n),$

$$A_{nn_1\cdots n_{j-1}n_j} \subset A_{nn_1\cdots n_{j-1}}$$

and, whenever $\dim(A_{nn_1\cdots n_{j-1}})\geq 1$, we have

$$0 \leq \dim(A_{nn_1\cdots n_{j-1}n_j}) < \dim(A_{nn_1\cdots n_{j-1}}).$$

The procedure must stop after a finite number of steps, say k steps. Then we have the following two possibilities:

Case 1. Every component $A_{nn_1\cdots n_k}$ is of dimension 0, i.e., all irreducible components reduce to points after k steps.

Case 2. There remain some components of dimension not less than one. Then, for any finite collection of functions g_1, \dots, g_r in M, we have: if $\{A_{nn_1 \dots n_k p}\}$ is the set of all irreducible components of

$$\{f_0 = f_1^1 = \dots = f_{m_k}^k = g_1 = \dots = g_r = 0\}$$

then there is a set (n, n_1, \dots, n_k, p) such that

$$\dim(A_{nn_1\cdots n_kp}) = \dim(A_{nn_1\cdots n_k}) \ge 1.$$

Since $A_{nn_1\cdots n_k}$ is irreducible, we have by [6, p.76, Theorem 1J],

$$(2.2) A_{nn_1\cdots n_k} = A_{nn_1\cdots n_k}.$$

We will show that the case 2 does not occur.

Suppose the case 2 would occur. Let $\{A_1', A_2', \cdots\}$ be all irreducible components of dimensions not less than one, of the analytic set

$$\{f_0 = f_1^1 = \dots = f_{m_1}^1 = \dots = f_1^k = \dots = f_{m_k}^k = 0\}.$$

We take two points z'_j , z''_j , $z''_j \neq z''_j$, in each A'_j , such that

$$z_j' \neq z_i'$$
 and $z_j'' \neq z_i''$ if $j \neq i$, and $z_j' \neq z_i''$,

and

$$\{z'_j, z''_j; j=1, 2, \cdots\}$$
 does not cluster in Ω .

Let F(z) be a function in $H(\Omega)$ such that

in
$$H(\Omega)$$
 such that
$$F(z_j')=0, \quad F(z_j'')=1, \qquad j=1, 2, \cdots.$$

Take a finite collection of functions g_1, \dots, g_r in M arbitrarily. Let $\{A'_{ji}\}$ be irreducible components of

$$\{f_0 = f_1^1 = \dots = f_{m_k}^k = g_1 = \dots = g_r = 0\}$$

obtained from $\{A_j'\}$. By the assumption in the case 2, there are a number j and a number i such that

$$A'_{ii}=A'_{i}$$
.

Since F(z) has a zero point z'_j in $A'_j = A'_{jt}$, F(z) has common zeros with any finite collection of functions in M, hence F belongs to M. But, if $\{A'_{jp}\}$ are all irreducible components of

$$\{f_0 = f_1^1 = \cdots = f_{m_b}^k = F = 0\}$$
,

obtained from $\{A'_i\}$, then

$$\dim(A'_{iv}) < \dim(A'_i)$$
 for every (j, p) ,

since F(z) does not vanish at $z_j'' \in A_j'$. This contradicts the assumption of the case 2.

Therefore, we have the case 1 only. That is, we obtain the following

THEOREM 1. Let M be a maximal ideal in $H(\Omega)$. Then, there is a finite number of functions f_0 , f_1 , \cdots , f_m , $f_j \in M$, such that all irreducible components of the analytic set

$$Z = \{f_0 = f_1 = \dots = f_m = 0\}$$

are of dimension zero, i.e., the analytic set Z is a point sequence (finite or infinite) which does not cluster in $\Omega: Z = \{z_n\}$.

REMARK. By [1, p. 44, Satz 2], we can take (N+1) functions in M whose common zeros coincide with the set Z in Theorem 1.

We note that Theorem 1 holds for any maximal ideal in $H(\Omega)$.

3. An extension of the complex number field.

Now we return to the supposition that M does not correspond to any point of Ω .

Lemma 2. If the maximal ideal M corresponds to no point of Ω , then the set Z in Theorem 1 is an infinite sequence.

PROOF. Suppose $Z = \{z_1, \dots, z_r\}$. By the supposition on M, there are g_1, \dots, g_r , $g_j \in M$, such that $g_j(z_j) \neq 0$ for $j = 1, \dots, r$. Then the finite collection of functions $g_1, \dots, g_r, f_0, \dots, f_m$ in M has no common zeros, which is a contradiction, since

M is a proper ideal.

Q. E. D.

Now, let I be the set of all positive integers. For a subset $A \subset I$, we denote by Z_A the subsequence of Z corresponding to numbers in A. That is, if $A = \{n_1, n_2, \dots\}$, then $Z_A = \{z_{n_1}, z_{n_2}, \dots\}$.

Let Φ be a family of subsets of I defined as follows: $A \subset I$ belongs to Φ if there is a finite collection of functions $g_1, \dots, g_r, g_j \in M$, such that the set of common zeros of $g_1, \dots, g_r, f_0, \dots, f_m$ is Z_A .

LEMMA 3. The family Φ is a ultrafilter on I, i.e.,

- 1° ∅ ∉ Ø.
- 2° If $A, B \in \Phi$, then $A \cap B \in \Phi$.
- 3° If $A \in \Phi$ and $A \subset B \subset I$, then $B \in \Phi$.
- 4° If $A \subset I$, then A or I-A belongs to Φ .

PROOF. 1° is obvious since M is a proper ideal. 2°, suppose Z_A and Z_B be the sets of common zeros of $\{g_1, \cdots, g_r, f_0, \cdots, f_m\}$ and $\{h_1, \cdots, h_s, f_0, \cdots, f_m\}$, respectively. Then, the set of common zeros of $\{g_1, \cdots, g_r, h_1, \cdots, h_s, f_0, \cdots, f_m\}$ is $Z_{A\cap B}$. 3°, let F(z) be a function in H(Q) such that

$$F(z_j)=0$$
 if $j \in B$; $F(z_j)=1$ if $j \in I-B$.

Suppose Z_A be the set of common zeros of $\{g_1, \cdots, g_r, f_0, \cdots, f_m\}$. Take a finite collection of functions h_1, \cdots, h_s in M arbitrarily. Then $\{g_1, \cdots, g_r, h_1, \cdots, h_s, f_0, \cdots, f_m\}$ has common zeros contained in Z_A . Since $Z_A \subset Z_B$, F(z) must have common zeros with h_1, \cdots, h_s . Because $\{h_j\}$ is chosen arbitrarily in M and M is a maximal ideal, F(z) must belong to M, which shows that $B \in \Phi$. Φ . 4°, if the lemma would not hold, there would be a filter $\Phi' \supseteq \Phi$. Take a set $A \in \Phi' - \Phi$. There is a function $G \in H(\Omega)$ such that

$$G(z_j)=0$$
 if $j \in A$; $G(z_j)=1$ if $j \in I-A$.

Since $A \in \Phi$, G can not belong to M. Thus, there is a finite collection of functions $g_1, \dots, g_r, g_j \in M$, such that G, g_1, \dots, g_r have no common zeros. Let Z_B be the set of common zeros of $\{g_1, \dots, g_r, f_0, \dots, f_m\}$. Then $B \in \Phi$ hence $B \in \Phi'$, therefore $\emptyset = A \cap B \in \Phi'$, which is absurd. Q. E. D.

Let \mathcal{C}^I be the set of all complex sequences. For $a^*=(a_1, a_2, \cdots), b^*=(b_1, b_2, \cdots)$ $\in \mathcal{C}^I$, we define

$$a^* \equiv b^*$$
 means that $\{i : a_i = b_i\} \in \Phi$.

Then, \equiv is an equivalence relation, as easily seen from Lemma 3. We put $\mathcal{C}^* = \mathcal{C}^I/(\equiv)$ and write $[a^*]$ for the equivalence class of a^* .

We put

$$[a^*]+[b^*]=[(a_1+b_1, a_2+b_2, \cdots)],$$

 $[a^*][b^*]=[(a_1b_1, a_2b_2, \cdots)],$

 $[a^*]/[b^*]=[(c_1, c_2, \cdots)]$, where (c_1, c_2, \cdots) is a sequence such that $\{i : c_ib_i=a_i\} \in \mathcal{O}$, supposing that $[b^*]\neq [0^*]=[(0, 0, \cdots)]$.

Then, \mathcal{C}^* is a field. If $a \in \mathcal{C}$, we correspond a to the element $[(a, a, \cdots)] \in \mathcal{C}^*$. Thus, \mathcal{C}^* is an extension of \mathcal{C} . We remark that \mathcal{C}^* is a *transcendental* extension of \mathcal{C} .

We will show that $H(\Omega)/M$ is isomorphic to \mathbb{C}^* , constructed above.

Let $[a^*] \in \mathcal{C}^*$, where $a^* = (a_1, a_2, \cdots)$, and let f^a be a function in $H(\Omega)$ for which $f^a(z_j) = a_j$, $j = 1, 2, \cdots$. We correspond $[a^*]$ to $[f^a] \in H(\Omega)/M$. If $a'^* = (a'_1, a'_2, \cdots) \in [a^*]$, there is a function $g \in H(\Omega)$ such that $g(z_j) = a'_j$, $j = 1, 2, \cdots$. Then, the set of common zeros of $\{f^a - g, f_0, \cdots, f_m\}$ coincides with $\{i; a_i = a'_i\} \in \mathcal{\Phi}$, hence $f^a - g \in M$, $g \in [f^a]$.

Conversely, let $[g] \in H(\Omega)/M$. We put $a_j = g(z_j)$ and $a^* = (a_1, a_2, \cdots)$. We correspond [g] to $[a^*] \in \mathcal{C}^*$. If $h \in [g]$ and $a'_j = h(z_j)$, then obviously $a'^* = (a'_1, a'_2, \cdots) \in [a^*]$. Thus our assertion is proved.

4. A compactification of the domain Ω .

Suppose a maximal ideal M in $H(\Omega)$ does not correspond to any point of Ω . We will show that M corresponds to a boundary point in the sense we now explain.

Let S be the set of all infinite point sequences in Ω which cluster at no point of Ω . For any sequence $Z = \{z_n\} \in S$, let $\mathfrak{U}(Z)$ be the set of all ultrafilters of subsequences of Z, which contains all subsequences F of Z such that Z - F is finite.

Let Z_1 , $Z_2 \in S$ and $\Psi_1 \in \mathfrak{U}(Z_1)$, $\Psi_2 \in \mathfrak{U}(Z_2)$. We say that (Z_1, Ψ_1) and (Z_2, Ψ_2) are equivalent, writing as $(Z_1, \Psi_1) \sim (Z_2, \Psi_2)$, if there is a subsequence $Z' \subset Z_1 \cap Z_2$, $Z' \in S$, such that Z' belongs to Ψ_1 as well as to Ψ_2 , and $Z' \cap \Psi_1 = Z' \cap \Psi_2$, where $Z' \cap \Psi_i = \{Z' \cap E \; ; \; E \in \Psi_i\}$, i=1, 2. We will show the transitivity of this relation.

Suppose $(Z_1, \Psi_1) \sim (Z_2, \Psi_2)$ and $(Z_2, \Psi_2) \sim (Z_3, \Psi_3)$. Then, there are $Z' \subset Z_1 \cap Z_2$ and $Z'' \subset Z_2 \cap Z_3$ such that $Z' \in \Psi_1 \cap \Psi_2$, $Z'' \in \Psi_2 \cap \Psi_3$ and

$$(4.1) Z' \cap \Psi_1 = Z' \cap \Psi_2, \quad Z'' \cap \Psi_2 = Z'' \cap \Psi_3.$$

Then, $Z'''=Z'\cap Z''\in Z'\cap \Psi_2=Z'\cap \Psi_1$, hence $Z'''=Z'\cap E_1'$, $E_1'\in \Psi_1$. Since $Z'\in \Psi_1$, we have $Z'''\in \Psi_1$. Similarly we have $Z'''\in \Psi_3$. Of course, we have $Z'''\subset Z_1\cap Z_3$. From (4.1), we have obviously

$$Z' \cap Z'' \cap \Psi_1 = Z' \cap Z'' \cap \Psi_2 = Z' \cap Z'' \cap \Psi_3$$

hence $Z''' \cap \Psi_1 = Z''' \cap \Psi_3$, which shows that $(Z_1, \Psi_1) \sim (Z_3, \Psi_3)$.

Sometimes, we denote simply as $\Psi_1 \sim \Psi_2$, instead of $(Z_1, \Psi_1) \sim (Z_2, \Psi_2)$. Each equivalence class $[\Psi]$ of a ultrafilter Ψ is said to determine a boundary point b_{Ψ} of Ω . We write

$$\delta \Omega = \{b_{\mathscr{V}}; \mathscr{V} \in \mathfrak{U}(Z), Z \in S\}, \text{ and } \Omega^* = \Omega \cup \delta \Omega.$$

Arguments in § 3 show that non-closed maximal ideals correspond to boundary points of Ω , defined above. Conversely, let $b_{\Psi} \in \delta\Omega$, which is determined by (Z, Ψ) , $Z \in S$ and $\Psi \in \mathfrak{U}(Z)$. Put

$$J = \{ f \in H(\Omega) ; (\text{zero set of } f) \cap Z \in \Psi \}.$$

J is obviously an ideal. If M is a maximal ideal containing J, then M induces an ultrafilter on Z as shown in § 3, which contains Ψ . Since Ψ is an ultrafilter, we conclude that J=M, and J is a maximal ideal. It is easy to see that, if $\Psi_1 \sim \Psi_2$, then Ψ_1 and Ψ_2 determine the same maximal ideal. Therefore, each boundary point corresponds to a maximal ideal. Let $\mathfrak M$ be the maximal ideal space of $H(\Omega)$. By the above, we obtain

Theorem 4. Points of Ω^* and $\mathfrak M$ correspond to each other in a one-to-one way.

Now we introduce a topology in Ω^* .

Neighborhoods of points of Ω are defined as usual.

Let $b_{\Psi} \in \delta \Omega$ be determined by a class $[\Psi]$. A subset N of Ω^* is said a neighborhood of b_{Ψ} if there are $\Psi' \in [\Psi]$ and a sequence $E \in \Psi'$ such that

By this definition, Ω^* becomes a Hausdorff topological space. We have

Theorem 5. The space Ω^* , hence the space \mathfrak{M} , is countably compact.

PROOF. Let $\{p_n\}$ be a sequence in Ω^* . We will show that it has a cluster point in Ω^* . We can assume that it does not cluster at any point of Ω . (For the definition of *countable compactness*, see [4, p. 162].)

Suppose $\{p_n\}$ has an infinite subsequence $\{z_m\}$ contained in Ω . Then $Z = \{z_m\}$ and an ultrafilter Ψ on Z determine a boundary point b_{Ψ} which is clearly a cluster point of $\{p_n\}$.

Hence we can suppose $\{p_n\} \subset \delta \Omega$. Then, each p_n is determined by a sequence $Z_n = \{z_{n, m}\}$ and an ultrafilter $\Psi_n = \{E_{n, \alpha}\}_{\alpha \in A_n}$. Let $\{K_n\}$ is an increasing sequence of compact subsets of Ω such that

$$K_h \subset \operatorname{int}(K_{h+1})$$
 and $\bigcup K_h = \Omega$.

Put (writing the complement of K_h as K_h^c)

$$Z'_n = Z_n \cap K_n^c$$
, $E'_{n,\alpha} = E_{n,\alpha} \cap K_n^c$, $Z = \bigcup_{n=1} Z'_n$.

We write, for $\beta = (\alpha_1, \alpha_2, \cdots), \alpha_j \in A_j$,

$$\beta_k = (\alpha_k, \alpha_{k+1}, \cdots) \quad (\beta_1 = \beta)$$

and

$$E_{\beta_{k}} = E'_{k,\alpha_{k}} \cup E'_{k+1,\alpha_{k+1}} \cup \cdots$$

Then, $\{E_{\beta_k}; \beta \in \prod_{j=1}^{\infty} A_j, k=1, 2, \cdots\}$ forms obviously a basis for filters on Z, since it has the finite intersection property. The sequence Z and an ultrafilter Ψ on Z, containing $\{E_{\beta_k}\}$, determine a boundary point b_{Ψ} . Let E be a set in Ψ . Suppose that, for some k and each $m \geq k$, there is an α_m such that $E \cap E'_{m,\alpha_m} = \text{void}$. Taking $E_{\beta_k} = \bigcup_{j=k} E'_{j,\alpha_j}$, we have $E \cap E_{\beta_k} = \text{void}$, which is absurd. Hence, for each k, there is $m \geq k$ such that $E \cap E'_{m,\alpha_m} \neq \text{void}$ for every $\alpha_m \in A_m$, which shows that p_m belongs to neighborhoods defined by E. Thus, b_{Ψ} is a cluster point of $\{p_m\}$. Since any sequence in Ω^* has a cluster point, Ω^* is countably compact, and Theorem 5 is proved.

REMARK. Ω^* does not satisfy the first countability axiom. But for each $b_{\overline{x}} \in \delta \Omega$ there is a sequence $Z \in S$ whose closure contains $b_{\overline{x}}$. Compare with the case of one-variable bounded functions [2, p. 85, Corollary]. Since $b_{\overline{x}}$ belongs to the closure of Z, then a subnet of Z converges to $b_{\overline{x}}$ [4, p.71]. But any sequence in Ω can not converge to $b_{\overline{x}}$.

Theorem 6. Every function in $H(\Omega)$ is continuous on Ω^* as a map from Ω^* into the Riemann sphere.

PROOF. Let f be a function in $H(\Omega)$. Let $T = \{t_n\}$ be a net in Ω which converges to a boundary point $b_{\mathbb{F}}$, defined by (Z, \mathbb{F}) , $Z = \{z_k\} \in S$, $\mathbb{F} \in \mathbb{U}(Z)$. If $\{f(t_n)\}$ would have not a limit, there would be subnets $\{t_{n'}\}$, $\{t_{n'}\}$, such that $f(t_{n'}) \to \alpha$, $f(t_{n'}) \to \beta$, $\alpha \neq \beta$. Suppose $\alpha \neq \infty$, $\beta \neq \infty$, and $|\alpha - \beta| = 3\varepsilon > 0$. The case that α or β is ∞ is treated analogously.

There are n_1' and n_1'' such that if $n' \ge n_1'$ and $n'' \ge n_1''$, then

$$(4.3) |f(t_{n'}) - \alpha| < \varepsilon, |f(t_{n'}) - \beta| < \varepsilon.$$

We put $T_1 = \{t_{n'}\}_{n' \ge n'_1}$, $T_2 = \{t_{n'}\}_{n' \ge n'_1}$, and

$$Z_i = \{z_k \in Z ; \operatorname{dis}(z_k, T_i) = 0\}, \quad i = 1, 2.$$

Then we have, from (4.3)

$$(4.4) |f(z_k)-\alpha| \leq \varepsilon \text{ if } z_k \in Z_1; |f(z_k)-\beta| \leq \varepsilon \text{ if } z_k \in Z_2.$$

 Z_1 belongs to Ψ . For, if not, there is $E \in \Psi$ such that $Z_1 \cap E = \text{void}$, hence for each point $z_i \in E$, $\delta_i = \text{dis}(z_i, T_1) > 0$. Put

$$N=\bigcup \{z \in \Omega : |z-z_i| < \delta_i, z_i \in E\}.$$

N is (intersection with Ω of) a neighborhood of $b_{\mathbb{F}}$ and contains no point of T_1 , hence $\{t_{n'}\}$ can not converge to $b_{\mathbb{F}}$, which is absurd since $\{t_{n'}\}$ is a subnet of $\{t_{n'}\}$. Similarly, $Z_2 \in \mathbb{F}$. Hence $Z_1 \cap Z_2 \neq \text{void}$, which contradicts (4.4). Hence $f(t_n)$ has a limit when $t_n \rightarrow b_{\mathbb{F}}$, $t_n \in \Omega$.

Suppose $b_n \in \partial \Omega$, $b_n \to b_{\Psi}$. By the above arguments, $f(b_n) \in \mathcal{C} \cup \{\infty\}$. For each n, there is a net $\{z_{n,m}\}$, $z_{n,m} \to b_n$, hence $f(z_{n,m}) \to f(b_n)$. Thus we can choose $z'_n = z_{n,m(n)}$ such that $z'_n \to b_{\Psi}$ [4, p. 69, Theorem 2.4]. Therefore, $\{f(b_n)\}$ has a limit which equals to $\lim_{n \to \infty} f(z'_n)$.

Thus, f has a limit at each boundary point, and our theorem is proved.

5. Generators for maximal ideals (one-variable case).

Suppose a maximal ideal M does not correspond to any point of Ω . By Theorem IG, M can not be generated by a finite number of its elements. If we restrict ourselves to the case N=1, then we are ready to determine a basis for M.

We know that, by the arguments in § 3, there are a sequence $Z \in S$ and an ultrafilter $\Psi \in \mathfrak{U}(Z)$ which correspond to M. For a set $E \in \Psi$, we denote by g(z;E) a function in $H(\Omega)$ which has simple zero at each point of E and has no other zeros.

Let $B = \{E_{\alpha}\}_{\alpha \in A}$ be a subbasis of the filter Ψ , i.e., $B \subset \Psi$ and for each $E \in \Psi$ there are $E_{\alpha_1}, \dots, E_{\alpha_m} \in B$ such that

$$(5.1) E_{\alpha_1} \cap \cdots \cap E_{\alpha_m} \subset E.$$

Write $g_{\alpha}(z)=g(z; E_{\alpha})$. Then, the system $G=\{g_{\alpha}\}_{\alpha\in A}$ is a basis for M. In fact, if $f\in M$, we put

$$E=(\text{zero set of } f) \cap Z \in \Psi$$
.

There are $E_{\alpha_1}, \dots, E_{\alpha_m} \in B$ which satisfy (5.1). Then $f(z)/g(z; E) \in H(\Omega)$ and g(z; E) belongs to the ideal $(g_{\alpha_1}, \dots, g_{\alpha_m})$, hence we have

$$f(z) = h_1(z)g_{\alpha_1}(z) + \cdots + h_m(z)g_{\alpha_m}(z)$$

with $h_i \in H(\Omega)$, and M is generated by G.

6. Hull-kernel topology in the maximal ideal space.

Let $\mathfrak M$ be the space of all maximal ideals in $H(\Omega)$. We defined a topology in $\mathfrak M$, as stated in (4.2). By theorem 5, $\mathfrak M$ is countably compact and, by theorem 6, every function f in $H(\Omega)$ is continuously extended on $\mathfrak M$. Further, Ω is dense in $\mathfrak M$.

On the other hand, $\mathfrak M$ can be topologized as follows: a set $\mathfrak C = \mathfrak M$ is said closed if $\mathfrak C$ is the hull k(J) of some ideal J in $H(\Omega)$, i.e., there is an ideal J in $H(\Omega)$ such that

(6.1)
$$\mathfrak{E}=h(J)=\{M\in\mathfrak{M}:\ M\supseteq J\}.$$

This topology is called the *hull-kernel topology* or the *Stone topology*. If \mathfrak{M} is endowed with this topology, we write it as \mathfrak{M}^{HK} . \mathfrak{M}^{HK} is called as the *strong structure space* of the algebra $H(\Omega)$ [5, p. 78].

By the way, we write in this section as \mathfrak{M}^* if \mathfrak{M} is endowed with the topology defined by (4.2).

For a subset $\mathfrak{E} \subset \mathfrak{M}$, we define the kernel $k(\mathfrak{E})$ of \mathfrak{E} as

$$k(\mathfrak{E}) = \bigcap_{M \in \mathfrak{K}} M.$$

Thus, for $\mathfrak{E} \subset \mathfrak{M}$,

 $\overline{\mathfrak{E}}$ =the closure of \mathfrak{E} in $\mathfrak{M}^{HK}=h(k(\mathfrak{E}))$.

THEOREM 7. Topology in \mathfrak{M}^* is stronger than the one in \mathfrak{M}^{HK} .

PROOF. Suppose $\mathfrak E$ is closed in $\mathfrak M^{HK}$. Then, $\mathfrak E=k(J)$ for some ideal J. For a function $f\in H(\Omega)$, we put

$$(6.3) h(f) = \{ M \in \mathfrak{M} ; M \supseteq (f) \},$$

where (f) is the ideal generated by f. Then

$$h(J) = \bigcap_{f \in J} h(f)$$
.

Thus, we have only to prove that h(f) is closed in \mathfrak{M}^* . Take an $M \in \mathfrak{M} - h(f)$. There is a finite collection of functions $f_1, \dots, f_m \in M$ such that

$$Z = \{f_1 = \cdots = f_m = 0\}$$

is a point sequence and $Z \cap \{f=0\} = \text{void}$. M is written as (Z, Ψ) with a ultrafilter Ψ on Z. Since the analytic set $\{f=0\}$ is closed in Ω , we can take a neighborhood N of $M=(Z, \Psi)$ such that $(N \cap \Omega) \cap \{f=0\} = \text{void}$. Then, $N \cap h(f)$

=void, which shows that $\mathfrak{M}-h(f)$ is open in \mathfrak{M}^* .

We denote the maximal ideal corresponding to a point $p \in \Omega$ as M(p). Let F be a closed proper subset of Ω , containing an open set in Ω . Then

$$F^* = \{M(p); p \in F\}$$

is a closed set in \mathfrak{M}^* , while the closure of F^* in \mathfrak{M}^{HK} is $\mathfrak{M} \supseteq F^*$, since

$$k(F^*) = \bigcap_{p \in F} M(p) = (0)$$
. Q. E. D.

But we have

Theorem 8. We restrict ourselves to the case one-variable case. Let \mathfrak{E}^* be a closed set in \mathfrak{M}^* . If

$$J = k(\mathfrak{E}^*) \neq (0)$$
,

then \mathfrak{E}^* is closed also in \mathfrak{M}^{HK} .

PROOF. Let $f \in J = k(\mathfrak{E}^*)$, and Z be the zero set of f. Put

$$\mathfrak{E}^* = \{ M_{\alpha} ; \alpha \in A \}, \text{ and } M_{\alpha} = (Z, \Psi_{\alpha}).$$

J induces a filter $\mathfrak F$ on Z. Let M be a maximal ideal containing J. If $M=(Z, \Psi)$, the ultrafilter Ψ contains $\mathfrak F$. Take $E\in \Psi$. Then, $E\cap F\neq \mathrm{void}$ for every $F\in \mathfrak F$. Suppose E would not belong to any ultrafilter Ψ_α , $\alpha\in A$. Then, there is an $E_\alpha\in \Psi_\alpha$ such that $E\cap E_\alpha=\mathrm{void}$. Put

$$F = \bigcup_{\alpha \in A} E_{\alpha}$$
.

Then, $F \cap E = \text{void}$. But $E_{\alpha} \in \Psi_{\alpha}$, hence $F \in \Psi_{\alpha}$ for any $\alpha \in A$. Hence F belongs to $\mathfrak{F} = \bigcap_{\alpha \in A} \Psi_{\alpha}$, which is a contradiction. Therefore, $E \in \Psi_{\alpha}$ for some $\alpha \in A$. Hence any neighborhood of M contains some $M_{\alpha} \in \mathfrak{E}^*$, and since \mathfrak{E}^* is closed in \mathfrak{M}^* , we obtain that $M \in \mathfrak{E}^*$, which shows that $\mathfrak{E}^* = h(J)$, and \mathfrak{E}^* is closed in \mathfrak{M}^{HK} .

In the above, we used the fact that $\mathfrak{F} = \bigcap_{\alpha \in A} \Psi_{\alpha}$, which is proved as follows: Let $E \in \Psi_{\alpha}$ for any $\alpha \in A$. Let g be a function whose zero set is E. Then g belongs to any M_{α} , hence $g \in J$, and we have that $E \in \mathfrak{F}$. Q. E. D.

 \mathfrak{M}^{HK} is not a Hausdorff space. To see this, let p_1 , $p_2 \in \Omega$, $p_1 \neq p_2$, and U_1 , U_2 be open sets in \mathfrak{M}^{HK} such that $p_1 \in U_1$, $p_2 \in U_2$. There are ideals J_1 and J_2 with

$$U_i = \{M \in \mathfrak{M} ; M \supseteq J_i\}, \quad i=1, 2.$$

Choose functions $f_1 \in J_1$, $f_2 \in J_2$ and a point $q \in \Omega$ such that $f_1(q) \neq 0$, $f_2(q) \neq 0$. Then, the maximal ideal M(q) corresponding to q must belong to both U_1 and U_2 , hence $U_1 \cap U_2 \neq \text{void}$. Thus, \mathfrak{M}^{HK} is not Hausdorff, though \mathfrak{M}^{HK} satisfies the T_1 -separation axiom, as easily seen.

But we have

THEOREM 9. We restrict ourselves to the one-variable case. The set h(f) in (6.3), with the relative topology as a subset of \mathfrak{M}^{HK} , is a Hausdorff space.

PROOF. Let Z be the zero set of f and let $M_i=(Z, \Psi_i)\in h(f)$, i=1, 2. Take $E_1\in \Psi_2-\Psi_1$ and $E_2=Z-E_1\in \Psi_1-\Psi_2$. Put

$$J_i = \{g \in H(\Omega); g \text{ vanishes on } E_i\}, i=1, 2$$

and

$$O_i = \{ M \in h(f) ; M \not\supseteq J_i \}, i=1, 2.$$

Then, each O_i is open in k(f) and $M_i \in O_i$. Take an $M \in k(f)$. Suppose $M \in O_1$. There is a $g \in J_1$ such that $g \notin M$, thus there is an $h \in M$ such that the zero set of h is contained in E_2 . Then, J_2 is contained in M, and $M \notin O_2$. Thus, k(f) is a Hausdorff space. Q. E. D.

COROLLARY 10. We restrict ourselves to the one-variable case. Each hull h(J) for $J\neq (0)$ is a Hausdorff space with the relative topology as a subset of \mathfrak{M}^{HK} .

THEOREM 9'. Suppose an ideal J in $H(\Omega)$ contains sufficiently many functions in the sense that there are $f_1, \dots, f_m \in J$ such that the analytic set $\{f_1 = \dots = f_m = 0\}$ is a point sequence Z. Then, the hull h(J) is a Hausdorff space with the relative topology as a subset of \mathfrak{M}^{HK} .

Proof is the same as in the above.

References

- [1] Grauert, H., Charakterisierung der Holomorphiegebiete durch die vollständige Kählersche Metrik, Math. Ann. 131 (1956), 38-75.
- [2] Hoffman, K., Bounded analytic functions and Gleason parts, Ann. of Math. 86 (1967), 79-111.
- [3] Igusa, J.I., On a property of the domain of regularity, Mem. Coll. Sci. Univ. Kyôto 27 (1952), 95-97.
- [4] Kelley, J.L., General Topology, Van Nostrand Reinhold Co., New York and London, 1955.
- [5] Rickart, C. E., General Theory of Banach Algebras, D. Van Nostrand Co., Princeton Toronto-London, 1960.
- [6] Whitney, H., Complex Analytic Varieties, Addison-Wesley Publ. Co., 1972.

(Received August 12, 1980)

Department of Mathematics Faculty of Education Miyazaki University, Miyazaki 880 Japan

and

Department of Mathematics Faculty of Science Chiba University 1-33 Yayoi-cho, Chiba City Chiba 260 Japan