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§1. Introduction and Summary.

Let (E} x u,.) denote the parabolic equation
2
1) %‘-+(p(x)—£~2 u=0 (0<t<oo, 0<x<1)

with3the boundary condition

(1.2.2) %—huu:o:o (0<1< 00
(1.2.1) %Hﬁt lowi=0  (0<t<00)

and with the initial condition
(1.3 ulio=a(x) O<x<l),

where p=C[0, 13, he®, HER and a=L¥0, 1). And let AL, » be the realiza-
tion in L*0, 1) of the differential operator (p(x)—a2/0x2) with the boundary con-
dition (1.2). We say that ¢<L%0, 1) is a generating element with respect to
Al n.m if and only if @ is not orthogonal to any eigenfunction of A} . .

In a previous work [5], the author showed the following theorem jointly with
T. Suzuki:

THEOREM 0. Suppose that a=L*0, 1) is a generating element with respect to
Aboo and let u=u(t, x) be the solution of (E}..0). Then, for any (g, b)eC[0,1]
X L*0, 1), the equality

1.4 ut, S=ult, § (T1=t=T,; £=0,1)
with some Ty, T, in 0<T < Ty< 0 implies
(1.5") (g, b)=(p, a),

where v=v(t, x) is the solution of (E{ o0.)-
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In this paper, we generalize this theorem and show

THEOREM 1. Let (p, h, H, )= C0, IIXRKRXRXLHO, 1) be given and let
u=u(t, x) be the solution of (Ebn.m.a)., Then, 14) for some (g, i, I, b)eC'[0, 1]
XRXRXL¥0, 1) implies

(L5) (g, 7, I, )=(p, h, H, a)

if and only if a is a generating element with respect 10 Ab.nu, where v=uv({t, x)
is the solution of (Ef i 1.0)-

Our proof of Theorem 1 is more heavily based on the Gel’fand-Levitan theory
[1] and is more constructive than that of Theorem 0 in [5]. See also Suzuki
[6], which gives by the method of [5] a theorem of nonuniqueness in the present
problem among other results including a theorem of uniqueness.

Furthermore, for a=Ci[0,11={a=C?[0,1]|a(x)>0 (x<=[0,1]1)} and a= L0, 1),
we consider the parabolic equation

ou 0

ou
(1.6) = W@(")W (0<t< 00, 0<x <)

with the boundary condition

ou
(17) —é‘)‘:— I=0,1—-0 (O<t<00)
and with the initial condition
(1.8) u]pmo=alx) 0<x<1),

which is denoted by (E2.). Let A2 be the realization in L*0, 1) of the differ-
ential operator —(0/0x)a(x)0/0x-) with the Neumann boundary condition (1.7).
Noting that the constant function 1 is the eigenfunction of A2 corresponding to
the eigenvalue 0, we say that a=L%0, 1) is a weakly generating element with
respect to A2 if and only if @ is not orthogonal to eigenfunctions of A2 other
than the constant function. Then, the following theorem is obtained by making
use of the Liouville transformation :

THEOREM 2. Let («, a)=CL[0, 11X L¥0, 1) be given and let u=ult, x) be the
solution of (E3,.). Suppose that a is a weakly generating element with respect to
A2, Then, for any (B, b)eCi[0, 11X L¥0, 1) with :

1 dx 1 dx
the equality
(1.10) ot, O=ut, &  (T,=t=T,; £=0, 1)



Gel’fand-Levitan theory 319

implies
(1.11) (8, h=(e, a),

where v=v(t, x) is the solution of (E}).

Furthermore, if a is not a weakly generating element with respect to Az, there
exists some (B, H)eCi0, IIXL¥0, 1) with (1.9), for which (1.11) fails to hold in
spite of (1.10).

This paper is composed of four sections. §2 and §3 are devoted to the proof
of Theorems 1 and 2, respectively. In §4, we state a few modifications of these
theorems as well as a remark on them.

We now want to refer to the circumstances under which we come to publish
this paper. Originally, the work was done as a part of master’s thesis by the
author [4] at the University of Tokyo, which was titled “On certain inverse
problems for parabolic equations” and was written in Japanese in 1980. In
completing this thesis, the author owed much to Professor H. Fujita, Mr. H.
Matano, Mr. A. Miyachi and Mr. T. Suzuki through their valuable advices. For
instance, Professor Fujita suggested to the author the study in the direction of
the present paper and Mr. Suzuki gave the author crucial ideas for the proof.
After his graduation, however, the author was not able to complete the manu-
script for publication because of his illness. Again Mr. Suzuki kindly reorganized
the result and wrote the English version for the author. The author thanks Mr.
Suzuki heartily for his kind help and warm friendship.

§2. Proof of Theorem 1.

Let 2, and é(x, 4,) (n=0, 1, 2, ---) be the eigenvalues and the eigenfunctions
of Al ., respectively. We normalize ¢(-, 2,) by

@1 400, 2)=1
and put
2.2) ou=| 6z, 2uydx .

According to Gel'fand-Levitan [1] and Levitan-Gasymov [2], we call {4,, p.|n=
0, 1, 2, ---} ‘the spectral characteristics of A} » .

Suppose that a= L0, 1) is a generating element with respect to A} ,.x and
let (1.4) hold for some (g, 7, I, H)eC[0, 1JX KX KX L¥0, 1). And let g, and
d(x, tm) m=0, 1, 2, ---) be the eigenvalues and the eigenfunctions of Aj s, re-
spectively. We normalize ¢(-, pn) by

2.1 (0, pm)=1.
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By Suzuki-Murayama [5], we have then

’(2.3) Zn:ﬂn (n:(): 1: 2: )
and
(2-4) 95(1; zn):¢(17 ,un) (7’1:0, 1: 25 "') .
In order to show (1.5), therefore, we have only to derive
(2.5) Prn=0n (n:()y 1,2 "'):
where

1
2.2 am=So¢(x, pa)dx,

since (2.3) and (2.5) yield g=p by means of the Gel’fand-Levitan theory [1], and
b=a follows in the same way as in Suzuki-Murayama [5].
Here we prepare the following

LEMMA 1. Let ¢=¢(x, 1) (A€C) be the solution of

26) (b2 )o=19
with
2.7 30, H=1
and
a(2.8) (0, H=h,
and put
(2.9) D(N=¢'(1, H+HH(, ).

Then we have
(2.10) pr=—¢1, 2,)P'(1s).

LEMMA 2. We put

= 2
@2.11) F(o=11 1—Tn)
or
, = A )
(2.11%) F(z)zzgo(l—T), according as 0 (2.} or 0€ {1},

whevre ﬁ;(l—l/ln) means the infinite product of (1—21/4,) except the term for
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An=0. Then F(2) is an entire function of order one half and we have
(2.12) DN=c, F (1)

for some constant ¢, #0.

Lemma 2 was proved in Levitan-Gasymov [2]. Lemma 1 is shown as follows.
The equality

" (x, 2)p(x, D—0"(x, Dd(x, 2n)=(A—2A)d(x, D(x, Az)
is obtained by (2.6). Therefore, we have

@19 =22\ $Cx, D(x, A)dx

=¢'(1, )P, D—¢'(A, Dg(L, 2) (.7 (2.7), (2.8)
=—H¢(l, 2)¢(1, D—¢'(1, Hg(L, Za)

=—¢(1, )P,

which gives (2.10).
By means of the relations

(2.14.2) p,,:%jL o(%) (n—0c0)
and
(2141) B W=(—1r+0(=) (o),
due to Levitan-Sargsjan [3], we have
2.15) oy=lim ?Ej; . (212)

= Lim &Y 2oy,

3 ok FA)

Therefore, {1,} determines uniquely F(2), ¢, and @(2) in turn, hence (2.5) follows
from (2.4) and (2.10).

Suppose conversely that a= L%Q0, 1) is not a generating element with respect
to Al .. Then, there exists 1y such that

(2.16) (a, ¢(-, Ax))=0.
Set
o1, An) (n+N)

2.17) an=3 1
7515(1, An) (n=N)
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and put
(2.18) an_an(p/(ln) ’

where @(2) is defined by (2.12), (2.11) (or (2.11")) and (2.15). By the Gel’fand-
Levitan theory [1], there exists (g, 7, D€C0, IIXRAXR such that the spectral
characteristics of A} ; coincides with {Z,, ¢,|n=0, 1, 2, ---}. Obviously (g, 7, )
#(p, b, H). Let {pn(=2x)} and {¢(-, un)} be the eigenvalues and the eigenfunc-
tions of AL, ; normalized by (2.1’) respectively. Then, the equalities

(2.19) In=pn  (n=0,1,2, )

and

(2.20) o, L)=¢1, pa)  (n#N)

hold by the way of definition of A}, We now take b= L*0, 1) such that
(2.21) (b, (-, g/ oa=(a, ¢+, 2N/ pn  (n=0,1,2, -),

and denote the solution of (EL: ;) by v=uv(t, x). Then, expanding u and v by
eigenfunctions, we obtain (1.4) by virtue of (2.19), (2.20), (2.21) and (2.16).

§3. Proof of Theorem 2.

By the Liouville transformation

(3.L.2) Z:Z(X)ZS:V%%S
~and
(3.1b) iz, 2)=ult, x)a(x)M'*,

(E? ) is transformed into

3.2) %;7—+(p(z)——§:—2)a=0 (0<t<oo, 0<z<),
(33.) g:f —hit] =0,
(3.3.b) % L H),=0
0z
and
(3.4) ] ree=a(2),
where

(3.5) pa=7"(2)/f(2),



Gel’fand-Levitan theory 323

(3.6.2) h=f"(0)/f(0),

(3.6.b) H=—f'D/fD),

(3.7 a(z)=a(x)f(z)

and

38 z:Soji—%,

with

(3.9) f@=alx)"'*.

Similarly, (E}s) is transformed by

(3.10.2) w= w(y>=go "«7%%

and

(3.10.b) o(t, wy=vt, B,

and we get

(3.11) —%f—-{—(q(w)—%;)z?:O 0<t<oo, 0<w<),

(3.12.2) gfy =i pes=0,

(3.12.0 O 3] yer=0
ow

and

(3.13) 7| mo=b(w),

noting (1.9), where

3.1 gw)=g"(w)/ g(w),

(3.15.a) i=g"(0)/g(0),

(3.15.b) I=—g"(D/gD)

and

(3.16) b(w)=b(y)g(w)

with

(3.17) glw)=py)M*.

Then, (1.10) is equivalent to
(3.18.a) a(0)~M44(t, 0)= B0y **u(t, 0) (T £1£TY)
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and

(3.1810) al)"14 4, D=0y 4o, )  (T=t=Ty).

1=t=

Let 2, and ¢(-, 2,) (n=0, 1, 2, ---) be the eigenvalues and the eigenfunctions of
A2, respectively, and let tn and ¢(-, pn) (m=0, 1, 2, ---) be those of A%, respec-
tively. We normalize the eigenfunctions as usual by

(3.19) $(0, 2n)=0)(0, ptm)=1.

Then, we see easily that the eigenvalues and the eigenfunctions of Al .y are
given by 1, and 55(.2, A)=@(x, A)a(xM /(0P (n=0, 1, 2, ---), respectively, and
those of Aj;, are given by u, and Hlw, Pa)=(y, ) BV BOME (m=0,
1, 2, --), respectively. Furthermore, we have

(a, 95('; 2Dt n=a(0)*(a, O+, Aadilo,n
and

&, ¢ padion=B0)V4b, ¢(-, pmDrtos -

Suppose, in the first place, that e L¥0, 1) is a weakly generating element
with respect to A% and that (1.10) holds. Then we have (3.18) and

(3.20) (@ §C, 2Dito,n=a(0)a, §(-, 2Nitwn®0  (n=1,2, --).

In the same way as in Suzuki-Murayama [5], we expand # and ¥ by eigenfunc-
tions, compare each side of (3.18) and get

3.21) Un=2, (n=12,-)
and

B(0) e a(O) =
Here we recall the relations
(3.23.2) 34, zn>=<—1)n+0(—i—) (n—00)
and
(3.23) 3@, p==1r+0(2) (o),
and we obtain

‘3(()) 1/4 a(0) \v4

3.29) oy /3(1)) a(l))
and

(3'25> SZ;(Z; ﬂn).:gz(l} 211) (n:ly 2) ) .
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On the other hand, we note

(3.26) Ho=4,=0

and

(3.27) P, p)=¢(1, 2)=1.
Summing up, we get

(3.28) =2  (n=0,1,2, )

and

(3.29) U =3¢, ) (n=0,1,2, ).
Therefore, in the same way as in the proof of Theorem 1, we have
(3.30) @2=p(2) (0=z=D,
(3.31.a) i=h

and

(3.31L.b) I=H.

On the other hand, we have

(3.32.2) 1=S:Z—’z“ dz=S:«/Mdz=S:f(z)2dz,

and similarly
(3.32.b) 1=S:g(2)2dz .

Since the positive solution e=e(z) of the equation

e (D=pRe(z) 0=zl
with

e’ (0)/e(0)y=h
and with

S‘e(z)2d2=1
I

is unique, we have

(3.33) g=flz) (0=£z=))
by (3.30), (3.31.a), (3.32), (3.5) and (3.14). Therefore, since
(3.34.2) “Z‘j?: % 0<x=<1),

(3.34.b) 20)=0,
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dw 1
and
(3.35.b) w(0)=0,
we have
(3.36) w(x)=z(x) (0=x=1),
hence
1
(3.37) Blx)= W
- z/(lx)z' =a(x) 0=x=1).

From this stage, the proof of
(3.38) b(x)=a(x) (a.e. x=(0, 1))

is similar to that of Suzuki-Murayama [5].
Suppose, conversely, that a= L%0, 1) is not a weakly generating element with
respect to A2. Then there exists some N=1 such that

(3.39) (a, ¢, 2w 20, n=0a(0)""%(a, 95'(‘, AvNiton=0.
Set
B, 2n) (n#N)

(3.40) an=1
795(1, ) (n=N).

According to the latter part of §2, we obtain {g,[n=0,1, 2, ---} and construct
(g, 7, DECTO, []X R X R whose spectral characteristics are {2,, o,|n=0, 1, 2, ---}.
Let ¢(-, 2,) (n=0, 1, 2, --) be the eigenfunctions of Aj; ; normalized by &0, 2a)
=1 and put

(3.41) g(w)=§(w, z(,)/(S:J(w, Rrdu)
Then g=g(w)

(=) is positive definite on [0, []
and

(%) satisfies (3.14), (3.15) and (3.32.b).

Take 5= L¥0, ) such that
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1
8(0)

1

(3.42) 70

(a, (5(, ANt/ Pn
(Tl:(), 1: 2) "') 5

o, SZ( s Ao,/ 0=

and 9=, w) be the solution of (3.11) with (3.12) and (3.13). Then, we have

1 1
3.43 (¢, 0)=——#(t, O o<t .
(3.43) 20) ¥, 0) O i(t, 0) (0<t<e0)
On the other hand, since N+0, we have
(3.44) FU, 2)=¢(, o)

by (3.40). We note here
U, =@, )LDV /a(0)*=FfD)/f0) (. ¢(-, =D,

Ori the other hand, we have
U, 2y=g(1)/g(0)

by (3.41) and (0, 2,)=1, hence
(3.45) gD/ g0)=1(1/f0).

Therefore, since
U, 2)=¢{, 2,) (n*N)

and
(dy 5('; ZN)):(E: S[J(': 2N>):0;

1 . I o
(3.46) E(Z_)v(z’ l)————f(l) 7, ) (0<t<00).
We now fcransform (3.11), (3.12) and (3.13) by
(3.47.2) y= y(w)=gjg2(s)ds
and
(3.47.b) uwt, y)=0, w)glw)™*.

Since g=g(w) satisfles (*) and (%), v satisfies (£} ;) for

Bly)=g(w)*
and
b(y)=b(w)B(y) ",

and (1.10) holds by (3.43) and (3.46). On the other hand, (B, b)#(a, a) and (1.9)
are obvious.
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§4. Concluding remarks.

1. For (p, a)eC{0, 11X L¥0, 1), let (E% ) denote the paraholic equation

ou o°
4.1 a—t+(p(x)— ax2>u=0 (0<t<oo, 0<x<1)

with the boundary condition

4.2) U|z=0,=0  (0<t<00)
and with the initial condition

4.3) U] o=alx) 0<x<l).

And let A% be the realization in L%0, 1) of the differential operator (p(x)—0*/0x®)
with the Dirichlet boundary condition (3.2). On the other hand, for («, a)E
300, 1OX L¥0, 1), let (E% ,) denote the parabolic equation

with the boundary condition

(4.5) Ulzmo==0  (0<t<0)
and with the initial condition

(4.6) ulime=alx) (O<x<1).

And let A% be the realization in L¥0,1) of the differential operator —(3/8x Y a(x)3/0x +)
with the Dirichlet boundary condition (4.5). Then, in the same way as in Theo-
rems 1 and 2, we can show the following Theorems 3 and 4, whose proofs are
omitted.

THEOREM 3. Let (p, a)=C 0, 11X L¥0, 1) be given and let u=u(t, x) be the
solution of (E%..). Then,

o
ox

_ Ou

x:o,l— ox

4.7 (Ty=t=Ty

z=0,1
for some (g, b)eC'[0, 1]X L¥0, 1) implies
(4.8) (g, B)=(p, @),

if and only if a is a genervating element with respect to A3, where v=uv(t, x) is
the solution of (E},).

THEOREM 4. Let (a, a)=C3[0, 11X L¥0, 1) be given, and let u=u(t, x) be the



Gel’fand-Levitan theory

329

solution of (E%..). Suppose that a is a generating element with respect to A%.

Then, for any (B, byeCi[0, 11X L¥0, 1) with

1 odx 1o dx
49 Swﬁu)‘go«/a(x)’
the equality
ov ou e
(4.10) BE—7 - E)=a(5)w(t, &  (T=t=T:; =0, 1
implies
(4.11) (8, b)=(e, a),

where v=u(t, x) is the solution of (E} ).

Furthermore, if a is not a genevating element with respect to AL, there exists
some (B, H)eCi[0, 11X L¥0, 1) with (4.9), for which (B, b)#(a, a) in spite of

(4.10).

2. In Theorems 2 and 4, the conditions (1.9) and (4.9) are essential.

Without

them, (1.11) or (4.11) doesn’t follow, even if a is a (weakly) generating element

with respect to A2 or A% For example, let u=u(¢, x) be the solution of

ou 0?

ou ou
19 B o™ B e OIS
and
(4.14) ul—e=a(x)

=1+ f} ——%—3cos nEx O<x<l),
n=1 ’H,ﬂ')

and let v=uv(¢, x) be the solution of

ov 1o* ‘
(4.15) 7_— 96]62 v (0<t<00, O<l <1),
ov ov
(10 B emo” B o0 (0<E<)
and
4.17) ‘ V] tmo=b(x)
- = 1
:1-[—112;1 ) cos 3nzwx O<x<l).
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Then, we have

(4.18) ult, x)=1+ i g i CoOS NTx
& (n)?

and

(4.19) u(t, x) =14 3 g-niw 1 —cos3nxx,
n=1 (7171')

so that

(4.20) . u(t, &)=ult, &) 0<t<oo; =0, 1).

Furthermore, ¢ is a generating element with respect to A2 («=1), whereas (1.11)
doesn’t hold.
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