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1. Introduction.

Let £ be a domain of holomorphy in the complex Euclidean space ¢V, and
let H(LQ) be the algebra of all holomorphic functions in 2. H(L) is equipped with
the topology of uniform convergence on every compact subset of £.

Let. M be a maximal ideal in H(£). A well known theorem of Igusa [3]
states

THEOREM [G. The foll‘owing Jour conditions (1)-(iv) are equivalent for M:

(i) M corresponds to a point of £.
(il). M is closed.

(iii) H(Q)/M=C(.

@iv) M is finitely generated.

By Theorem IG, we know that, if M does not correspond to any point of £,
then H(£2)/M must be a proper extension of €. In §3, we will determine the
field H(£2)/M for this case.

In §4, we compactify £ so that M corresponds to a “boundary point” of Q.

The maximal ideal M can not be finitely generated in this case. We will
determine generators of M, for the one-variable case (i.e., for the case N=1),
in §5.

2. Preliminaries.

Let M be a maximal ideal in H({). Take and fix a function f,&M. Let
{An} be the set of all irreducible components of the analytic set {f,=0}.

Suppose there is a finite collection of functions f1, ---, fL, in M such that
the irreducible components {A,;}, Ann,CAn, of the analytic set {ﬁ,:f}:---:f;n1
=0} have the property

0=dim(Ann.,)<dim(A,)

for every n and n, whenever dim(A,)=1.
Suppose we can continue the procedure further up to the k-th step (¢=0),
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i.e., there are finite collections of functions in M

Jo £l s fhg ol s o, CM
such that, if {A,ml...nj}, 0=j=<k, be the set of all irreducible components of
(o= fimr= === =fh =0,
then for every (n, ny, =+, fj-1, #3), j=0, =+, B (ny=n),
Anngenjoyn;CAnnpon iy
and, whenever dim(Anz,..n, =1, we have
0L AIM(Anngonpn ) <AM(Anryonyoy) -

The procedure must stop after a finite number of steps, say b steps. Then we
have the following two possibilities :

Case 1. Every component Agny.n, is Of dimension 0, i.e., all irreducible
components reduce to points after k steps. '

Case 2. There remain some components of dimension not less than one.
Then, for any finite collection of functions gy, -+, g- in M, we have: if {Anayenyol
is the set of all irreducible components of :

{fo=fi==fh,=g==g=0},
then there is a set (n, ny, -+, Ny, p) such that
@.1) AIM(Annpen; p)=dm(Apnyn)Z1 -
Since Ann;.n, is irreducible, we have by [6, p.76, Theorem 1J],
(2.2) Annponyp=Anngny -

We will show that the case 2 does not occur.
Suppose the case 2 would occur. Let {Af, AL, -} be all irreducible compo-
nents of dimensions not less than one, of the analytic set

{(fo=fl=rm=fh === =fh, =0}
We take two points zj, z/, z;#z}, in each Aj, such that '

Zi#z; and - zj#z{ if j+#i, and i+ =,
and
(2}, z/; j=1, 2, -~} does not cluster in £.

Let F(z) be a function in H(£) such that
F(z)=0, F)H=1, j=1,2,+
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Take a finite collection of functions gy, --+, g- in M arbitrarily. Let {Aj} be
irreducible components of
{fo=fi== ’ink—~g1— = g,=0}

obtained from {Aj}. By the assumption in the case 2, there are a number j and
a number 7 such that ‘

Aj=Aj.
Since F(z) has a zero point z; in Aj=Aj, F(z) has common zeros with any

finite collection of functions in M, hence F belongs to M. But, if {4;,} are all
irreducible components of

(o=fi=-=fh =F=0},
obtained from {Aj}, then

dim(A},)<dim(4)  for every (j, p),

since F(z) does not vanish at z/eAj. This contradicts the assumption of the
case 2.
Therefore, we have the case 1 only. That is, we obtain the following

THEOREM 1. Let M be a maximal ideal in H(Q). Then, there is a finite
number of functions fo, f1, -+, fms f3EM, such that all irreducible components of
the analytic set

Z= {f():fl:"':fm:()}

are of dimension zervo, i.e., the analytic set Z is a point sequence (finite or
infinite) which does not cluster in 2. Z={z,}.

REMARK. By [1, p.44, Satz 2], we can take (N41) fuhctions in M whose
common zeros coincide with the set Z in Theorem 1.
We note that Theorem 1 holds for any maximal ideal in H(£).

3. An extension of the complex number field.

Now we return to the supposition that M does not correspond to any point
of - 2.

LEMMA 2. If the maximal ideal M corresponds to no point of Q, then the set
Z in Theorem 1 is an infinite sequence.

PROOF. Suppose Z={z,, --, z;}. By the supposition on M, there are g,, -, gr,
g;EM, such that g,(z;)#0 for j=1, -, r. Then the finite collection of functions
&1 'y r for s fm in M has no common zeros, which is a contradiction, since
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M is a proper ideal. Q.E.D.

Now, let I be the set of all positive integers. For a subset ACI, we denote
by Z. the subsequence of Z corresponding to numbers in A. That is, if
A={ny, n,y, -}, then Z,={z,,, Zngy )

Let @ be a family of subsets of I defined as follows: ACJ belongs to @ if
there is a finite collection of functions g,, -, g,, g;&M, such that the set of
common zeros of g;, -+, g, fo, =, fm IS Za

LEMMA 3. The family @ is a ultrafilter on I, i.e.,
1° o«0.

2° If A, BEQ, then AnBe®,

3° If A=® and ACBCI, then B .

4° If ACI, then A or I—A belongs to @.

PROOF. 1° is obvious since M is a proper ideal. 2°, suppose Z, and Zy be
the sets of common zeros of {g,, -, gr, fo, =, fm} and {hy, =, b, for =, fm})
respectively. Then, the set of common zeros of {g,, -+, 8r By oy g for oy [t
is Zanp. 3°, let F(z) be a function in H(Q) such that

F(z)=0 if jeB,; F(z)=1 if jel—B.

Suppose Z4 be the set of common zeros of {g;, -, &gr fo, =, fm}. Take a finite
collection of functions hy, -+, Ay in M arbitrarily. Then {8y =, gr hy, -, R,
fo, =+ fm} has common zeros contained in Z, Since Z4CZ3, F(z) must have
common zeros with fy, -, h,. Because {h,} is chosen arbitrarily in M and M
is a maximal ideal, F(z) must belong to M, which shows that Be®. 4°, if the
lemma would not hold, there would be a filter @'2@. Take a set A=d’'—@.
There is a function G H(Q) such that

G(z)=0 if jeA; Glz)=1 if jel—A.

Since A&, G can not belong to M. Thus, there is a finite collection of func-

tions gy, -+, g, g;EM, such that G, g1, -, gr have no common zeros. Let Zjz
be the set of common zeros of {gi, -, g, fo, "+, fm}. Then B ® hence Be @,
therefore @=ABe< @', which is absurd. Q.E.D.

Let €7 be the set of all complex sequences. For a*=(a,, as, ), b*=(b,, bs, )
¢!, we define

a*=b* means that {{; a;=b;} €O,

Then, = is an equivalence relation, as easily seen from Lemma 3. We put
C*=¢" /(=) and write [a*] for the equivalence class of g*,
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We put
Ca*]+-[b*¥]=[(a,+ by, ax+b,, )],

La*1[6*1=[(a:bs, asbs, -7,

La*1/[o*1=[{cs, ca +++)], where (c;, cs, =-+) is a sequence such that
{i; cibi=as} €9, supposing that [b*]=[0¥1=[(0, 0, ---)].

Then, £* is a field. If a=(, we correspond « to the element [(q, g, ---)]S£*.
Thus, £* is an extension of €. We remark that €* is a transcendental extension
of .

We will show that H(2)/M is isomorphic to Z*, constructed above.

Let [a*]eC*, where a*=(qa,, a., --+), and let f® be a function in H(L) for

which f*(z;)=a;, j=1,2, ---. We correspond [a*] to [f*leH(Q2)/M. If o'*=
(a1, az, --)€la*], there is a function geH(2) such that g(z)=a}, j=1, 2, ---.
Then, the set of common zeros of {f*—g, fo, -, fm} coincides with {/; a;=da’}

€@, hence f*—geM, ge[F*].

Conversely, let [gleH(Q)/M. We put a,=g(z;) and a*=(a,, a,, ). We
correspond [g] to [e*]e€* If helg] and aj=h(z;), then obviously a’*=
(a3, a3, --)ela*]. Thus our assertion is proved.

4. A compactification of the domain 2.

Suppose a maximal ideal M in H(£2) does not correspond to any point of £.
We will show that M corresponds to a boundary point in the sense we now
explain.

Let S be the set of all infinite point sequences in £ which cluster at no
point of £. For any sequence Z={z,} &S, let W(Z) be the set of all ultrafilters
of subsequences of Z, which contains all subsequences F of Z such that Z—F is
finite.

Let Z,, Z,&S and ¥,€e(Z,), ¥.eWZ,). We say that (Z,, ) and (Z,, T,
are equivalent, writing as (Z,, ¥)~(Z,, ¥,), if there is a subsequence Z'CZ,NZ,,
Z'<S, such that Z’ belongs to ¥, as well as to ¥,, and Z'N\¥,=2Z'N¥,, where
Z'N¥={Z'NE; E€¥}, i=1, 2. We will show the transitivity of this relation.

Suppose (Z,, ¥1)~(Z;, ¥,) and (Z,, To)~(Zs, ¥,). Then, there are Z/CZ,~\Z,
and Z"CZ,N\Zs such that Z7€ UV, 7" ¥,N ¥V, and

(4.1) ZN¥=2'n%, Z'NU=2"nY%.

Then, Z2"=2'N2"eZ'N¥=2'"¥,, hence Z"=Z'NE,, Elc¥, Since Z'€¥,,
we have Z”< ¥,. Similarly we have Z”< ¥,. Of course, we have Z"C Z,N\Z,.
From (4.1), we have obviously
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ZnZ'NU=2'NZ2"'NV=2'NZ2"NY;,

hence Z"N\¥,=Z""\¥,, which shows that (Z,, T)~(Z,, T).

Sometimes, we denote simply as ¥~ ¥, instead of (Z,, ¥))~(Z,, ¥,). Each
equivalence class [¥] of a ultrafilter ¥ is said to determine a boundary point by
of 2. We write

0R=1{by; TeWZ), Z&S}, and
Q*=0Uo82.

Arguments in § 3 show that non-closed maximal ideals correspond to boundary
points of £, defined above. Comversely, let by =682, which is determined by
(Z, ), Z€S and ¥eW(Z). Put

J={f€H(); (zero set of INZ<T]}.

J is obviously an ideal. If M is a maximal ideal containing [/, then M induces
an ultrafilter on Z as shown in §3, which contains ¥. Since ¥ is an ultrafilter,
we conclude that /=M, and J is a maximal ideal. It is easy to see that, if
U ~V, then ¥, and ¥, determine the same maximal ideal. Therefore, each
boundary point corresponds to a maximal ideal. Let 9 be the maximal ideal
space of H(2). By the above, we obtain

THEOREM 4. Points of £2% and M correspond to each other in a one-to-one
way.

Now we introduce a topology in £*.

Neighborhoods of points of £ are defined as usual.

Let byedf be determined by a class [¥]. A subset N of 2% is said a
neighborhood of by if there are ¥’ <[ ¥7] and a sequence E< ¥ such that

NN£2 is an open set of £ containing E, and
4.2) NN\J& consists of boundary points determined by classes of ultrafilters
on point sequences (€S) contained in NN\£.

By this definition, £2* becomes a Hausdorff topological space. We have

THEOREM 5. The space 2%, hence the space M, is countably compact.

Proor. Let {p,} be a sequence in £2* We will show that it has a cluster
point in £2% We can assume that it does not cluster at any point of £. (For the
definition of countable compactness, sce [4, p.162].)

Suppose {p.} has an infinite subsequence {z,} contained in £. Then Z= {zn}
and an ultrafilter ¥ on Z determine a boundary point by which is clearly a
cluster point of {p.}.
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Hence we can suppose {p,} ©62. Then, each p, is determined by a sequence
Zp={zs,n} and an ultrafilter ¥,={Fy o} aea,. Let {K,} is an increasing sequence
of compact subsets of £ such that

K,Cint(Kn,1) and UK,=2.
Put (writing the complement of K, as K%)
Zy=Z ,NKS, Ej =E..NK3%, Z=n\=JlZ§z.
We write, for f=(ay, a,, ), @;EA4A;

ﬁk:(aky Qpsry =) (ﬁ12,8>

and
Eﬁk:E;e,akUE}/z+1,ak+1U o

Then, {Ep,; S€ f[lAj, k=1, 2, -} forms obviously a basis for filters on Z,
- =

since it has the finite intersection property. The sequence Z and an ultrafilter
¥ on Z, containing {Eg,}, determine a boundary point by. Let E be a set in
¥. Suppose that, for some % and each m=k, there is an a, such that ENEq, o,
=void. Taking Eﬁk=j=kE;-, ap WE have ENEg,=void, which is absurd. Hence,
for each k, there is m=k such that ENEn. . #void for every an<SAn, which
shows that p, Dbelongs to neighborhoods defined by E. Thus, by is a cluster
point of {pn}. Since any sequence in £2* has a cluster point, 2% is countably
compact, and Theorem 5 is proved. Q.E.D.

REMARK. £* does not satisfy the first countability axiom. But for each by
€68 there is a sequence Ze&S whose closure containg by. Compare with the
case of one-variable bounded functions [2, p. 85, Corollary]. Since by belongs to
the closure of Z, then a subnet of Z converges to by [4, p.71]. But any
sequence in {2 can not converge to by.

THEOREM 6. Every function in H(2) is continuous on 2% as a map from 2%
into the Riemann sphere.

ProoF. Let f be a function in H(L). Let T={t,} be a net in £ which
converges to a boundary point by, defined by (Z, ¥), Z={z,} S, ¥el(Z). If
{ft)} would have not a limit, there would be subnets {f,.}, {f»}, such that
fla)—a, fEa)—pB, a# 8. Suppose a#co, B#co, and {a—f]=3¢>0. The case
that @ or B is co is treated analogously.

There are ni and n? such that if n’=n! and n”=n?{, then

(4.3) ) —al<e, [flta)—pl<e.
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We put Ty={tn}nza), Te={ta}nzaj, and

Zi=A{z:€Z; dis(z;, T:)=0}, =1, 2.
Then we have, from (4.3)

4.4 [fz—al=e if z€Zy; !f(Zh)—ﬁlSe if zneZ,.

Z, belongs to ¥. For, if not, there is E= ¥ such that Z,~\E=void, hence for
each point z,€E, d;=dis(z;, T1)>0. Put

N:U{ZE.Q; lZ'—Zjl <5j’ ZJ'EE}'

N is (intersection with 2 of) a neighborhood of by and contains no point of T,
hence {t,.} can not converge to by, which is absurd since {f,.} is a subnet of
{tn}. Similarly, Z,e¥. Hence Z,~\Z,#void, which contradicts (4.4). Hence
f(t,) has a limit when t,—by, t,€5£.

Suppose b,€88, by,—by. By the above arguments, f(b,)eC\J{oc}. For each
n, there is a net {zs m}, 2Zn m—bn, hence f(z, n)—f(b,). Thus we can choose
Zn=1Zn, mcn> such that z,—by [4, p.69, Theorem 2.4]. Therefore, {f(b,)} has a
limit which equals to li;n flzn).

Thus, f has a limit at each boundary point, and our theorem is proved.

5. Generators for maximal ideals (one-variable case).

Suppose a maximal ideal M does not correspond to any point of 2. By
Theorem IG, M can not be generated by a finite number of its elements. If we
restrict ourselves to the case N=1, then we are ready to determine a basis for M.

We know that, by the arguments in § 3, there are a sequence Z<S and an
ultrafilter ¥=W(Z) which correspond to M. For a set E= ¥, we denote by
glz; E) a function in H(£2) which has simple zero at each point of E and has
no other zeros.

Let B=1{E,}«ca be a subbasis of the filter ¥, i.e.,, BC ¥ and for each E€ ¥
there are E.,, -+, E,, B such that

G.1) Exyv-Ea, CE.

Write g.(2)=g(z; E;). Then, the system G=1{g,}.ca is a basis for M. In fact,
if feM, we put

E=(zero set of INZeV.

There are E,, -, E,, B which satisfy (5.1). Then f(2)/g(z; EYcH(£) and
g(z; E) belongs to the ideal (ga,, =, ge,,), hence we have

fD=h(2)ga(D+ - +hn(2)ga,(2)
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with 2, H(£2), and M is generated by G.

6. Hull-kernel topology in the maximal ideal space.

Let M be the space of all maximal ideals in H(£2). We defined a topology in
M, as stated in (4.2). By theorem 5, MM is countably compact and, by theorem 6,
every function f in H(£) is continuously extended on M. Further, £ is dense
in M.

On the other hand, M can be topologized as follows: a set ECM is said
closed if € is the hull A(J) of some ideal j in H(R), i.e., there is an ideal [ in
H(Q) such that

6. C=i)={Mel; M2]}.

This topology is called the hull-kernel topology or the Stone topology. If M is
endowed with this topology, we write it as M¥E, IM¥X is called as the strong
structure space of the algebra H(2) [5, p.78].

By the way, we write in this section as M* if M is endowed with the
topology defined by (4.2).

For a subset €M, we define the kernel k(€) of € as

6.2) k(@)sze\@M .

Thus, for €M,
E=the closure of & in MIE=A(k(E)).

THEOREM 7. Topology in IM* is stronger than the one in MTE.

ProOF. Suppose € is closed in MZ%. Then, E=4(J) for some ideal J. For a
function fe H(Q), we put

(6.3) KO={Mem; M2()},
where (f) is the ideal generated by f. Then

K= Q14N

Thus, we have only to prove that A(f) is closed in M* Take an MeM—Ai(f).
There is a finite collection of functions fi, ---, fnEM such that

is a point sequence and Z N\ {f=0}=void. M is written as (Z, ¥) with a ultra-
filter ¥ on Z. Since the analytic set {f=0} is closed in £, we can take a
neighborhood N of M=(Z, ¥) such that (NN {f=0} =void. Then, NNi(f)
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=void, which shows that M—A(f) is open in IM*.
We denote the maximal ideal corresponding to a point p=£2 as M(p). Let F
be a closed proper subset of £, containing an open set in £. Then

F*={M(p); p<F}
is a closed set in M*, while the closure of F* in MHX is M2 F*, since
k(F*)y= N\ M(p)=(0). Q.E.D.
DPEF
But we have

THEOREM 8. We restrict ourselves to the case one-variable case. Let €% be a
closed set in M*. If
J=k(€*)#(0),
then &% is closed also in MX,

ProOOF. Let fe J=k(€G*), and Z be the zero set of f. Put
C*={M,; ac A}, and M.=(Z, U,).

J induces a filter & on Z. Let M be a maximal ideal containing J. If M=(Z, ¥),
the ultrafilter ¥ contains §. Take E<¥. Then, EnF+void for every FEF.

Suppose E would not belong to any ultrafilter ¥,, a=A. Then, there is an
E,.e W, such that EnE,=void. Put

F=\JE,.

a€4

Then, FNE=void. But E,€¥,, hence Fe ¥, for any a=A. Hence F belongs
to §= QAW(X’ which is a contradiction. Therefore, Ec ¥, for some a=A. Hence

any neighborhood of M contains some M,=G*, and since €* is closed in M*, we
obtain that Me@* which shows that &*=4(J), and E* is closed in M~
In the above, we used the fact that F= (E\Aqfa, which is proved as follows:

Let Ec ¥, for any a=A. Let g be a function whose zero set is E. Then g
belongs to any M,, hence g<]J, and we have that E€F. Q.E.D.

IMMEX is not a Hausdorff space. To see this, let pi, p.=%£, p15p. and Uy,
U, be open sets in MZX such that p,U,, p,=U, There are ideals /, and J,
with
U={MeWm; M2]}, =1, 2.

Choose functions f,€ ], f.€ /> and a point ¢ 2 such that fi(g)#0, fg)#0. Then,
the maximal ideal M(g) corresponding to g must belong to both U, and U,, hence
U,NU,#void. Thus, MZX is not Hausdorff, though M** satisfies the T,-separa-
tion axiom, as easily seen.
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But we have

THEOREM 9. We resirict ourselves to the one-variable case. The set S in
(6.3), with the relative topology as a subset of M¥X, is a Hausdorff space.

PROOF. Let Z be the zero set of f and let M;=(Z, Tyeh(f), i=1, 2. Take
Ec¥—V and E,=Z—E,c¥,— W, Put

Ji={g=H(2); g vanishes on E;}, i=1,2,
and
O={Mei(f); M2}, i=12

Then, each O; is open in A(f) and M;=0,. Take an Meh(f). Suppose MeO,.
There is a g/, such that ge M, thus there is an A<M such that the zero set
of A is contained in E.;. Then, J, is contained in M, and Me 0,. Thus, A( f) is
a Hausdorff space. Q.E.D.

COROLLARY 10. We restrict ourselves to the one-variable case. Each hull
W) for J#(0) is @ Hausdorff space with the relative topology as a subset of MAEK,

THEOREM 9. Suppose an ideal ] in H(2) contains sufficiently many functions
in the sense that therve are fi, ---, fm<J such that the analytic set {f,= - = fn,=0}
is a point sequence Z. Then, the hull h([J) is a Hausdorff space with the relative
topology as a subset of IMAE,

Proof is the same as in the above.
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