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Introduction. Consider a difference equation of the form
(E) y(x+1)=P(y(x)),
where P(t) is a polynomial of degree n (=2):

P)y=aptait+ - +azt™
with complex coefficients.

It will be proved that a solution of (E) meromorphic in |x|<oo, called a
meromorphic solution, is always entire. The purpose of this paper is to study
entire solutions of (E).

It is clear that if a solution of (E) converges to a certain value « as Re x
tends to —oo or +oo, a is a fixed point of the polynomial map P: Pla)=a. If
a# oo, the transformation y=z+a«a takes (E) into an equation
(E. @) Zx+1D=Q(z(x)),
where Q(#) is given by

Q)y=P(t+a)—«a.

Therefore Q(¢) is written as
QOy=byt-+bst*+ -+ +b,t",

and the first coefficient b, is equal to P/(a).
A transformation

2(x)=¢(u(x))

changes (E. «) into

ul{x+1D=bu(x)
if and only if ¢ satisfies the equation of Schréder
E.S) P(bH=Q((1)) .

It is well known that if |b;|#0, 1, then (E.S) admits a solution holomorphic at
1=0:
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F(t)= i Pt (b=

and that if |[b,|>1, then ¢(¢) is contiﬁued analytically to an entire function. It
follows that, if |P’/(a)]| >1, equation (E) has an entire solution

o(x, a)=¢(bf)+a.

In case when P’(a)=1, it will be shown that (E) admits an entire solution
which is developed asymptotically as

o(x, a)Ea+r(x(l+iﬂ2>14uf“’”(x“ log x)7))-/m

as Re x——oco, where 7 and m are determined by P(#) and a.

Section 1 js devoted to a study of properties of solutions of (E). Existence
theorems of the solutions ¢(x, &) and ¢{x, a) will be given in Section 2. In
Section 3 we shall study equation (E.S). We shall discuss the orders and Julia’s
directions of the solutions ¢(x, a) and ¢(x, a) in the final section.

The author wishes to express his thanks to Professors T. Kimura, N.
Yanagihara and Dr. K. Okamoto for their valuable advice during the preparation
of this paper.

REMARK. N. Yanagihara recently proved that any transcendental meromorphic
solution of the difference equation

P(x, y(x))
Qlx, y(x)’

where P(x, ) and Q(x, t) are mutually prime polynomials, is of order co under
a certain condition, and studied the equation

Ply(x))
Qly(x))

y(x+1)=

y(x+1)=

in a more detail (Cf. [6]).

§1. Properties of solutions of (E).

In this section, we assume the existence of meromorphic solutions of (E) and
study their properties.

A fixed point ¢, (€ PYC)) of P(1) is said to be of multiplicity k, if t, is a
root of multiplicity % of the equation

P(t=t,.

REMARK 1.1. #,=co is a fixed point of multiplicity z.
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Let ¢(x) be a meromorphic solution of (E). Then the following proposition
is easily obtained.

ProprosSITION 1.1. 1) If a (ePXC)) is a fixed point of P(t) and ¢(x¢)=«,
then

P(xotr)=a
for v=1,2, .

ity If aisa fixed point of multiplicity n of P(t), and ¢(xo)=w, then
o(xkv)=a

for v=1,2, ..

The order of an a-point of a meromorphic solution of (E) is given by the
following proposition.

PROPOSITION 1.2. Assume that « is a fixed point of mulliplicity n. If a
meromorphic solution ¢(x) has an a-point of order r at x=x, then x=x,+v
(yv==1, +£2, --+) is an a-point of order rn”.

ProoF. If a#co, equation (E) can be written in the form
(1.1 y(xFD—a=a(y(x)—a)".

By the assumption, for a sufficiently small positive constant §, ¢(x) is developed
into convergent series

plx)=atcox—xo) 4 -
if |x—x,]<d. Hence by using (1.1), we derive that
plrtv)=atcfMx—x)™+ -,  [x—x,[<3,

which implies that
o{x)=a+cP(x—(xo o)™+ 0,

for |x—(v+x,)|<d. Therefore ¢(x) has an a-point of order rn” at x=x,+v.
In case when a=o0, we can prove in a similar way.

COROLLARY 1.3. If a is a fixed point of multiplicity n, a meromorphic solu-
tion of (E) never takes the value «.

Considering a special fixed point a=oc of multiplicity n, we obtain the
following theorem.

THEOREM 14. Any nontrivial meromorphic solution of (E) is transcendental
and entire.
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To prove Theorem 1.4, it is sufficient to show that any nontrivial mero-
morphic solution is not a rational function. This fact is an easy consequence of
Proposition 1.2.

Theorem 1.4 leads us to the following theorem concerning Picard exceptional
values of an entire solution of (E).

THEOREM 1.5 (Picard exceptional value). A value a (#c0) is a Picard excep-
tional value of ¢(x), if and only if « is a fixed point of multiplicity n of P(2).

PROOF. In view of Corollary 1.3, it is sufficient to show that any value
other than the fixed point of multiplicity » is not a Picard exceptional value. To
do this, suppose that S (s00) is not a fixed point of multiplicity » and is a
Picard exceptional value:

(1.2) o(x)* B for [x|>R.
Then there exists a point 7 such that

P(=8, 1#8 =,
and
(1.3) o(x)£T for [x+1|>R.

Relations (1.2) and (1.3) contradict the big Picard’s theorem. Thus the proof is
completed.

§2. Existence of nontrivial entire solutions.

Let us denote by « a fixed point of P(¢). As is stated in Introduction, (E)
is taken by

yxy=z(x)+a

into

E.a) 2(x+1)=0Q(z(x))
where

2.1 QU)=byt b1+ -+ b, t",
with ,

b=P(a).

Then the following two existence theorems are obtained.

THEOREM 2.1. If
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(2.2) [P(a)| >1,
equation (E) has a nontrivial entive solution
(2.3) o(x, a)=a+0(x, a)

satisfying
olx, ay—a

as Re x——oco. Here O(x, ) is developed into convergent sevies
2.4) D(x, a)y= kizjl cr exp(kx log by) (b:=P' ()

for | x| <oo,

THEOREM 2.2. If
2.5 Pa)=1,
equation (E) has a nontrivial entive solution
(2.6) Hlx, )=a+¥(x, a)

satisfying
Px, a)—a

as Re x——oo, [In the right member of (2.6), ¥(x, a) is a holomorphic funciion of
the form

@7 U(x, a)=r(x(1+blx, x *log x)))~¥'™,

for
xeDe, R)={x||xI>R, |larg x—r|<zm/2—e, or

Im(ev=1ex)<—R, or Im{e~-Tex)>R},

¢ being arbitrarily small, R being sufficiently large. Here m and 7y are a positive
integer and a complex constant, respectively, depending on P(1), and b(x, %) is the
convergent series

2.9) b(x, n)= }é}obk(x)ﬁk

for x&€D(e, R), [nl<r, whose coefficient b,(x) admits an asymptotic expansion
(2.10) b()= 2 gsux™™  qu=0

as x—oo through D/(e, R).

Before going into our proof, let us consider an equation of Schréder of the
form
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(E.S y(b1x)=Q(y(x))
where Q(t) is the polynomial given by (2.1), i.e.
QY=byt+byt®+ - +bat™.

THEOREM 2.3. If |b|>1, equation of Schrioder (E.S) has an entire solution
$(x) satisfying $(O)=0, ¢'(O)=L.

Proor. It is well known that, if |b,]|#1, equation (E.S) has a holomorphic
solution of the form

()= cpx® =1,
k21

at x=0, (E. Schroder [4]). Since |5, >1, ¢(x) can be continued holomorphically
into the whole complex plane by utilizing (E.S). Thus we have an entire solution

¢(x)= glckxk
for |x|<oo.
Proor ofF THEOREM 2.1. Under assumption (2.2), it is sufficient to prove

that equation (E.a) has an entire solution @(x, ) which is written as (2.4) and
satisfies

211 D(x, a)—0

as Re x——c0.
Let ¢(x) be an entire solution of (E.S) given by Theorem 2.3. Then if we
set
D(x, a)=¢(bY)= nglck exp(kx log by),

it is an entire solution of (E.a). In fact, @(x, a) satisfies

D(x+1, )=g(bF ) =¢(b, b})=Q((bT)=Q(D(x, &)).

It is also verified without difficulty that @(x, «) is a nontrivial entire function and
satisfies (2.11).

Next we give the proof of Theorem 2.2. For this purpose, we quote Theo-
rem 14.2 in T. Kimura [2], with slight modification.

THEOREM 2.4. Consider the difference equation

w(x+D=F(w(x)
with

F(z):z(1+§7‘,n bz ™), bn=
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Then there exists a unique solution w(x) satisfying the following conditions.
1) w(x) is holomorphic in D,(s, R).
il) w(x) is expressible in the form

w(x)=x(1+b(x, x~'log x)),

where b(x, 9) is holomorphic for x€Di(e, R), |9l <r, and in the expansion
bx, m)= 3 bax)n*,

bu(x) is asymptotically developed into

as x—oo through De, R).
PrROOF OF THEOREM 2.2. Let us assume that
Q)=t+bmst™ - +byt*,  (Cf.(21)
with bpme:30, m+1<n. Then (E.q) is transformed by
(2.12) —mbmi(2(x)"=w(x)"*
into an equation expressible in the form
(2.13) w(x+D=w(x)(1+w(x) " +0(w(x)"™Im)

for |w(x)|>p, p being a sufficiently large constant. By applying Theorem 2.4
to equation (2.13), we have a solution

O(x)=x(1-+b(x, x~*log x))

holomorphic for x&D(e, R), where b(x, n) satisfles conditions (2.9) and (2.10).
Take the constant R sufficiently large so that

[0 >p
for x=D,(e, R). Then equation (E. ) has a solution
U(x, )y=70(x)""'"
=7(1+b(x, x~*log x)) Y mx~H™

holomorphic for x< D,(e, R). It is not difficult to verify that the solution ¥(x, «)
can be continued holomorphically into the whole plane and satisfies

U(x, a)—0
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as x tends to oo through D;(e, R). Thus the theorem is proved.

Now there arises the question whether (E) has a nontrivial entire solution

for every polynomial P(#). The following theorem gives an answer to this
question.

THEOREM 2.5. For any polynomial P(t), equation (E) has a nontrivial entive
solution.

In view of Theorems 2.1 and 2.2, it is sufficient to prove the following lemma.

LEMMA 2.6. By ai, -+, an, we denote the fixed points of P(t). Then, either
of the following two cases occurs.

iy For some a, P'(a)=1,

ify For some ay, |P'(a;)|>1.

This lemma is proved in G. Julia [1]. For the importance of the lemma, we
give a more direct proof. For this purpose, we show the following.

CLAIM. Assume that
(2.14) A: 1__[ (ai—aj)i() .
1si<jsn
Then, if we put

Ak=ﬁ<ak_—av)7£0y k:l’ e, N,
y=1
v#k

lk=/1//1k#:0 ’
we have
2.15) S 2,=0.
k=1

Verification of Claim. Now, we set

F(xy, -+, xp-0= II  (x:5—xy)

15i<j5n-1
1 1
=(—])D -2/ X1 Xa-a
-2 -2
XDt g R

Then, a simple computation shows that

m=A/A= T (a—ap/ [ai—a)
- a v#Ek

:(_1)k+1F<a1r iy ety Opiyy *0 an))
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for k=1, ---, n. Hence it follows that

2 A= kZZ)l(—l)’*“F(a:, e, gy, Qpets *tt, On)

k=1
Ak
Loveens 1
=(—]1)n-Dn-2/2 i (— 1)k Qg an
P10 T e
a;"z ..az—z
Teeeeee 1
1 eveeee 1
=(—1D)=Da-nrz g o
a;“2 ..ag—z

=0,
where the notation Ak means that the k-th column is dropped out. This com-

pletes the proof.

PrROOF OF LEMMA 2.6. By the assumption, the polynomial P(¢#) is written as
(2.16) P=a., kﬁl (t—ap)+t.

If (2.16) has a multiple root (for example «)), it is clear that
Play)=1,

which implies that case i) occurs.
Next we assume that all the roots are simple;

(2.17) A= TI (a;—ap+0.

123<jsn

We shall show that, under assumption (2.17), case ii) occurs. To do this, suppose
that case ii) does not occur, namely

(2.18) [Pa)|=|1+a A | =]1—(—a. 4/ 2:)| =1
for k=1, .-, n. Then, from (2.17) and (2.18), it follows that

—n/2<arg(—a, A/2)<m/2.
Hence, we have
f—r/2<arg 2, <0+z/2, k=L, -, n,

where #=arg(—a,A). This implies

i xk;to 4
k=1
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which contradicts (2.15). Thus the proof is completed.

§3. Equation of Schrider.
As was shown in the preceding section, the equation of Schroder
E.S) 2(byx)=Q(2(x))

has a nontrivial entire solution ¢(x), under the condition |b,|>1. The purpose
of this section is to study entire solutions of (E.S).

Assume that |b;|>1. Let us denote by @(x) any nontrivial entire solution
of (E.S). Then the order of @(x) is given by the following theorem.

THEOREM 3.1. The order of @(x) is log n/loglb,].

PROOF. By virtue of the Picard’s theorem, there exist a point x==x,#0 and
a positive constant ¢ so that

@(xo):C>2,
IQ(t)IE%[t]” for |t|=c.

Then if the inequality
[D(a)| =c
holds, it follows that

|0:0)] =1 Q@] 2 5 | 0(@) "= .

Hence, if we set
Mz, (D(x)>=rln§=XI<D(X)!,

we obtain
M b7, D)z 5 M xab? |, D))"
for N=0, 1, 2, ---.
From the relation above, we deduce that
M([xob' |, O(x)zexp(yn™),  N=0,1,2, -,
7 being a positive constant. This yields the inequality
G M(r, @(x))Zexp(yon'osr/oeit),

Next, we shall obtain the upper estimate of M(r, @(x)). For some positive
constant ¢, it holds
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(3.2) | D(xb) | =| Q(P(x))| =max(c | D(x)|", 1).

Sincg the function @(x) is bounded for 1=Z|x|=1b,], we derive from (3.2)
| M(5bY'|, D(x)Sexp(fn®)

for 1=|x|=[b,], B being a positive constant. This implies

3.3) M(r, @(x))<exp(fon'osr/losinl)

for »=1.
Combining (3.1) and (3.3), we conclude that

— log log M(r, @(x)) log n
lim = .
oo logr log|b,|

Let us consider the case when |b;|<1. Suppose that equation (E.S) admits
a nontrivial entire solution ¢(x). Then,
z(&)=o(b})
is a nontrivial entire solution of

2(E+1D=0Q(z(&)).

It is easy to see that

arg b,

3.4) z(£) is bounded in the domain defined by Re&= log b |
1

Imé&+c,
¢ being a real constant. On the other hand, as will be shown in the next section
(Proposition 4.3), there exists a sequence {£y} satisfying

lz(En) | Zexp(yny),  (1>0)
and
Re EN_) +OO 3

which contradicts (3.4). Thus we arrive at the following theorem.

THEOREM 3.2. If |b] <1, equation (E.S) has no nontrivial entire solution.

§4. Order and Julia’s directions of entire solutions.

This section is devoted to the study of complex analytic properties of entire

solutions of (E). As an immediate consequence of Theorem 3.1, we have the
following.

THEOREM 4.1. The entire solution O(x, a) given in Theorem 2.1 is of order oo.
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More generally, we can prove the theorem below.
THEOREM 4.2. Any nontrivial entive solution ¢(x) of (E) is of order oo.
To do this, it is sufficient to show the following proposition.

PROPOSITION 4.3. For any nontrivial entire solution ¢(x) of (E), there exists
a sequence {x¢+N}y-1,e,.., Such that

4.1 | p(xo+N)| Zexp(yn'®et¥),

T being a positive constant.

ProOF. The proof is very similar to that of Theorem 3.1. Taking x, and ¢
such that

o(r)=c>2,
POIZ5 1t for l11ze,
we can deduce that
| ot N+ 1) 2 | oot N 7.

From this relation, we can derive (4.1) with no difficulty.

Let L(b, ¢) denote the line defined by
Re x=bIm x+c¢,
b and ¢ being real constants. And set
M(L(b, ¢, so(X))=xEsLu(gc)lso(X)l-

Then, the upper estimate on the line is also given by the same reasoning as in
the proof of Theorem 3.1.

PROPOSITION 4.4. If the inequality

sup M(L(b, ¢), o(x)=M,<co,
LETTY

holds, then there exists a positive constant B such that
(4.2) M(L(b, ¢), p(x))=exp(fn°)

for c=c,.

By applying (4.1) and (4.2) to ¢(x, a), ¢(x, a) given in Theorems 2.1 and 2.2,
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we obtain

COROLLARY 4.5.

log log log M(r, o(x, a)) __

lim 1,
7o log »
m log log log M(», ¢(x, «)) -1
oo log v

Finally, we consider Julia’s direction of ¢(x, @) and ¢(x, a). For the solution
¢(x, a), Julia’s direction is easily found.

THEOREM 4.6 (Julia’s direction of ¢(x, a)). ¢(x, &) has only one Julia’s direction
arg x=0.

PrROOF. Recall that ¢(x, &) is bounded in the domain D(e, R), where ¢ can
be taken arbitrarily small. Therefore, arg x=0%0 (mod 2z) cannot be Julia’s
direction. :

Next, we determine Julia’s directions of ¢(x, a).

LEMMA 4.7. o(x, &) is bounded in the domain defined by

arg Pl(a)

Hya, D={x| Rex <0 S5 =

Im x—}—]} . (0=arg P'(a)<27).

The verification of this lemma is not difficult. By utilizing this lemma, we
obtain a theorem concerning Julia’s directions of ¢(x, a).

THEOREM 4.8 (Julia’s directions of ¢(x, @)). The direction arg x=0 is Julia’s
divection of o(x, &), if and only if the ray arg x=0 is contained in the domain

5 BEP@

H(a):{xl Re x= Tog| Pa)]

ProOF. If the ray arg x=6 is not contained in H(a), Lemma 4.7 implies
that ¢(x, «) is bounded for

larg x—8 | <e,
¢ being a sufficiently small positive constant. Therefore, such a direction is not

Julia’s direction. On the other hand, assume that the ray arg x=¢ is contained
in H(a). Note that the function

E=P(a)*=exp(x log P'(a))

maps the region
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larg x— 0] <e

into a region Dg such that

DD {E11E1> R},

where ¢ is an arbitrarily small constant, R is a sufficiently large constant.
Recalling that

dE)=p(x, a)

is a nontrivial entire solution of (E.S), we infer that ¢(x, a) takes every value
other than Picard’s exceptional value, in the region

jarg x— 6| <e,
for any positive constant e. This means that arg x=6 is Julia’s direction of
o(x, @).
References

[17 Julia, G., Memoire sur l’iteration des fonctions rationnelles, J. Math. Pures Appl.
1 (1918), 47-245.

[27 Kimura, T., On the iteration of analytic functions, Funkcial. Ekvac. 14 (1971),
197-238.

[31 Kimura, T., On meromorphic solutions of the difference equation y(x+1)=
y(x)+1+24/y(x), Symposium on Ordinary Differential Equations, Lecture Notes in
Math., 312, pp. 74-86, Springer-Verlag, Berlin-New York, 1973.

[4] Schréder, E., Uber iterierte Funktionen, Math. Ann. 3 (1871), 296-322.

[5] Urabe, M., Equation of Schréder, J. Sci. Hiroshima Univ. 15 (1915), 113-131.

[6] Yanagihara, N., Meromorphic solutions of some difference equations, to appear.

(Received May 26, 1980)

National Aerospace Laboratory
Jindaiji-machi 1880

Chofu-shi, Tokyo

182 Japan



