On some singular Fourier multipliers
By Akihiko Mrvacur®

§1. Introduction.
In this paper, we shall consider the following Fourier multiplier :

meE)=¢E)1&] 7" exp (i[£]%), EER™, a>0, bER,

where ¢ is a smooth function which vanishes in a neighborhood of the origin
and is equal to 1 outside a compact set. We shall determine the cases where the
corresponding operator

(L.1) > G me vFf) (F=the Fourier transform)
defines a bounded operator between the following spaces:
(1.2) H?(0<p<o0), L, L=, BMO, A;(s€R) and Ly(k=N)

(as for these spaces, see §2.1).

Our basic tool is the application of the theory of HP-spaces, which enables
us to obtain sharp results in some cases. For example we obtain the following
results : (i) there are critical indices p;=pi(a, b) (=0, 1, 2), 0<p=2, 1<p,=2, 0
< p,=1, such that (1.1) defines a bounded operator from H?¢ to H?, from L7:
to LPY (1/pi=1—1/py), and from H?2 to L* and all the results for the boundedness
of the operator (1.1) from H? or BMO to H?% BMO or /A; can be derived from
those results by interpolation and duality ; (ii) if ¢ increases, then p, increases and
p; and p. decrease, from which it follows that the oscillating factor exp (7|£]9) is
a bad factor when we consider the operator (1.1) from H? to H? with 0<p=gq
<2 or 2<p=g<oo or from H?, p>2, to BMO or A, but is a good factor when
we consider (1.1) from H? to H? with 0<p<2<g<oo or from H? 0<p<2, to
BMO or Ag; (i) p.s depend continuously on ¢ and b if 0<a<l or a>1 but
they have discontinuities at ¢=1; thus m,, cannot be considered as a limit of
Mep With a#1.

The results of this paper obtained for the operator (1.1) (some of them are
obtained for more general operators) explain the typical features of some impor-
tant operators in analysis. If 0<ae<l, then (1.1) is a typical example of the
pseudo-differential operator of the class St’,, If a=1, the operator (1.1) has an

*) Partly supported by the Fiijukai foundation.
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intimate connection with the Cauchy problem for the wave equation :

o A ey SR, xERY
u(0, x)=f(x), =x=R",
1 0, =glr),  x=R~

The solution of this equation can be written as
ut, )=F Ncost|&l-FfEN+F & sint|&]-FF(E)).

Many important properties of the operator ( f, gy—u(t, -) are shared by the opera-
tor (1.1) with a=1. Similarly the operator (1.1} with ¢=2 has an intimate con-
nection with the Cauchy problem for the Schrédinger equation :

s te R; = RTL’
ot i3 0x? *

u(0, x)=f(x), x&R"

In §2, we shall recall the definitions of the spaces (1.2) and some properties
of them which are used in this paper. In §3, we study some general properties
of Fourier multipliers between the spaces (1.2). In §4, we state the results for
the Fourier multiplier m,, §5 is devoted to the proof of the results in §4. §6
is an appendix. Most of the contents of §6 are perhaps well known to many
people ; they are included in this paper because the present author cannot find
appropriate references.

The main results of this paper are stated in Theorems 4.1~4.5, 5.1, 5.2 and
Corollary 4.1.

Throughout this paper, we shall use the following

Notation. ¢ denotes a fixed smooth function on R” such that
0=¢©=1, ¢€)=0 if |£]=1 and ¢E=1 if |&=2.

The letters C, C’, C”, ---, denote positive constants which may have different
values in each occasion. Following Schwartz [16], we denote by @ and S the
spaces of the test functions on R™ and by 9’ and &’ the spaces of distributions

and tempered distributions respectively. The Fourier transform and the inverse
Fourier transform are defined by

EN@=F@=@ay| ferdx, ek,
and

(FO=(FN-E).
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[s] denotes the integer part of a number s; [s] is an integer and [s]<s<[s]--1.

Differential operators are denoted by D* or (i)“;
ox
“F)y=(~2) f () — DS
O p=( 3 ) S0= i
a=(ay, =, &), la|=a;+ - +a,.

If f is a function or distribution on R® and >0, we define f(-|f) as follows :

fxln=tf(-). xR
Then it holds that
F(fCIONE=(F/ 8.

f*g denotes the convolution of f and g:

(f* @D)={fx—"), g>=<F, g(x—')>=Sf(x—y)g(y)dy .

§2. Preliminaries.

2.1. Spaces of functions and distributions.

The spaces considered in this paper are L?(0<p=c0), H?(0< p <o), BMoO,
Ly (kEN) and A,(s€R). All of them are spaces of functions and/or distributions
on R". We recall the definitions and fundamental properties of those spaces.

DEFINITION 2.1. L?, 0<p<oo, is thé class of all measurable functions f
such that

1/p
IAlr=(] 17017 dx)" <o
L= is the class of all measurable functions f such that

171 z==ess. sup{| f(x)[} <oo.

If ISp=<oo, L? is a subspace of S’. If 0<p<1, we consider L? merely as
a Fréchet space of measurable functions.

We shall define H? following Fefferman and Stein [8]. Let <=8 be a fixed
function such that $(0)=0; for tempered distribution f, define the maximal func-
tion f* by

f@= sup {I(e(- 1D+ O}, xSR™

DEFINITION 2.2. H?, 0<p<co, is the class of tempered distributions f such
that f*€L?. The norm in H? is defined by
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Il z2= /e

It is known that the above definition does not depend on the choice of the
test function ¢, i.e., if we replace the function ¢, then the class H? does not
change and the norm changes to an equivalent one. It is also well known that,
if 1< p<oo, then HP=L? with equivalent norms. Cf. Fefferman-Stein [8].

We recall some characterizations of H?. The first characterization uses the
Littlewood-Paley function. Let y be a function in & with the following properties :

support ¥ {1/2=]§|=2} and

@.1) -
3 q@k)=1 for &+0.

For a tempered distribution f, define the Littlewood-Paley function d(f) as follows:
o 1/2
dr=( 2 1120 pl) T, =R

Then we have the following
THEOREM A. Let 0<p<co. If feH?, then d(f)eL? and

[N =Cli flla?.

Conversely, if f€S" and d(f)L?, then there is a polynomial P such that f—P
€H? and

[ f=Pllar=Clld()lr.

The proof of this theorem can be found in Triebel [21], pp. 167-169.
The second characterization uses the notion of atom. A function f is called
a p-atom (0<p=1) if there is a ball B=DB;, such that

support fCB, |[flr==|B|""?
(| B|=Lebesgue measure of B) and
Sf(x)x“ dx=0  for |al=[n/p—n].

THEOREM B (Latter [11]). Let 0<p=<1. If 2/s are complex numbers such

that %|2j1p<oo and f;s are p-atoms, then i'ljfj converges in H? and
j=1 J=1

/p

glfff Hpéc(gu"lp>

Conversely, if fEH?, then there exist complex numbers {A;} and p-atoms {f;} such
that
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f:

it

Lty and (512,07) " <CLflen

If feH? and f has a compact support, then it is possible to construct the above

decomposition in such a way that @ Bj is relatively compact, where B; is the ball
j=1

corresponding to the p-atom f.

Thirdly we refer to the characterization of H? by means of Riesz transforms.
For a=(ay, -, a,), a; nonnegative integer, define the operator R, by

Ref=a((—i5r) @), reLt
We have the following

TueEOREM C. Let B be a positive integer and p>(n—1)/(n—1+Fk). Then,
FEL*NH? if and only if R.feL*NL? for all la| =k, and

Cllar= 2 1 Rafler=C M flmp,  fELINH?.

This theorem is implicit in Fefferman-Stein [8], pp. 167-168.

DEFINITION 2.3. BMO is the class of all locally integrable functions f such
that

| Fswo=sup|inf {1 BI{ I/t —cldx} |<eo,

where the infimum is taken over all complex numbers ¢ and the supremum is
taken over all balls B.

DEFINITION 2.4. For nonnegative integer &, we set
1£lsg= 2 1D}z
% is the space of all f&€S” such that [[f{e<co.

DEFINITION 25. Let s>0 and s=Fk+e with nonnegative integer £ and 0<e
<1. For a function f of class C*, we set

2, s lDaﬂl?:ﬁiﬂy” b it 0<e<t
I fll%,=
’ | DA F()—2Df((x+9)/D+D (N1 ..
la|2=k i‘ig{ [x—y] } if e=1,

and

(2:2) 1A A= 0 Fllg+1 N5, -
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A, and A, are the spaces of functions of class C* such that | fl,<co or [fla,
< co respectively.

A,, s>0, coincides with the Lipschitz space A(s; oo, o) defined by Taibleson
7207, 1, (cf. Theorem 4, pp. 421-422, and Theorem 10, p. 444, loc. cit.) and with
the Besov space B .. (cf. Bergh-Léfstrom [1], Chapter 6). A(s; oo, o0) or Bl
are defined for all seR. We define A,=/4(s; oo, o) for s=0; as for the defini-
tion of A(s; oo, o), see §6.1.

There is a simple isomorphism between A; and A4,. Set

E>=(1—=¢EN+¢@IE].
Then we have the following
THEOREM D. Let s and t be real numbers. Then the operator
fr— FHEf @)
maps As isomorphically onto A,.

For this theorem, refer, for example, to Taibleson [20], I (Theorem 6, p. 437).
The proof of this theorem is easily established if we use the definition of A,
=A(s; oo, o) given in §6.1.

We give a norm in A, which is equivalent to (2.2).

LEMMA 2.1. If s>0, then there exists a function 09D such that the inequalities
ClAla =N F A+ NS * oo =Cf f L4
hold for all functions f of class C*.
For a proof of this lemma, see §6.3.
The following lemma is used later.
LEMMA 2.2. (i) Let YV be one of the following spaces:
H?(Q<p<oo), LP(1<p=0), BMO, A, (seR), LY(kEN).
Then: if fo(n=1,2, ) and €D and f,—f in D', then
(23) I fliy=liminf | fally .

(i) If fa(n=1,2, ) and f are measurable functions and f,{(x)— f(x) almost
everywhere, then
| fl2<limint | fall .2,  0<p=oo.

PrRoOOF. (ii) is proved by Fatou’s lemma. We shall prove (). If Y=H?,
0<p<co, then (2.3) is obtained by integrating the pointwise inequality

fHx)=tm inf fi(x).
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If Y=L? 1<p=oo, (2.3) is proved by using the converse of Hélder’s inequality ;
see (2.4) given below. The case Y=L¢ is reduced to the case Y=L If Y=
BMO, we can use, instead of (2.4), the following equality :

I fllsaro=sup{I<f, g>] ’gE@, g l-atom},

which is valid for all f€9’ (in particular it holds that, if f=9’ and the right
hand side of the above equality is finite, then f€BMO; cf. §6.2). In the case
Y=4,, s=0, we can easily establish the proof once we see that lim inf [ fall 4y < o0
implies that fn,—f in &’ for some subsequence {f,}, which, however, can be
seen from (i) of Proposition 6.1 (§6.1). Finally consider the case Y=4,, s>0.
The Ascoli-Arzela lemma shows that, if lim inf] £, 4,<o0, then there is a subse-
quence {f,} such that f, and its derivatives of order<s converge uniformly on
every compact set. It is easy to see that

Itim for | g =tim inf] fr L4,

which implies the desired inequality.

REMARK 2.1 [[-12(0<p<1) and -]z (0<p<1) are quasi-norms and |+ {zxo
and | -[7%(s>0) are semi-norms. When 0<p<1, the triangular inequality holds
for [|-[Z» and [|-{5»:

If+glie<l fliZr+igize,
If+eltz=iflEr+lglte.

1/l zo=0 if and only if f is a constant function. [ Fl%,=0 if and only if f isa
polynomial of degree=[s].

2.2. Inequalities.
Hilder’s inequality and its converse: if 1<p=oco and 1/p+1/p'=1, then

24) I flze=sup{I<f, 21| g€ 9, lgl» <1}

for fe9’; if p=1 and p’=oco, the above equality holds for locally integrable
function f.

Fefferman’s inequality: if feH', g BMO and fge L%, then

[ reedx| =Cl gl
Conversely, for ge9’, we have
(2.5) Clglzmo=sup{|<f, 1| fEDNH, | flm=1 =C N glsuo;

in particular, if g=9’ and the middle term of (2.5) is finite, then gebMO. We
have another converse to Fefferman’s inequality :
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(2.6) Clflm=sup{l<f, &1 2€9, lglsuo= 1 CI fllas

which is also valid for f=9’. (2.5) explains the duality ({*)=BMO and (2.6)
explains the duality (CMO)Y =H?, where CMO is the closure of @ in BMO.

The following inequalities explain the duality (H p)’zﬂn,p_n, 0<p<lif 0<p
<1, then, for ge9’, we have

@D Clgly,assun{l<f, 1| fEONH?, | Flar <1 =C g pen

Inequalities (2.5)~(2.7) are proved by using Theorem B. Cf. Coifman-Weiss
[7] (Theorem B in p. 593 and Theorem (4.1) in p. 638, loc. cit) and §6.2 of the
present paper.

2.8. K(X,Y) and HMX,Y).

Let X and Y be spaces of functions or distributions on R™ equipped with
norms or quasi-norms or semi-norms. We define X(X, Y) and SH(X, Y) as follows.

DEFINITION 2.6. For Ke9’, we define

”K”J«X,Y):SUP{%

fe@mxuﬂu¢®.

For meS’, we define

Imllacr=sup{-AZ T fe 00X, 171 r=0]

in other words,
Il sex =1 'mlxcxrs -

H(X,Y) is the space of all K€’ such that |K| ..y <oco and (X, Y) is the
space of all meS’ such that |mllscx,y <oo.
The spaces we shall deal with as X or Y are those in §2.1.

REMARK 2.2. @ is not contained in H? if 0<p=1; it holds that, when 0
<p=1,

.@me:{fe.@lgf(x)x“dx:O for |al=Cn/p—nl}.
By the way, the following result holds (see §6.4):

LEMMA 23. Let 0<p=l, M>n/p and

Xy={fe L=+ {x¥f(x)e L.
Then

XMme’z{feXMlgf(x)x"dx:O for la[g[n/p—n]}
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and
W la?<CIA+1xD¥f(lo - for fEeXunH?.

As a result, |- xz?y and |+l swm?» are semi-norms if 0<p=l. |-lxx 520
and || |lucx 7, s3>0, are also semi-norms. For example, K |xwm?,5=0, 0<p=1,
if and only if K is a polynomial of degree =[n/p—n]; |Klxw? prwor=0, 0<p=1,
if and only if K is a polynomial of degree =[n/p—nJ+1. But we shall call
them norms for the sake of convenience.

REMARK 2.3. Let X be one of the following spaces:
H?P(0<p<oo), LP(1< p=o0), BMO, A,;(s>0), Ly(keN).

Let Y be one of the above spaces too. Suppose that Ke#(X,Y) and Keoy,
(the space of multipliers for &’ ; see Schwartz [16], Chapter 7, §5). Then K= f
is well defined for all f€S’ and a fortiori for all f€X. In these circumstances,
we can conclude that the inequality

(2.8) 1K # flle=lKllxczxnlfilx

holds for all f€X. This can be shown by approximating f€X by functions of
DX and using Lemma 22. If X=H?(0<p<eo) or LP(1=<p<o0), there is no
difficulty in approximating f&X since 9\ X is dense in X (as for the case X=H?,
0<p=1, see Calderén-Torchinsky [3], Theorem 1.8, pp. 104-105). If X=L=,
BMO, A;(s>0) or LY(kEN), then, for any f€X, we can construct a sequence
{fa} C9D such that

fo—f In & and |fallx —Iflx,

which will suffice to prove (2.8). The construction of the above sequence is easy
if X=1L> A,(s>0) or L¥(k=N). As for the case X=BMO, see §6.5.

REMARK 24. If X=H?(0<p<o0), LP(0< p=L00), BMO, A;(s=R)or L (k&N)
and Y=H(0<g< o), LI(1=q=0), A,(teR) or L; (meN), then it can be shown
that every bounded linear operator T from X into ¥ which commutes with transla-
tions, 1. e.

T(fC—yN=(Tf)-—y) forall yeR"
is written as
Tf=K=xf for all fesnX

with some tempered distribution K. In particular, for the above X and Y, the
class (X, V) consists only of tempered distributions. For X=L?(1=<p=<00) and
Y=L%(1=g=oc0), this is shown in [9], pp. 97-98. The same proof can be repro-
duced for various other X and Y since it is based on Sobolev type inequality
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| 71:=C 2 1 D%f Iy

and the fact that the imbedding S (or SNX)G X is continuous.

8 3. Properties of #(X,Y) and M(X, Y).
THEOREM 3.1. The following classes contain only the zero distribution:
K(H?, HY,  0>p>qg>0, p>1,
H(H?, LY,  00>p>¢>0, p>1,
HK(L?, HY, o0zp>¢>0,
H(L?, LY, oozp>q>0,
H(BMO, H?), co>p>0,
HK(BMO, L?), oo>p>0,
H(ds, H?),  s€R, oo>p>0,
KA, LP), seR, oo>p>0,
K(Lg, H?), EEN, oo>p>0,
K(Lg, L?), keN, co>p>0.
If 1=2p>¢>0, then the classes
HK(H?, HY) and X(H?, LY
contain only the polynomials of degree =[n/p—n].

Hoérmander ([9], Theorem 1.1, p. 96) proved that K(L?, L9={0} if cozp>¢q
>1. We shall see that his proof can be applied to the classes in the above
theorem. We define 74, heR", by

(T ) X)=fx—h), x&R™

LEMMA 3.1. (1) If feL? 0<p<co, then
lfzaflor —> 217 fllzp as [h|—>00.
@iy If feHP, 0<p<oo, then
I fEenflur —>2Y2Ifla? as [h]—>c0.
PrROOF. If f has a compact support, then (i) is certainly true since the sup-

ports of f and r,f do not meet when |4]| is sufficiently large. Since compactly
supported functions are dense in L? and the operators f— f+z,.f, hER", are
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equi-continuous in L?, (i) is true for all f= L?, As for (ii), observe that
(FET IS A I @)=F () fF)(x),
(fEea N O)Z | )= T @) = (x)—a(f)(x)]

and hence

(WA PG ASIFZES 0= =7% S FEES F A S A G ] 2N
Thus, using (i), we have

I/ £rn /)t —> 27 f*]7 as |h|—> o0,
which means (ii). This completes the proof of Lemma 3.1.

PROOF OF THEOREM 3.1. Firstly consider the class J#(H?, H?), co>p>g>0.
Suppose that K belongs to this class. Since

K+(f4rnf)=K=* f+c,(K*f),
we have

NEC# froa(K o OIat S 1K ecu? | fHTaf 2P
for all feD\H? and all heR™ Let |h|— co. By Lemma 3.1, we have

1K = fllga =222 K | e ?, 2o | £l 22, JEDNH?.

Since 2M?P-14<], the above inequality is possible only if | K| xz? z%=0. Thus
HK(H?, H% contains only trivial elements if co>p>4>0. Next consider the class
HK(d,, H?), s&R, co>p>0. Suppose that K belongs to this class. Let co>#>p,
r>1 and G be any element of the class K (H", A,) with compact support. Then
KxGeX(H", H?) and hence K G=0 by what was shown above. In particular
K=+ G=0 for every G=9. Hence K=0. Thus (4, H?)={0}. The other
classes are treated in a similar way. This completes the proof of Theorem 3.1.

THEOREM 3.2 (Duality relations). The following equalities hold ; in each case,
the norms of the corresponding classes are equivalent.

(1) K(H?, HY=H(BMO, A,), 0<p<l, s=n/p—n.

(i) K(H?, LY=X(LY, 4)), 0<p<l, 1=g<oo, s=n/p—n, 1/g+1/¢'=L
(ili) H(H?, BUO)Y=X(H', ), 0<p<l, s=n/p—n.

(iv) K(H?, A)=H(H, 1), 0<p<l, 0<q<l, s=n/p—n, t=n/q—n.
(v ) J(H, HY=X(BMO, BMO).

(vi) H(HY, LY=K(LY, BMO), 1=£q=co, 1/¢+1/¢'=1.

(vil) (L', HY=X(BMO, L=).
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(viii) K(L?, LY=H(LY, L?"), 1=p=Zoco, 1=¢=co, 1/p+1/p'=1,
1/g+1/qg'=1.
Proor. Let K(X, Y")=x(Y, X’) be one of the equalities in (i)~(viii). The

inequalities in § 1.2 show that

Clhlly=sup{i<h, @ llgeanY, lgly=1} =C'lAly
and
Clhl - Zsup{|<f, W lIfednX, Iflx=1} =Cl|Al x.

From these inequalities we obtain

ClKlscxprSsup{|<K#f, g>1} EC Kl xcxwn
and

CliGlxw xnSsup{l<{f, G+ g} =CN Gz, x5
where both the suprema are taken over

{(fs DIfeDNX, gedNY, If1x=L llgly=1}.

Combining the above inequalities and the equality

Kxf, o=(f, Kxg, K=K—-),
we have
ClK N scxrn SIK | xer, xn ZC 1K | xcxvms

which is the desired inequality since

K e, zn =K llecr, x5 »
This completes the proof.

THEOREM 3.3. (i) Let Y be one of the following spaces:
HY, LP(1<p=o0), BMO, A;(s€R), Ly (k=N).
Then K(LY, V)=Y with equality also of the norms.

(1) (LY, LY (=H(L>, L™) coincides, with equality also of the mnorms, with the
space of all finite complex Borel measures.
(i) M(L?, L®=L> with equality also of the norms.

Proor. As for (ii) and (iii), see Hérmander [9], Theorems 1.4 and 1.5, pp.
100-101. Let Y be one of the spaces mentioned in (i). Then the following ine-
quality holds:

1K= fly=IK el filz, fED.
Hence K(L!, Y)Y and
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Kl xcrm =Ky .
Conversely, suppose that Kex(L?* Y). Then
B.1 loC 1) * Klly 2K k21w >0,

where ¢ is a nonnegative function in @ such that $(0)=1. Since ¢(- ) * K tends
to K in 9@’ as t—0, we have

3.2) VKl <timn i (- 1)+ Ky

by Lemma 2.2. From (3.1) and (3.2), we see that KeY and

Ky =K lsxcwsps -
This completes the proof.
The next theorem reflects the characteristic properties of H? stated in
Theorems A and C.

THEOREM 3.4. Let 0<p=g<oo. Then
H(H?, H)=8"NH(H?, LY);
the norms of K(H?, HY) and J(H?, L% are equivalent.

COROLLARY 3.1. X(BMO, BMO)=x(L>, BMO);
K(BMO, Ay=H(L>, A1), s>0;
the norms arve equivalent.

Corollary 3.1 is a direct consequence of Theorems 3.2 and 3.4.

ProOF OF THEOREM 3.4. The inclusion #(H?, H)CS' has been mentioned
in Remark 2.4. The inclusion K(H?, HYCK(H?, L9 is obvious. We shall prove
the converse inclusion S'N\K(H?, LYCH(H?, HY. (This is obvious if ¢>1 since
Li=H?% g>1. Proof is needed in the case 0<g=1.) Suppose that K&S'N
H(H?, LY. The inequality

33 VK = floe=M fllar, M=|K}xwu? 1%,

holds for all feS$\H?F, which can be seen by approximating f by functions of
DNH?. Let y be the function mentioned in the definition of the Littlewood-
Paley function d(f). Let feSNH? and {e,]k=0, =1, =2, -} be any sequence
consisting of 41 and —1. Take any positive integer N and apply the inequality
(3.3) to the function

N

k:Z_)Nek}fk * feSNH?,
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where y,=y(-12%). Then we have

P exle v Kx 0| dx= Mo
k=-N

N
£ erens

q
u?’

Now we shall use the fact that

L&, extsl un ar, =

xcHP. 5Py

with C independent of N and the (41)-sequence {e;} ; this fact can be shown by
using Theorem E below. Thus we have

[| & st Kx 00| dx ey £,

We average both sides of this inequality over {¢,} ={£1}? with respect to the

probability measure on {£1}Z which is the direct product of the measures g such
that

p({+1D=p({-1})=1/2.
Then Khintchine’s inequality (see Zygmund [23], Chapter V, Theorem (8.4)) gives
(.2, 10 K P o) ax (e ny i
with C’ independent of N. Thus we obtain
ld(K * Hllee=C" M| fl x>
Hence, by Theorem A, there is a polynomial P such that K * f—P<H? and
1K s f—Pllua=C" M| fll z?.
But P must be equal to zero since K * f& L% Thus we have proved that
VK = flat=C" M flinr,  fESNH?T,
which means that Ke X(H?, HY) and
1Kk, at SC"M=C"Kllxu?,1%-

This completes the proof of Theorem 3.4.

THEOREM 3.5. (1) If 1=p=oo, then H(L?, LP)CK(L? L% and
1 K llecze, 2o SHK | xr? 1o

(1) If 0<p=1 and KeK(H?, H?), then there is a polynomial P of degree=
Tn/p—n] such that K—Pex(L? L?) and

NK—Pllxcze,zo SCIK L xcu® u?s.
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(i) is proved in [9], Corollary 1.3, p. 101. For the proof of (ii), we use the
following Lemmas.

LEMMA 3.2. Let X be any space of functions or distributions and Y be one
of the following spaces:
H?(0<p<o0), L?(0<p=00), BMO, A;(s€R), LF(REN).
If K,(n=1, 2, ---) and K are distributions and K,—K in 9, then

| Kl e,y =lim inf ]| Kl kex 3o

LEMMA 33, If 0<p<co and t>0, then
Im@ N scm?z®>=lmllaw? a?.

Lemma 3.2 can be proved by using Lemma 2.2. Lemma 3.3 is easily deduced
from the definitions once we use the equality

(3.4) g2+ £ | Ol o= f [l a2,
PROOF OF THEOREM 3.5. By the equality (3.4) and the inequality

A& =Cll Fllun| &l no-m
(cf. §6.4), we obtain

(3.5 |R@E)tm20 f(18)| SCIK | scu? a1 f | ? ] €] M/27"

with C independent of f and #>0. We fix a function feSnH? such that &
=1 on {|&]=1}. Then, if we set #=1/|&| in (3.5), we obtain

(3.6) | K@ =ZCIK | sca?,mpy,  E#0.

We set
KFS”"I(K'(E)Q&(E/E)), ¢>0.

Then, from (3.6), we see that lai{r.} K, exists in &’ and
(3.7 Him Kl ecze, o SCI KNz ?. 2>
On the other hand, Lemmas 3.2 and 3.3 show that

(3.8) Mim Kl eczr?, s SCIK | scar?, 7

Set P=K—lim K.. P is certainly a polynomial since support P {0}. (3.8) shows
that Pe X(H?, H?) and hence degree P<[n/p—n]. Thus (3.7) gives the desired
inequality. This completes the proof.

We shall refer to the following Fourier multiplier criterions™for H? and ..
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THEOREM E. Lef 0<p<2 and k=[n(l/p—1/2)1+1. If m is a bounded func-
tion which is of class C* in R™\{0} and if

1(7985—)“m<s>1§<z4|5|-1w for lal<k
with A=1, then meMH?, H?) and
”7771“914(1{17,1117)éCAﬂ(llp—ljz).

THEOREM F (Fractional integral). Let 0<p<oo, 0<pu<n/p and 1/¢g=1/p
—u/n. Then the operator

fr— (1§ &)
is well defined on H? and bounded from H? to H<

THEOREM G. (i) Let a>0, b>0, 0<p<2, na(l/p—1/2)=b and k=
[n(l/p—1/2)1+1. Suppose that m is of class C* on R™, m(&)=0 for |£|=1 and

(39 () m@| =11 cagl =y for lal=k
with some constant A=1. Then meM(H?, HP) and

| mll e, ey SCA =12,

(iiy Let ¢>0, d>0, 0<p<2, nd(l/p—1/2)=c and k=[n(l/p—1/2)]+1. Suppose
that m is a bounded function, of class C* in R™\ {0}, m(&)=0 for |£1=1 and

(310) () m@|<leiatel == sor Jal=h
with some constant A=1. Then me M H?, H?) and

Iml oy cap, upy SCAPH 27D,

THEOREM H., X(A,, A)=A(t—s; 1, 00); in particular, the class K(A,, A:)
depends only on t—s.

As for the space A(s; 1, o), see Taibleson [20]. We shall also refer to this
space in §6.1.

THEOREM 1. Let t€R and k=[n/2]+1. If A=1, m is a function of class
C* and

‘(7;&7>a7n(5)l§(1+|§|)-t(A(1+l§|)—1)1m for la| <E,

then meMA,, Asye) and

91l sy, gy SCAM2,



Singular Fourier multipliers 283

As for the proofs of Theorems E~I, see the following papers. Theorem E:
Calderén-Torchinsky [3], pp. 163-171; Miyachi [13]. Theorem F: Calderdn-
Torchinsky [3], p. 162. Theorem G: Miyachi [13]; see also § 6.6 of the present
paper. Theorem H: Taibleson [20], II. Theorem I: Triebel [21], pp. 30-31,
pp. 93-94; cf. also the proof of Theorem 5.1 of the present paper.

§4. Results on the singular Fourier multipliers.
We shall consider the Fourier multiplier m, ;:
ma,o(§)=¢(&)1E] exp ({|£]%), E=R", a>0, bER.

The mapping properties of this Fourier multiplier between the spaces H?, L, L=,
BMO, A, and LY are given in Theorems 4.1~4.5 and Corollary 4.1. In this sec-
tion, p and ¢ denote positive numbers, s and ¢ real numbers and % positive in-
teger unless specified otherwise.

THEOREM 4.1. If 0<a<1 or a>1, then the following facts hold.

(I-1) MesEMH?, HY iff® p=q, 1/p+1/¢=1, 1—a)/p—1/¢=b/n—a/2 or p=
g, 1/p+1/g=1, 1/p—1—a)/q<b/n+a/2; in particular, mg < M(HP, H?)
if |1/p—1/2\<b/(na); ma s HMH,, HY=HBMO, BMO) iff b=na/2.

(1-i1) My E ML, HY=MBMO, L=) iff b>na/2.
(i)  mg e ML, LY, 1<g<co, iff I—(1—a)/g<b/n+a/2.
(I-iv) Moo= ML, LY=HL>, L=) iff b>na/2.

AI-1) Ma o€ MH?, BMO) iff 0<p=1, 1/p=b/n+a/2 or 1<p<eo, 1—a)/p=
b/n—aj2.

(AI-ii)  ma s HMHP, L) iff 0<p=], 1/p=b/n+a/2 or 1<p<oo, (I—a)/p<b/n
—a/2.

(A-iil)  ma,e LY L= iff bzn—na/2.
(A-iv)  me, =ML, BMOY=SWH", L= iff b=n—na/2.

(M=) me e MH?, Ady) iff 0<p=1, 1/p=(b—s)/n+a/2 or 1<p<oo, (1—a)/p
Z—-s)/n—a/2.

(ll-i)  me e MHP, LY) iff 0<p=1, 1/p=(b—k)/nt+a/2 or 1<p<co, (1—a)/p
<(b—k)/n—a/2.

(MI-iiy  mg =MLY Ay) iff b—s=n—na/2.

b iff=if and only if
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(=YY mg e H(LY, LT iff b—k=n—na/2.

THEOREM 4.2. The case a=1.

(I-D) my,EMH?, HY iff p=q, 1/p+1/q=1, 1/p—n/q=b—(n—1)/2 or p=gq,
1/p+1/q=1, n/p—1/q<b+(n—1)/2; in particular, my,& MH?, H?) iff
(n—=D|1/p—1/2|1£b; my, = MH, HY=HBMO, BMO) iff b=(n—1)/2.

4D my,e UL, HY=SBMO, L=) iff b>(n—1)/2.
(i) my,e (LY, L9, 1<qg<oco, iff b—(n+1)/2>—1/q.
1-iv)  mi,e LY, LY=SH(L>, L=) iff b>(n—1)/2.

(II-1 My EMHP, BMO) iff 0<p=1, n/p=b+(n—1)/2 or
—(n—1)/2.

U-i)  m,eMH?, L®) if 0<p=1, n/p<b+(n—1)/2 or
—(n—1)/2.

({IHii)  my e ML, L) iff b>(n+1)/2.
(I-iv)  my,e LY, BMOY=SH, L=y iff b=(n+1)/2.

(-)  me,eMH?, A) iff 0<p<1, n/p<b—s+(n—1)/2 or
—s—(n—1)/2.

(i) my e MH?, LY) iff 0<p=<1, n/p<b—h+(n—1)/2 or
—k—(n—1)/2.

(MI-i)  ma e M LY, Ay iff b—s=(n+1)/2.
(HI-iv)  my,eM(L, L) if b—k>n+1)/2.

THEOREM 4.3. (I) The case 0<a<1 or a>1.
I-i) Me s EMBMO, As) iff b—s=na/2.
(I-ii) MapEMBMO, LY) iff b—k>na/2.
(-1 me e ML™, A) if b—s=na/2.
d-iv)  me,eML>, LY) iff b—k>na/2.
() The case a=1.
-1 mipEMBMO, Ay) iff b—s=(n—1)/2.
I-i)  my,eMBMO, L) iff b—k>(n—1)/2.
(Ui my ML=, Ay) iff b—sz=(n—1)/2.
(-iv)y o mupe ML, LY if b—k>(n—1)/2.

1<p <o,

1< p<oo,

1<p<oo,

1<p<oo,

1/p<b

1/p<b

1/p=b

1/p<b
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THEOREM 4.4. (i) The case 0<a<lora>l:mersM(As, A)iff t—s<b—na/2.
(i) The case a=1: my,=MA,, A;) iff t—s=b—(n-—1)/2.

In the next theorem, we use the following notation :

Tanf=F " (masE)F(E))

and
Xk:X('IZ—k)y kEZ,

where y is a function in & satisfying (2.1).

THEOREM 4.5. Let >0, a1, b>0 and 1/p—1/2=b/(na). Then

o ilp
(4D (B, @ Tasn]7dx) "<Clfl o

COROLLARY 4.1. Suppose that a>0 and a+1. Then: (i) ma,=MA;, BMO)
iff —s=b—na/2; (i) mer=sMA;, LY iff P—s<b—mna/2.

REMARK 4.1. Theorem 4.5 improves (I-i) of Theorem 4.1 in the case 1/p=
1/¢=1/2+b/(na) since |To,fll yp=d(Tasf)l;» (Theorem A) and [d(Ts /) 0=
(the left hand side of (4.1)). Hence, by interpolation and duality, we can obtain
the corresponding improvements of some of the results in Theorems 4.1, 4.3 and
4.4. One of them is stated in Corollary 4.1. (i) of Corollary 4.1 is indeed an im-
provement of (i) of Theorem 4.4 since the following inequality holds:

11 4=COUA—=D2f -1/l w0y  for any teR,
which can be easily shown by using Proposition 6.1 (§6.1).

REMARK 4.2. We can prove similar results if we replace m, ; by

P& {0:(8) exp (14.(E)")+-b:(8) exp (19:(E))},

where b,(§) and b(&) are smooth homogeneous functions of degree —b and ¢,(§)
and ¢,(£) are positive and smooth homogeneous functions of degree 1 such that
the Gaussian curvature of the surfaces

€le£8=1, Jj=1,2,
never vanish ; ¢f. Miyachi [14].

We can illustrate the main results of Theorems 4.1, 4.2 and 4.3 in simple
graphs. In order to do this, we set

A, if <0
X,={ BMO if p=0
Hue  if p>0
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and graph the set
Dos=1p, 0) | p20, 0 ER, ma & MX,, X}

in (p, o)-plane. Here we shall give the graphs of D,, in thecases 0<a=1
(Figures 1 and 2) and a=2 (Figure 3).

2

RS
e [ e o e e i e

Figure 1 (0<a=1).
In the case 0<a <1 and 0<b<n—na/2,
1 b 1 b 1 b 1 b
A—(7+W’7+W> and B_<§+2n—na’7_2n—na>'

In the case a=1 and 0<b<(n+1)/2,

1 b 1 b
A:<%+ nb—l’7+ n——l) and B:<%—+—nb:l_’-§— n+l>'

We observe two facts from Theorems 4.1, 42 and 4.3. Firstly the results
have certain discontinuity at a=1. More precisely, while the set D,, depends
continuously on a if 0<a<l or a>1, D,, does not coincide with the limit of
Dyy, a—1:

lim Da,b:ﬁ?’l} D,y pDyy, €Dy

atl a

There may be some connection between this fact and the singularity of the kernel
Ko y=F Ym,,). The singular support (=the smallest closed set outside of which
a distribution is smooth) of K, , is as follows:

SS(K,.00={0} if 0<a<l,



Singular Fourier multipliers 287

Figure 2 (0<a=1).
In the case 0<a<1 and b>n—na/2,

A:<%+l‘ l"l‘%) and C:(—z-—l-'a—,()).

na’ 2
In the case a=1 and b>(n+1)/2,

A= bet) e eo(be 250 0),

2

SS(Kyp=1{x | |x|=1} if a=1,
SS(Ky )= if a>1
(cf. Proposition 5.1 in §5).
Secondly we compare the results with that for the multiplier
mo(E)=P&)1E17",  EER", b>0.
The mapping properties of this Fourier multiplier is well known (cf. Theorems I
and [ in §3); the set
DO,b: {(10, U) I ‘020: UER: mO,DEL%l(Xp) Xﬂ‘)}

is given in Figure 4. It is seen that D, ;& Dy and Dy y D Doy if 1/2<p<1/2+b/n,
then

{GER l ma,beﬂ(Xpr Xa)} 2{06R I mO.bEﬂ(Xp; Xa)};
which means that the oscillating factor exp (z|£]%), a>0, add regularity to func-
tions of H? if (1/2-+6/n)'<p<2. In the case a=1, this fact has already been
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2.
) and C=<%+l, 0).

Figure 3 (a

b
2n

_l_

b 1
T Y

=t

0.

Figure 4 (a



Singular Fourier multipliers 289

pointed out by Strichartz [19].
Theorem 4.5 and Corollary 4.1 lack the results for the case a=1. We leave
the following problem unsolved :

PROBLEM. Prove or disprove a fact corresponding to Theorem 4.5 and Corol-
lary 4.1 in the case a=1.

§5. Proof of Theorems 4.1~4.5 and Corollary 4.1.

In order to prove Theorems 4.1~4.5 and Corollary 4.1, it is important to
know the behavior of the kernel K, ,=% Y(mq,), which is given in the following

PROPOSITION 5.1. (i) When 0<a<1 and bER, K, has the following behavior.
Ko is smooth in R"\{0} and, for every § and N>Q,

(2 Y Kastr=00x1")  as Ixl—=o0.

If k is a nonnegative integer and b—k>n—na/2, then Kqis of class C* through-
out R*. If b—|B|=n—na/2, then

—7ix \B b~181-n+nal/2 .
] Y ix) e exp (B x| )

(5.1) (Y Kestmr=4(

+0<lxlb—lﬂ|;—n:na/2)+E(x) as x—0,
where
”Zl ——%)(l—a)*”a-—bj_;@aﬂ-/z ,

B=qa%*"*(1—a)

A=exp <

and E(x) is a smooth function. If the right hand side of (5.1) is an integrable
function in a neighborhood of the origin, then the distribution DK, belongs to L.

(i) When a>1 and b=R, K,, has the following behavior. Kg, is smooth
throughout R™ and

T-a exp GB| x| */@"%)

—7x \# b-1Bl-n+nal2
Yl

(Y s

lx]
b-18l-n+nal2
-i—o(lx]_ ) ) as |x|—co,
where
; —b+181+n/2
A’=exp( “Z” )-(a—l)-I/Za———+1-Z
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and B is the constant defined in (i).
(iii) K., beR, has the following behavior. K., is smooth in R™\{|x|=1}
and, for every B and N>0,
B
(LY Ksmr=00x1"")  as |xi—es.

If b—|Bl<(n—+1)/2, then

62 () Ksto=a () amal oo
Fo(|1—|x||P1B-maniyy g |x|—1,
where
1 r(—b 1
A/,:JZE eYp(m( 2+n))-F(—b+|ﬁ|+ n;— )

If the rvight hand side of (5.2) is an integrable function in a neighborhood of
{Ix]=1}, then the distribution D*K,, belongs to L*. If b—|Bl=(n+1)/2, then
the distribution DPK,, belongs to L* and

(57) Eastor=a( =) og G—Ix | +0+0M)  as [x]-1,

where

A= «/;f ex

T

. ( in(n4+3) )

CoRrROLLARY 5.1. () Let 0<a<l or a>1. Then:
(I-1) DK, ,eH?, 0<p<oo, iff (b—I|fl—n+na/2)p>—n(l—a);
(I-ii) DEK,,eL' iff b—|Bl—n+na/2>—n(l—a);
(I-il) DPK,,€BMO iff b—|Bl=n—na/2;

(I-iv) DPK,,eL> iff b—|Bl=n—na/2, i.e, DEK,, belongs to L™ at the same
time as it belongs to BMO;

(I-v) DFK,,ed,, s€R, iff b—|pl—s=n—na/2.

an In the case a=1, we have:

1I-) DEK, = H?, 0<p<oo, iff (b—|Bl—(n+1)/2)p>—1;
(I-i)  D#K,,eL* iff b—|pl—(n+1)/2>—1;

(Il-iii) D2K,,eBMO iff b—|Bl=zn+1)/2;

(l-iv) -~ DPK,,eL> if b—|pl>n+1)/2;
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(I-v)  D?Ki,ed,, seR, iff b—|fl—s=(n+D/2

REMARKS ON THE PROOF OF PROPOSITION 5.1 AND COROLLARY 5.1. In the
case B=0, the estimates in (i) of Proposition 5.1 are proved by Wainger [22],
Part II, pp. 41-52. We can derive the estimates for f+0 from those for B=0.
Expand the polynomial (:6)f as

k ;
(i&)P= 2 [§19PL8),

where k=[]|p]/2] and P;is a homogeneous harmonic polynomial of degree | §{—2j
(see Stein-Weiss [18], p. 139), then we have

53) () K= 5,3 1P 0D

M=

PRImRIG L gy (g p-2)(| 2 DPKx),

j=1
where #,,5; 18 the function mg ,-»; 0N R»+2181-47 (we assume that the function

¢(&) depends only on |&]), Faiap-4 denotes the inverse Fourier transform on
Rn+2u‘3|—4j and

gﬁizlﬁt—4j(ma.b—zj>(l x])
shall be interpreted as the function g(lx]), x€R", with g such that
g(lx ‘):g;LQIﬁl—4j(7%a.b-2j>(x> , x € RrHupi-ii ,

(see Stein-Weiss [18], Theorem 3.10, p. 158). We apply the estimates for =0 to
each term of (5.3) and then obtain the desired estimate for 8+0. The result is
that the main term in the asymptotic formula for (9/0x)?K, (x) can be obtained
by formally differentiating the asymptotic formula for K, (x).

In the case =0, the asymptotic formula in (i) of Proposition 5.1 can be
found in [13], Lemma 4, p. 174. The case f+0 can be reduced to the case =0
by using the spherical harmonic expansion as above.

We shall show that K, , is smooth throughout B* if ¢>1. It will be sufficient
to show that

5 e (p(5)1 &) exp (i121)

is continuous in {lx]<aM®*/(44/7 )} for all smooth homogeneous function f(&)
and all M=1. Let {p3l;=1,2, -, n} be a partition of unity with the following
properties :
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¢5's are smooth homogeneous function of degree 0,
2@+ Zes@=1  for £20,
support ¢7C {£&,2 [£]/(2v/n )}

We decompose (5.4) by using this partition of unity:
7 (g(5)7® exp (il 1)

= 3 575(g(5)er @ © exp i1€1)

Jj=1

n ~ E _ . .
+ 5 #(4(57)er@r @ exp (161).
By a limiting argument it is easy to see that the following formal integration by
parts is legitimate if |x|ZaM* /(47 ):

()7 (©) exp (110

— -n/2 E + 1 0 ¥ N a .
=y ()@ r qgraree iy g o (el +E- e

= (e ey $Gpeere)]
Xexp (((|§]*+&-x)dé&.

The last integral is absolutely convergent and hence continuous in x if N is suf-
ficiently large. Thus we showed that K, , is smooth throughout R"® if a>1.

(iii) of Proposition 5.1 can be found in [14] (c¢f. Proposition 2 and its proof
loc. cit.).

The estimates in Proposition 5.1 enables us to see when DfK, , and its Riesz
transforms R DK, (=(—1)'“D**EK ... belong to L?. Thus, by Theorem C,
we can prove Corollary 5.1 except (I-iii, -v) and (II-iii, -v).

Proof of (I-iii) and (I-iii) of Corollary 5.1. It is known that, if f€BMO,
then exp (6|f(x)]) is locally integrable for sufficiently small 6>>0 (John-Nirenberg
[10D) and |f(x)|{(1+]|x])™ = L? for every ¢>0 (cf. Fefferman-Stein [8], pp. 141-
142). But, from the asymptotic behavior of DfK,, given in Proposition 5.1, we
see that

S111<2exp @I DPK o p(x))dx =00 for all ¢>0
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if 0<a<l, b—|Bl<n—na/2 or a=1, b—|B]<(n-+1)/2 and that

SRnlDﬁKa,b(x)l(l—l— |x|) " *dx=c0 for sufficiently small ¢>0

if a>1 and b—|f|<n—na/2. Hence DPK,,=BMO for those q, b and 5. This
proves the “only if” parts of (I-iii) and (II-ii). The “if” part of (I-iii) is evident
since DPK, = L” for a, b and 8 mentioned there. In order to show that D#K,,
e BMO for b—|B1=(n+1)/2, it is sufficient to show that K z+12E€BMO since

DK =a((i ¢

B
ZW) |5|”bﬂ’gmnm/27711,<n+1>/2(5)>

and

_E_ B —b+1Si+(n+1)/2
$@(izp) 1€l
is a Fourier multiplier for BMO if —b+|p|-+H(n-+1)/2=0 (Theorem E). From
(iii) of Proposition 5.1, we see that

Ky avn n(x)=Ag(x) log|1—| x| [+6(x),

where ¢ is the characteristic function of the ball {|x|=2} and §< L= Thus we
can claim that K, (i€ BMO once we show that

o(x)log|l—|x|{eBMO.

But this can be shown by slightly modifying the calculations given by John and
Nirenberg in [107, pp. 416-417, where it is shown that log|x | e BMO.

Proof of (I-v) and (II-v) of Corollary 5.1. The “if” parts are derived from
(I-iii) and (II-iii) by using the fact that ¢(&)|&|*eM(BMO, A;). (This fact can
be seen from Theorems D and F by using (i) of Theorem 3.2 and Lemma 2.1.)
In order to prove the “only if” parts, we utilize the fact that ¢(&)|&1teM(A;, A;s-)
(Theorem I). Using this fact, we sce that DPK, ,= A, implies that D#K, .4,
and hence that DK, ,..€L* for all {<s, which is possible only when a>0, a+#1
and b—s—|fl=n—na/2 or a=1and b—s—|B|=(n-+1)/2. This proves the “only
if? parts of (I-v) and (II-v). It is also possible to prove the “only if” parts of
(I-v) and (II-v) by direct calculations. For example, let ¢>1 and 0<s<1. The
asymptotic formula in (ii) of Proposition 5.1 gives

Ko (ZZ2FEN 1 0, 0) K (P57 0, 0)

2 )(—b+n—na/2)/a

B

:—2A’<

+o(morn-nainiay as m—oo,

On the other hand
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as m-—oo,

(Zn-mB_}-n- )Ca—x)/a _<27En )(a—-l)/aN a(-l—]_ (27;71 >—1/a%

Hence, K, ,=4; implies that m¢o+r-re//e=0Q(p~3/%) as m—oco or —b-+n—na/2
<—s.

Now we go to the

PROOF OF THEOREMS 4.1, 4.2 AND 4.3. The following results are direct con-
sequences of Corollary 5.1 (cf. Theorem 3.3): (I-ii, -iii, -iv), (II-iii, -iv) and (III-
iii, ~iv) of Theorems 4.1 and 4.2; (I-iv) and (II-iv) of Theorem 4.3. The other
results are, via interpolation and duality, reduced to Propositions 5.2, 5.3 and the
counter examples which we shall give below. The duality relations are given in
Theorem 3.2. As for interpolation theorems, see Calderén-Torchinsky [3], pp.
135-162, and Bergh-Léfstrom [17, §6.4, pp. 152-153. We remark that as for the
interpolation between /;-spaces all we have to use is the particular simple result
[L>, AJeC Ass.

Before we state Propositions 5.2, 5.3 and the counter examples, we add two
remarks. The first remark concerns with the space A,. By Theorem D, the
results for A, s=0, can be reduced to those for A, s>0. If s>0, then, by Lemma
2.1, it holds that me . M(X, A,) if and only if me M(X, A,) and aEm&yeMmX, L),
where ¢ is as mentioned in the lemma. But m=m, ; obviously satisfies the latter
condition if X=H? (0<p<o0), L', L* or BMO since F HpEm, E))ESNH™.
Hence, for those X, mg = MX, A,) if and only if m, e MX, 4,). Thus we can
utilize the duality relations of Theorem 3.2, which are given for the /L-spaces,
to obtain the results for the A,-spaces. The second remark concerns with the
space Ly. Let X=H? 0<p<oo, or BMO and consider the class H(X, Ly). Set

O=L—=gE)+ )¢l

If &*m@eX, L), then &m@eMmX, L) for all |fI<k since &F/<KE*Fe
X, X), |BI=Fk, by Theorem E. Conversely, if £&fm(&)e (X, L=) for all | B <k,
then <&*m(&)eM(X, L=), which can be seen from decomposing <&>*m(€) as

<E>’*m(S):(l~¢(€))¢(E)m(5)+¢($)klﬁ|2:) J sEEmE),
where fz's are smooth homogeneous functions of degree 0 such that
= Saesr=1e1

and ¢ is a smooth function (1—¢)¢ and ¢*fs=M(X, X) by Theorem E). Thus,
for X=H?, 0<p<oo, or BMO, it holds that me H(X, LY) if and only if <&>*m(&)
e M X, L™). This fact will simplify the proof of the results for Ly. (Note that
this remark holds also for X=/, but not for X=L* or L*=)



Singular Fourier muliipliers 295

Now we shall continue the proof of the remainder parts of Theorems 4.1~
4.3. The “if” parts are obtained by interpolation and duality from the key results
of the following three types:

nia,be‘%(Hpoy HPO) ’ O<p0<2’
MapSMLPL, LPV),  1<p:<2, /pot1/p/=1,
M S MHP2, L™), 0<p.=1,

which are given in the following propositions.

PROPOSITION 5.2. (i) Let 0<a<l or a>1. If b>0 and 1/p,—1/2=b/(na),
then mg = JH(H?o, HP?),

(i) The case a=1: if n=2, b>0 and 1/p,—1/2=0b/(n—1), then mi,<
SH, H?oY: if n=1 and b=0, then m,,=HH?, H?) for all p>0.

PrROPOSITION 5.3. () Let 0<a<1l or 1<a<2ora>2. Then: (I-) if 0=b=
n—na/2 (when 0<a<l or 1<a<2) or 0=b=n—na/2 (when a>2) and 1/p,=
1/2-4-b/@n—na), 1/p/=1/2—b/(2n—na), then my,=M(L*, L?v); (I-ii) if b>
n—na/2 and 1/p,=b/n-+a/2, then mg, = MH?2, L™).

(I) The case a=1; (1) if 0=b<(n+1)/2, 1/p,=1/2+b/(n+1) and 1/p,/=
1/2—b/(n-1), then m,,c ML, L2vy; {1-ii) if bz=(n-+1)/2 and 1/p.=b/n-+
(n—1)/2n, then my,<=M(H?2, L=).

() The case a=2: (lI-1) ms =ML LONMLY, L™) and hence msoE
S(L?, L?) for 1=p=2 and 1/p'=1-1/p; (i) if b>0 and 1/p.=b/n+1,
then my = M(HP2, L*).

(i) of Proposition 5.2 is due to Fefferman and Stein [8] (the case 0<a <1 and
po=1), Coifman [6] (the case 0<a<l, po<1l and n=1), Miyachi [13] (the case
0<a<l, po<l and n=2 and the case ¢>1) and Sjslin [17] (the case 0<a<l,
po<1 and n=2). (ii) of Proposition 52 is due to Peral [15] (ps=1) and Miyachi
[14]. As for the proof of Proposition 5.2, see [13] and [14].

PrROOF OF PROPOSITION 5.3. We shall give the proof of (II). (I) and (III) can
be proved in a similar way. Note that my . H(L?, L% and my,rip S MHY, L™),
the latter of which is seen from the fact that K in€BMO ((II-iii) of Corol-
lary 5.1). Consider the following family of Fourier multipliers:

m(z; E)=¢(&)|§]~m#belzetl - g<Rez=<l.
From the above results for 1, and m, ui5s2 and the fact that, for yER,

gL, LY, 1€V aaem=1
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and
[El'vea Y, HY, €1 gmnanSCA+ |y )2,

the latter of which is shown by Theorem E, we see that, for y&R,

miy; yeMLE LY,  mEy; Macen=<C
and
m(l+iy; HeMmH, H), M4y ;5 Mg, zn=CA+-y[)*2.

Then applving the complex interpolation theorem (Calderén-Torchinsky [3], Theo-
rem 3.4, pp. 151-152), we obtain

mt: YeML®, [P,

where 0<t<1, 1/p®)=1—18)/2+t/1 and 1/p(t)’=1—1/p(#). This proves (I-i).
In order to prove (II-ii), we rewrite m,; as

M1,o(E) =My cnanyoE)| E] TETCRTDIZ

We have ny, nennEM(H?, L=). On the other hand, if b>(n+1)/2 and p, is de-
fined as in (II-ii), then |&|0*@*02e g(H?P2, HY) (Theorem F). Hence m,,=
FM(HP2, L*), This completes the proof of Proposition 5.3.

REMARK 5.1. The result (II-i) of Proposition 5.3 is due to Strichartz [19].
The proof given in [19] uses L*-L= estimate but does not use L-BMO estimate;
as a result it needs delicate formulae of Bessel functions and is not easily gener-
alized. Our proof given above which is based on L*-BMQ estimate permits some
generalizations as we mentioned in Remark 4.1. Brenner [2] gave another ele-
gant proof of (II-i) of Proposition 5.3 and also obtained some generalizations.
The proof of Brenner is based on the Littlewood-Paley theorem (Theorem A).

Now we have established the “if” parts of Theorems 4.1, 42 and 4.3. We
shall defer giving the counter examples until the end of this section and set about
the proof of Theorems 4.4, 4.5 and Corollary 4.1.

PROOF OF THEOREM 4.4. The “if” part of (i) of Theorem 4.4 can be proved
by applying the following theorem which is a variant of Theorem I

THEOREM 5.1. Let a>0 and t€R. Suppose that A=1, m is a function of
class C™'2% on R™ m(§)=0 for |E1=2 and

() m©|zig1- e aigioy s for lal<tn/2141

Then me M Ad,, Asyy) and

Nl seca, gy p =CA™,
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where the constant C depends only on a, s, t and n.
ProoF. By Theorem H, all we have to show is that
lamll ace; 1.0y SCA™E,

or, according to the definition of A(¢; 1, o) (see §6.1), that

(5.5) WF*m0| 1 =CA™®
and
(5.6) Sup {rtlx(- 1r*Fml 21} <CA™®

(as for the functions # and y, see §6.1). (5.5) is obvious since (F'm)*§=0. We
shall prove (5.6). We have

[(a%)“<m<5>z<r5>> <Crineli(4r-atiye,|a|<[n/2]+1,

and hence
[(amre2Y gt sCreenermeers, alsa/21 41,
from which we obtain
I P& ml S C(A o) rizptneremniz
=CA™?*,

this is the desired inequality (5.6). (In the above reasoning we used the inequality

e

= slosCint (o (1t 3, (o) 7@

jai={n/2]+1

which can be derived from the inequality
- fl=C gg {o~"*|(1+p | x NEHF )2l 22}

by using Plancherel’s theorem.) This completes the proof of Theorem 5.1 and at
the same time the proof of the “if” part of (i) of Theorem 4.4.

Although Theorem 5.1 is sharp in itself, when we apply the case a=1 of
this theorem to m, (&), we cannot obtain the sharp result stated in (ii) of Theo-
rem 4.4. In order to obtain the sharp result, we shall directly deal with the
kernel K, ,=%F *m,; We shall show that

(6.7 K tn-52E 40051, 00);

this implies that my n-1.€M(A;, As) (Theorem H), which together with the fact
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that ¢(&)1&| "t e M4, Asi:) (Theorem I) gives the “if” part of (ii) of Theorem 4.4.
Take two functions § and ¢ such that 6=, §(0)#0, p=9, support p {| x| <1},

#(0)=0 and @(&)#0 for £#0. In order to prove (5.7), it is sufficient to show that
0*K1,(n_1)/2e L* and

(5.8) sup {lo(- [7)*Ky, ca-nalla} <o0
0<r<1

(cf. Proposition 6.1 in §6.1). The fact that 0*K, ,.p.=L* is obvious since
0%K, (n-1sES. We shall prove (5.8). We shall abbreviate Kj -1/, to K and
¢(-17) to ¢r
Recall that K is smooth in R™\{| x]=1} and has the following estimates:
K(x)=0(x]%) for every N as [x]|—o0
and
grad K(x)=0(1—|x1)"% as |x|—1

(see Proposition 5.1). Hence we have the following estimate uniformly in 0<r<1:
if |x|=3, then
I(Qpr*K)(x)léCIgggg {{K(x—}=Clx]| ™™

if |x|=3 and |1—|x||=2r, then

o)) | = S _ (K= —K()pd)dy

tyt

‘S‘CS}E {| K(x—)—K(x)|}

=Cr(l—|x}]) 2.
Thus we have

[ leskidrsc|  1xidx=C

izl

and

[ . leskeidzzcr|  a-lxirdesc

= zis
1-iztiz2r l1—txlizer

with C independent of », 0<r<1. Thus the rest of the proof is to show that

S {Sll—lxll§2r| (pT*K<X) l dx}<oo ’

ot

By Plancherel’s theorem, we have the following estimates:

HQDT*K“?:S M,(g)lfl—(n—1)lzei151¢(75),2_d5

=cl__lelmiarign s

=Cr-t.



Singular Fourier multipliers 299

Hence Schwarz’ inequality gives

Sll_lmgw‘l o xK(x)|dx é(S dx)mllgo,*K”LZ

11-ixit=2r

<Crizp-ii=C,

This completes the proof of (5.8).

We have completed the proof of the “if” parts of Theorem 4.4. The “only
if” parts of the theorem can be proved by the counter examples given at the end
of this section.

Proof of Theorem 4.5 is carried out by applying the following theorem which
is an improvement of Theorem G.

THEOREM b5.2. If m satisfies the assumptions of (i) or (ii) of Theorem G, then
oo i 1/p
(21,0 129m@mu ) 7dx ) " scaraimm) f

where y is a function in S satisfying (2.1).

Proor. It is sufficient to prove the theorem in the case 0<p<1l since the
case 1=<p <2 is reduced to the case 0<p <1 by the complex interpolation method ;
cf. §6.6. We shall present here the proof under the assumption that m satisfies
the conditions of (i) of Theorem G; the proof can be performed in a similar way
when m satisfies the conditions of (ii). We shall abbreviate y(-|27)«(F 'm)«f to
T;f.

By Theorem B, it is sufficient to show that

T, fI22<CA»WP-UB  for patom f.
7=0

Since the operator 7T'; commutes with translations, we may suppose that the p-
atoms -are centered at the origin. Hence it is sufficient to show that

3 ITsfize=cAmramyn | fed, 0<r<c,
j=0

where 4, 0<r<oco, is the set of all f’s such that

support fC {| x| =7}, [ fll oS pm/P
and

Sf(x)x“dxzo for |a|=[n/p—n].
In [13], it is shown that

ST F1 220 i SCAPPAP=UD | fe g 0<r<oco.
i=0
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Hence all we have to show is the following estimate :
(5.9) 3 T /13 aaican SCAP AP e, 0<r <o,
=

Hoslder’s inequality and Plancherel’s theorem gives

1T 3£l 22 azican SCrmP=Y2N T fl 2

=crrorz-un( [ (52718 |2 6121 f©)2dg)

=crrarn-mg-a({i5-s0)1 f@)1dg) .

Hence, by Holder’s inequality, we obtain

i 1T F12P 0 acen

éCr”PU/p-uz)( i 2-zjbp/<z-p>)<z_p>/2(;0 S ]2(2‘j$)]z]f(5)|2d5)p/2

=0

écrnp(llp—1/2)(SRn‘f(g) l 2ds)plz

=C(rmVP-UD| fl,2)P
and hence

% 1T/ 127 az1<en =C for fed,

since ||flleSCr-m'2*%/% for feA,. Thus we have proved (5.9) and hence completed
the proof of Theorem 5.2. '

ProoF OF COROLLARY 4.1. The “if” part of (i) is the statement dual to
Theorem 4.5 (the case p=1). To provye it, observe the following inequality :

(5.10) || matdz| <Clflawomlglionn, gL,

where

gl o=10%glz+ 35 - [2 gl o2

(# and y are the functions used in the definition of A(s; p, o) ; see §6.1). (5.10)
is derived from the following equality :

[Fadr=coss, bme>+ B 12957, 1 127 wg>
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where
O1=0-+x(-127)  and  g=y(-|2)+Fyty(-127Y).

Theorem 4.5 (the case p=1) shows the estimate

(5.11) [ Ke naretgllaco 1.0 =Clglas,

where Kg nq/p==F Mg nes. Using (2.5), (5.10) and (5.11), we obtain

| Kemarflnso=sup{|<Kanartf, 81| g€ DNH, glm=1}

=sup{|<f, Ko,narrg>|| g€ DNH", | gl =1}
=Cl N acos o0

Thus ma,na2EM( A, BMO), which, together with Theorems D and I, proves the
“if” part of (i).

The “if” part of (ii) is contained in Theorem 4.4 since A4,.C L%, ¢>0. Thus
we have proved the “if” parts of Corollary 4.1. The “only if” parts are proved
by the counter examples given below. (Note that the proof of (ii) is reduced to
that for the case #=0 as we remarked in the proof of Theorems 4.1~4.3.)

We shall give some counter examples. To state them, we use the following
notation :

[21=F (P&, AER
and

~

Kop=F Y@ P exp (—il&[®), a>0, bER.
COUNTER EXAMPLES TO THEOREMS 4.1, 4.2 AND 4.3. We assume that 0< p < oo,
0<g=<co and s€R. ’
)] The case 0<a <1 or a>1.

(I-1) Suppose that (1—a)/p—1/g>b/n—a/2; take A such that A—n-+na/2>
—n(l—a)/p and —A—b>n/g—n. Then K.,€H? but KoK, & H?
(when 0<q<0) or Ka,b*l?a,XEBMO (when g=co).

(1-ii) Suppose that 1/p—Q—a)/g>b/n+a/2; take A such that —A<n/p—n and
bt+A—n+na/2<—n(l—a)/g. Then f€H? but K, yxfi€ H? (when 0<q
<00) or Ky ptf26 BMO (when g=o0).

(I-1ii) Suppose that (1—a)/p>b—s)/n—a/2; take A such that A—n+na/2>
—n(l—a)/p and b+a<n-s. Then K, ,=H? but K, K, & 4,

(I-iv) Suppose that 1/p>{b—s)/n+a/2; take 2 such that —i<n/p—n and b+
A—s<n—na/2. Then f1H? but K, »f1¢ A,

an The case a=1.
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(11-1)

(11-ii)

(II-ii)

(I1-iv)

Akihiko MivacH:

Suppose that 1/p—n/qg>b—(n—1)/2; take 2 such that A—(n+1)/2>—1/p
and —2—b>n/qg—n. Then Ki,€H? but K, K, & H? (when 0<q< o)
or Ky Ry 268 BMO (when g=o0).

Suppose that n/p—1/q>b+(n—1)/2; take A such that —i<n/p—n and
b+A—(n+1)/2<—1/q. Then fi€H? but Ky y¢fre H2 (when 0<q<) or
K, #f: e BMO (when g=c0).

Suppose that 1/p>b—s—(n—1)/2; take A such that 2—(n+1)/2>-1/p
and b+A<n-+s. Then K,,€H? but K, wK, ¢ A,.

Suppose that n/p>b—s+(n—1)/2; take A such that —A<n/p—n and
b+2—s<(n+1)/2. Then f1H? but K, 4,.

COUNTER EXAMPLES TO THEOREM 4.4 AND COROLLARY 4.1.

@
-9

(I-ii)

(I-iii)

n
(I1-i)

(I1-ii)

(1I-iii)

The case 0<a<l or a>1.

Suppose that t—s>b—na/2; take A such that A—s=n—na/2 and b+i<
ntt. Then K, e, but Ko pwKo 164,

Suppose that —s>b—na/2; take A such that 2—s=n—na/2 and b+i<n.
Then K, e A, but KoK, & BMO.

Suppose that —s=b—na/2; take A such that A—s=n—na/2 and b-+i=n.
Then K, A, but KoK, 6 L™,

The case a=1.

Suppose that t—s>b—(n—1)/2; take X such that 2—s=(n+1)/2 and b+
<n+t. Then K, 4, but K K. €4,

Suppose that —s>b—(n—1)/2; take 2 such that 2—s=(n-+1)/2 and b+2
<n. Then K, €4, but K, K, ;& BMO.

Suppose that —s=b—(n—1)/2; take A such that A—s=(n-+1)/2 and b+2
=n. Then K., A, but K, #K, & L™

The facts in these counter examples are seen from Corollary 5.1 and the fol-

lowing

LeMMA 5.1. foeH?, 0<p<oo, if and only if —A<n/p—n. fieL* if and
only if 2>n. f,€BMO if and only if 2=n. ficed; if and only if A=n+s.

Lemma 5.1 can be shown by using the following

LEMMA 5.2. f;, A=R, is a smooth function on R™\{0}. fi(x) and all of its
derivatives are rapidly decreasing as |[x|—oo. If 0<2<n, then
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fx(x):Z‘“"/z%@— x|*-"-+(smooth function);
and
folx)= L Iog—l——I-(smooth Sunction).

I'(n/2)

| x|

As for Lemma 5.2, see Schwartz [16], §7 of Chapter 7.
We have now completed the proof of the results of §4.

§6. Appendix.

6.1. The Lipschitz space or the Besov space.
We shall define the Lipschitz space A(s; p, q) following Bergh-Lofstrom [1],
Chapter 6, §6.2, pp. 139-141 (originally it is due to Peetre); we shall use the

notation A(s; p, ¢) while the notation in [1] is B3, and it is called the Besov
space. We shall be confined to the case 1=p=co and g=cc. Let y be a function
in S satisfying (2.1) and define &S by

1 if £=0,

0©=1 = .
X 7(249) if £0.

DEFINITION 6.1. Let s€R and 1£p=<cc. For f&s’, we define ||f] e p0 88
1 acss o> =16F1 L2+ sup 2*[l(- [27#)«f1| .2}

A(s; p, 00) is the space of all f&S’ such that |f]l s pe <00

In [20], I, Taibleson defined the Lipchitz space A(s; p, q) in a different way.
But it holds that Taibleson’s Lipschitz space coincides with the space defined
above. It also holds that the space A; defined in Definition 2.5 (§ 2.1 of the pres-
ent paper) coincides with A(s; co, o) of Definition 6.1.

In the proof of Theorem 4.4, we used a part of the following

PROPOSITION 6.1. Let s€R and 1=p=co.
() If fed(s; p, ) and t<s, then (1—4)"*f=L? and

Q=D o= Cllf acsipo 5

where (1—Af=F31+|&|02/(8) and C is a constant depending only on n, s, t
and p.

(ii) There exist positive integers Ny, N, and N, which depend only on n, s and
p such that the following statement is true: if heS and
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|(ai€)"’ﬁ(s> g{ e

for |E]=1 and |a|EN;
|5]-N2—la|

for |&|=z1 and |a| =N,
then
sup {r~*AC |71l Lo} SCIf 1l acsi pooo>

01
with a constant C depending only on n, s and p.

(iii) Suppose that g and h; (=1, 2, -

, m) be functions in S with the follow-
ing properties: (a) for every £+0, there exists an integer k such that

> 1291 =0;
) for every EER™, there exists positive integer k such that

lé(é)l+j§"‘1|ﬁj(2-ks>|¢o.

Then we have

i no=ChgTi+ 3 sup @ 1A 120717 ]

where the constant C depends only on n, s, p and the functions g and h;.

PROOF OF PROPOSITION 6.1.

Proof of (1.

(6.1) (L—dyif=lim 6(- |27 D1 —A)f

We have

=0+(1— )+ S (- 127 M=)

where }zim and kE converge in &’. Now we use the following Bernstein type
-0 =1
inequalities :

N9xA =2 f || p=Cll %S| P
and

(- 127 Bl — A)72f | 2 SC2H (- 127Dl o,

keN.
Thus, if feA(s; p, o) and t<s, the series in (6.1) converges in L? and hence
(11—t feLP,

Proof of (iii).

By the assumption (a), there exists a finite subset EC
1,2, -+, m} XxZ and functions {p;:|(j, £)€E} such that

X :(J’.%}eE hi- ‘Z_k)*wj'k :
We have

YEE

2120 = | B Flh 127 s 1270
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and hence
712791 | 2= (j,kZ))EE A 127 9% ol @s el

Thus we obtain
sup {29(- 127+ | o} SC 35 sup {20+ 127041 1)
1>k Jj=1 iEN

where k,=max{—#k|(j, k)€ E for some j, j=1, 2, -+, m}. In a similar way, we
see from the assumption (b) that

,sup {270 1270 ] Lok §C[Hg*f ot jmgl sup {2°|h,(- |2-f>*fan}}
and
l!ﬁ*flin§C[llg*f||Lp+j§1 sup {2 h (- 12‘i>*f\|Lp}] :

This proves (iii).
Proof of (il). We decompose i as

h= S h,  with hy=x(-|28h.
Then we apply the method in the proof of (iii) to obtain the estimates
sup {8 1haC IDfll Lo SCONS N acsi pooor s REZ.
0T

If the constants N,, N, and N, are sufficiently large, then it is easily verified
that IEZC(k)<OO and that the equality

h(-lr)*f=k§th(-Ir)*f in &

is legitimate for all f&€ A(s; p, o). Thus we can prove (ii). This completes the
proof of Proposition 6.1.

If g and hy, j=1, 2, ---, m, are functions in & which satisfy the conditions
(2) and (b) of (iii) of Proposition 6.1 and if further &;'s satisfy the assumption of
(ii) of the proposition, then: the norm

IF1= g o 35 sup 1210 127 5}
is equivalent to the norm |f| .4 p.w 3 if 2<s, the norm
(62) IF1= 10 —47f1 o+ 35 sup (=l IP)sf1)

is also equivalent to the norm |fl| s pe. In particular, we can take a set {h 3
consisting of only one function such that
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hi&)=181%" exp (—|£]?)

or
(6.3) hi(&)= &Y exp (—1€])

if N is sufficiently large. ((6.3) does not belong to & but is available for (6.2)
since A,(-|7)%f is well defined whenever (1—-4)"/%f= L? for some ¢.) Comparing
these results with the definition of A(s; p, o) given by Taibleson [20], I (Theo-
rem 3 in p. 421 and Theorem 7 in p. 437), we see that the spaces studied by
Taibleson [20] coincide with the spaces of our Definition 6.1. If we take a set
{h;} consisting of compactly supported functions, then we can easily show the
inclusion A, A(s; oo, o0) (A, is defined in Definition 2.5). As for the proof of
the converse inclusion A(s; oo, co)CA;, see the proof of Theorem J’ in the next
section (we can modify the proof of “(iii) = (ii)” using the functions f(x, 2-%)=
(812" )(x), £=0, 1, 2, ---, in place of the function f(x, ).

6.2. The Campanato spaces.
In [5], Campanato introduced the following spaces.

DEFINITION 6.2. Let s=0 and £ be a nonnegative integer. If f is a distri-
bution on R™ which is equal to a finite complex measure on every compact set,
we define |f]| ;x5 as follows:

IFhscno=sup [int{r-=] iftdn—Peodzxl}],

lx—-zgl<r

where the infimum is taken over all polynomials P of degree =% and the supre-
mum is taken over all x,=R™ and all »>0. _(k, s) is the set of all f such that
1A £ce.sy <oo. (We have slightly modified the definition given by Campanato [5]
and also changed the notation; our _£(k, s) corresponds to £ of [5].)

We shall show that the space A, defined in §2.1 coincides with an _£(k, s)-
space. We fix a function ¢<9 such that

e(x)=p(—x)
support pC {| x| =1}

Sgp(x)dx=l;
and, for f€9’, we define f(x, ) by
flx, D=(p(-1)*f)x), x€R" i>0.

Note that, for every «,
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<—£—C~>af(x, H=(D*f)(x, 1) —> D*f  in @ ast|0.

Now we have the following theorems (the present author learned these theo-
rems from Mr. A. Uchivama in Téhoku University):

THEOREM J. Let k be a nonnegative integer and s>k. Then the following
three conditions arve mutually equivalent :
(1) WNscrn=M<oo;
(ii) f is of class C* and
5 sup [1LFO=DION_yy o,

[x—y|**

lal=k T#Yy
(iii) f€9’ and

sup {t—s+ k+1

{al=k+1 TER®
>0

(LYo

2yl

+ sup{t'“k“

lal=k zER"
t>0

=M3<OO .

Moreover the semi-norms M;=M,(f), i=1, 2, 3, are mutually equivalent.

THEOREM J'. Let k be a nonnegative integer and s>k. Then the following
three conditions are mutually equivalent :

(1) A rcrsrn=M<co;
(ii) f is of class C* and

3, ap LRI C DDy
(i) f€9 and
sup {4+ (%)af(x, o}

lal=k+2 TSR
>0

-5+ i _a_ a [1.
3, sp {5 v o
:M3<OO .

Moreover the semi-norms My=M(f), i=1, 2, 3, are mutually equivaient.

COROLLARY 6.1. For s>0, we have

A=L((s], s);
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the semi-norms are equivalent.

This corollary is an immediate consequence of Theorems J and J’. For s not
equal to an integer, this corollary was shown by Campanato [4] (0<s<1), Mevers
[12] (0<s<1) and Campanato [5] (s>0, s*integer).

Theorems J and J/ are proved by the same method. We shall present here
the proof of Theorem J.

PROOF OF THEOREM J’. (i)=> (iii). If P is any polynomial of degree<k--1,
then

[PON) plr—yindy=0  for lal=k+2
and
8 8\
[POIgr (o) etr—yIndy=0  for lal=¢,

the latter of which is due to the fact that ¢ is an even function. Thus we have

(-2 ) e, 0= J(L) ele—s100 = Poiy)
<[ (-2 ) e 17 @)~ P2y

screel 1 FD=PGMy,  lal=k+2,

lz-yi<t

and

161: ax>f(’“ f>'<Cf‘” - ‘Slz_mlfwy)—P(y)dyl, lal=F

where P is any polynomial of degree<%-+1. Varying P over all polynomials of
degree =k--1, we obtain M;=CM,.
(iii) = (i). Suppose that f satisfies the condition (iii). If |a|=4k, then

1

)
which implies that (8/0x)*f(x, t), |a|=Fk, converges, as ¢ tends to 0, uniformly
with respect to xR" Hence f is of class C*. We have

aaz< ;x) flx, t)‘dt<SM3ts gt <o

(70— 2,07 @)—(rx, 0 2, 22D (0, 1)

Ol‘

<C|x|k ] kgt sup{ o

6 ycR"

Df (3, r)!}dr

ZCM,| x| *ts*.
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On the other hand, we have

lf(x,t)— 2 —Daf(O D =C x|+ sup, {IDef (3, DI}

lage+1 !
(HERD,
SCM,| x| Frys-rt

Combining these estimates, we obtain

X%, X% .
1f<x>—m§k70 FO— % DU, 1)

lal=k+1

SCMy(| x| H5- k| x| B¥2ps--2)

r'”g
jzilr

éCM3(rkts‘k_|_rk+2ts—k—2) .

and hence

fo= B, D O— 5 D0, 0]dx

laisk al=k+1

If we set ¢=r, then

inf {r‘"gu F)—P() | dxb<CMyr.

P;degPsk+1

The same estimate holds if we replace the ball {{x| <7} by any other ball
{x—=x,1<r}. Thus we have M,<CM,.

(if) = (iii). Since ¢ is an even function, we have

ox 8x1( 0x ) Fx, t)]
:] ZXD«f(x+y) 2D°F ()4 D (x—3)) 55— a -o(y1Hdy

gcfn—zg | D2f (x+3)—2D*F (x)+D2f (x—y)|dy .

<t

Hence

|8x8x<ax>f(x l‘)}<CMls’f2 for |al=

Similarly we have

lat )f(x t)‘<CMzz‘s -1 for |al=

This proves M,<CM,.
(iii) > (ii). Suppose that f satisfies the condition (iii). Then f is of class C*
as we have seen in the proof of (iii) > (i). For |al=Fk, we have
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(Def(x+9)=2D*f (x)+D*f (x—yN—(Df (x+, H)—2D*f (x, )+ D*f (x—y,D))]
= \’S:%—waf(x-ky, ) —2D%f (x, r)+ D% (x—y, ¥))dr

<CM5-*
and
[ D*f(x+y, h—2D% (x, )+Df(x—y, 1)]

sClyi*sun | 0/ 0]}

<CMyly|mehe.
Combining these estimates, we obtain

3,1 D% (e 3)=2D (04D (x— )| SCME= [y 3747,

If we set t=|y|, then this estimate shows that M,<CM, This completes the
proof of Theorem J’.

Now suppose that 0<p=1. Then it is easy to see that, for feg’,
1l 2cnip-niaip-ny =sup{I<f, g>! | g€, g: p-atom}.
Thus Theorem B and Corollary 6.1 shows that
oty =sup{l<F, 21| g€ DNH?, lglyp=l),  0<p<I,

which is (2.7). The inequalities (2.5) can be derived from Theorem B in a similar
way ; but the proof requires another step, 7.e., we must show that _£(0, 0)=BMO
or that all elements of £(0, 0) is absolutely continuous with respect to the Lebesgue
measure. This can be done by introducing (1, g)-atom, ¢>1; see Coifman-Weiss
[7], pp. 592-594 and pp. 623-634. A proof of (2.6) requires yet another step,
i.e., we must show the weak compactness of the unit ball of H*; see Coifman-
Weiss [7], pp. 638-641.

6.3. Proof of Lemma 2.1.
Let ¢ be a function in @ such that

S(p(x)del and ggp(x)x“dxzo for 1<|a|=[s].

Set f(x, )=(@(: |)*¢(- |O%f)x). Then, in the same way as in the proof of “(i) =
(iii)” of Theorem J/, we have

| 2 (27, | <CUf Lot
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for all «. Hence, if |a|<s, we have
D7l =| = {2 (-2 Y, v (L) s )
=S ClIf casso ’<—667)af(% 1)l

=Cl i+ [(frexDp)(x)],

where the last inequality is due to Corollary 6.1. Thus we obtain
S D == ClA N+ 3 1 frx Dol
and hence
114, =ClAA%A+Clf el 1o

The reverse inequality is obvious. Thus we have proved Lemma 2.1.
6.4. Proof of Lemma 2.3.

It is easy to see that there exists a constant C depending only on n and p
such that

I/@1<Cle|™»=m  for all p-atoms f.

It is also easy to see that, if f is a p-atom,

(6.4) f@&=o(|&|"*= ")  as £-0 or |&]—c0.
Hence, by Theorem B,

/&I =CIfl,l€172  for all feH?

and (6.4) holds for all fe H?. In particular, if fH?, then all the derivatives of
7 of order <[n/ p—n] vanish at the origin so far as they exist. Thus, if f&
H?N\ Xy (X, is as mentioned in Lemma 2.3), then

(65) (D F)O=(—ix)fx)dx=0  for la|<[n/p—n].

Conversely suppose that f X, and (6.5) holds. We shall estimate the maximal
function

()= sup {|(e(- [/ )(x)]}
0Lt

with o9 such that support o {].x| =<1} and $(0)=1. We assume that n/p <M<
[n/p—n]+n+1. We abbreviate [n/p—n] to N and {|(1+]x )" f(x)| .~ to A, It
is easy to see that

[(p(- 10#)(x)| SCA,
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and
tssggz{l(go(-It)*f)(x)l}écz‘lfIXI'” for |x|z1.

On the other hand, if |x|=1 and t=|x|/2, then
[{@(- D)%)

=|[rop—yin- 3,22 (%)“so(xm);\

¥y a!

:lgg ERnf(y)(N+1)(l_r)N > (—y)e

g<r/1 ja=v+1 !
<

(%)ng(x—ry |)dydr

scaprrl Ay | dydr

0<r<1
lz=ryILe

éCAft—n-N—lgg
gl<'r<1
TIYI<8E

éCAft“”"éCAfl X | -

A+1y DMy ¥ dydr

SR"

Combining these estimates, we obtain
[HESCAL-1x])7™.

Hence feH? and ||fll,»=If*|,»=CA;. This completes the proof of Lemma 2.3.

6.5. An approximation of BMO-functions.

Let f be any element of BMO. We construct a sequence {f,} such that
f2€D, fr—f in 8" and [ folssro—|flzre. Take o= such that ¢(x)=0, support ¢
c{lx| =1} and ¢(0)=1. Consider the following function:

15.a0y=a+1={ea un(@l0g1x— y Do)y ,

where 0>0, a=R and
a if t<a

Tra,arnD)=1 ¢ if esi=a+l
a+l if t>a+1.
5.0 is a smooth function with the following properties:
0=ys.0(0)=1,
rwa(x)=1 if dlog([x[+D=a,
x5.a(x)=0 if dlog(lx|—D=a+l1,
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and
l2s.cll o =0llog| x| llzso -

Hence, if we take =d(n) and a=a(n) appropriately, we obtain y,=ysn>.acnyED
such that 0=y, (x)=1,

1alx)=1 for [x]=<n and lanllzaro=n=2.
Set

Fal)=yn(x (- |n g, )x),
where

{f(x) it |f(x)|=n

g poand

nf(x)/|f(x)] if [f()>n.
Then it is easy to see that f,€9 and fa—f in &', and hence

1l zasro=<lim inf I fallzac0

by Lemma 2.2. On the other hand, we have

I/l o= xall pllolc 1n™xgallzsotlxal saoli el [n % gall jeo

< lowot—

and hence ,
lim sup [ falzxo= 550 -

Thus {f»} has the desired properties.

6.6. Note on Theorem G.
Theorem G is given in [13], where, however, % is defined by

b (- D1 [3]e1)

Here we shall show how we can derive the improved Theorem G from the theo-
rems in [13]; i.e., we assume that Theorem G is established in the case 0<p <1
and prove the theorem in the case 1=<p<2. Suppose that m satisfies the assump-
tions of (i) of Theorem G with 1=<p<2. Take ¢ such that ¢<1 and

[n(1/q—1/2)]+1 (i_i
(1/g=1/2) \p 2

and define 2, 6§ and b, as follows:
koy=[n(1/q—1/2)1+1,
1/p=(1-8)/q+6/2,

k>
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bo=b/(1—0).

We construct a family of Fourier multipliers {m,}zeC, 0<Re z=1} as follows:
m(&)= i}]2”’“‘"”“‘"’77(2“"5)(1—(A”IZ“‘““’)ZAe)kW‘””2[7%(5)2(2‘1'5)] ,
=
where y is a function in § satisfying (2.1),  is a function in 9 such that 7(&)=1
on support ¥ and support pC {1/3=1£/ =3} and
n g2
Since k (1—@)<k, it is easy to see that, for yER,

Imireyll==CA+H ™2

and
(-5) @] CA I e Al 1, ko
Hence
Imysiyl e Ly SCA+ [y D®
and

eyl sen® mb =C(L4 |y HrEAT 1D,

the latter of which is the consequence of Theorem G for the case 0<p<1. Thus,
applying the complex interpolation theorem (Calderdn-Torchinsky [3], Theorem
3.4, pp. 151-152), we obtain

m=me= HMH?, H?) and |[m| gqw? pp,SCAP-UD,

This proves (i) for the case 1=<p<2. (ii) can be proved in a similar way.

We remark that we can weaken the main assumption of Theorem G {in-
equalities (3.9) or (3.10)) in several ways. The proof given above shows that it
is sufficient to require the inequalities (3.9) or (3.10) only for

J

Other generalizations of Theorem G are obtained if we use the L®scale or the
derivatives of fractional order. These remarks are valid also for Theorems E, I
and 5.1. Cf. Calderén-Torchinsky [3], §4, pp. 162-171.
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