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Abstract

We prove the solvability of boundary value problems for pseudo-differential
operators which are semi-hyperbolic in one side of the boundary. We also prove
a kind of regularity up to the boundary for operators anti-semi-hyperbolic in
one side of the boundary and for diffractive operators. That is, the micro-
analyticity of micro-local solutions of these operators propagates up to the
boundary.

Introduction

In [17], we have introduced the notion of “mildness” for hyperfunctions on
a real analytic boundary (say, x,=0); that is, a subclass of hyperfunctions de-
fined in one side of the boundary which have boundary values for any normal
derivative of finite or infinite order. Furthermore we have developed several
operations on mild hyperfunctions, and have simultaneously formulated them
micro-locally. In this paper, employing these tools, we formulate boundary value
problems in a micro-local situation and study solvability or a kind of regularity
for them.

Set M=R"=(x,, x'), My,={xeM; x,20} and N={xeM; x,=0}. Let P(x,
D)=Dp+Py(x, D)D" *+---4 P, (x, D’) (where D;=3/0x;) be a differential operator
of order m with real analytic coefficients defined on {x=M; |x|<#}. Then, as
seen in [17], every hyperfunction solution f(x) of Pf(x)=0 on {x&M; x,>0,
x| <r} is mild from the positive side of Non {x'&N; |x’|<#}. So the boundary
values (D{f)(+40, x’) j=0, 1, --- are always well-defined. But, once we attempt
to formulate them using only the theory of microfunctions, we will confront two
essential difficulties. Actually we can not define boundary values of microfunc-
tion solutions (say, defined on {(x; ip)=iS*M; x,>0, | x| <r}) in general.

Even if so, these boundary values are not unique as microfunctions on N
(consider the case P=D?%+---+D2%). To avoid these difficulties we use the micro-
localized notion of mildness, that is, the sheaf €y + on 1S*N introduced in [177].
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A germ u(x) of Gy, at py=(x}; ins)€iS*N defines a section of microfunctions
on {(x; in)€iS*M; r>x,>0, |x'—x|<r, Ip’—nl<r} for some small 7>0.
However the converse is not true. Further, sections of pseudo-differential operators
defined on {(z; )eT*X; z,=0, (z’; {")=pi, {,=C} operate on the stalk of Cwur,
at p;. As seen in [17], if P(x, D) is a pseudo-differential operator of order m
of the form D7+ P(x, D)D" 4+ P,(x, D’), the correspondence {(uelyimy;
Pu=0} —Hu(+0, x7), -, (DPFu)(+0, x")e(Cxy)™ is an injective sheaf homomor-
phism on iS*N. Thus by way of Cniy. boundary value problems are micro-
localized in a natural manner.

In the first section, we explicitly seek relationship among boundary values
of micro-local solutions corresponding to elliptic factors. It has already been
obtained implicitly in [15] and [26]. Then we construct the solution u(x) in
(Cwixy)® to the following system of pseudo-differential equations at p;EiS*N,

{ (DJ—A(x, D" Hul(x)=/(x)
u(+0, x)=ux’).

Here A(x, D) is a (k, k)-matrix of first-order pseudo-differential operators defined
at (0, xp; in) € RXiS*N, f(x) is a germ of (Cyix,)* and u,(x) is a germ of (Cx)*
at p) such that D,J—A(x, D’) is semi-hyperbolic in {x,>0} at pg; that is,
det(Z,]—o,(A)(x, 17"))=0has no root with positive real part with respect to £, when
0=x,<¢, |x'—x4|Ze, | n'—n¢| <e¢ for some ¢>0. Theorems of this type have been
obtained by many authors ([3], [12], [29], [8], [23], [14]), though they assumed
that P was a differential operator or P was micro-hyperbolic in both sides or
f=0. In the proof we employ the argument of analytic continuation of defining
functions due to Bony-Schapira and Kashiwara-Kawai ([3], [12]). Furthermore,
employing the micro-local Green formula in [17], we obtain the dual version of
this theorem. That is, for any C . -solution u(x) at py of P(x, D)u(x)=0 such
that P(x, D,, —D’) is semi-hyperbolic in {x,>0} at pj, the micro-analyticity of
u(x) as a section of Cy in {x,>0} leads to the micro-analyticity of all the
boundary values at p;. This is a generalization of the theorem by Kaneko £g],
where P is a differential operator and u(x) is a hyperfunction solution. For
operators micro-hyperbolic in both sides ([26]) and for non-micro-characteristic
operators ([27]), theorems of the same type have been obtained by Schapira.

In the second section, we prove the N,-regularity of diffractive pseudo-
differential operators. That is, assume that P(x, D)=D%4 P,(x, D")D;+ Py(x, D)
is a second-order pseudo-differential operator with real principal symbol defined
at po=(0, x7; ivyo)GiS*M;;N satisfying : a(P)(po)=1{o(P), x:}(p0)=0, {{a(P), xi},

(PO, xi, 70)<0 and do(PYAdxiAw(pe)>0. Here {,} is the Poisson bracket
and ‘w is the fundamental 1-form. Then for every C win,-solution u(x) of Pu(x)=0
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at pi=(x{; in}), all the boundary values (Dju)(++0, x") (j=0, 1) are micro-analytic
at pi if and only if u(x) is micro-analytic as a section of microfunctions on
Too— {po} (C{x:>0}). Here 7,, is the bicharacteristic strip through p, (cf. [21],
[6], [287). In the last step of the proof of this theorem we employ Bony’s and
Schapira’s results ([17], [27]) on non-micro-characteristic pseudo-differential opera-
tors.

A remark added in proof: In a recent paper of J. Sjostrand ([32]) a simi-
lar theorem for diffractive operators is obtained. In it, he considers solutions
satisfying the Dirichlet condition. On the other hand our result covers any
" solutions. The methods are completely different from each other.

§1. Micro-local boundary value problems

Let P(x, D) be a differential operator of order m defined in M={xsR";
lx| <r}. Suppose that N={x= M ; x,=0} is non-characteristic with respect to
P. Then, according to Komatsu-Kawai and Schapira’s theory of boundary value
problems (Komatsu-Kawai [197, Schapira [25]), any hyperfunction solution of
P(x, D)u=0 in {x&M; x,>0} has the unique extension #x)ely (M, By) and
the “boundary values” Xfo, -, fm-0EIN, B5)™ such that # coincides with u

in {xeM; x,>0} and Pﬁ:mﬁfj(x’)é‘”(xl). On the other hand this is directly
=0

explained by the theory of mild hyperfunctions. In fact, since » is mild on N
from the positive side of N (see [17]), ext(u)=u(x)Y(xn)ely (M, By) is well
defined and satisfies

P(x, Dyext (w)="3% 69(x)Quu(x’, DYDH)A0, x').

J k=0
Here {Q;.(x’, D")} are differential operators of order less than m— j— k induced by
P(x, D)and N. So we know that @i=ext (u) andf,(x’):zz__‘,:ij(x’, DX Diu)(+0, x7).

Furthermore, by the theory of the sheaf Cyx . and the exact sequence
0 —> Ayly —> —CBNIM+ —_> WN*€N|M+ —>0,

we can treat the solution u(x) or the boundary values (fs, -, fm-1) micro-locally
on iS*N (recall that ext and Trace are defined also for the sections of Cayipr,).
For example, on account of the above exact sequence and the Cauchy-Kowalewsky
theorem, the local hyperfunction solution #(x) of the problem

{ P(x, Du(x)=0  x,>0
0'u/0x{(+0, x)=f(x")  j=0, -, m—1

(1L.D
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for given hyperfunctions (fo(x’), <+, fm-1(x")) exists if and only if the problem
(1.1) has a €y, -solution at every point of iS*N (such a solution is unique at
every point of iS*N because P(x, D)ext (u) is uniquely determined by (fo, =+, fm-1)
as is shown below). The operator P(x, D) is also micro-localizable, too. Indeed
Cym, 18 @ (4 Py-module which contains 7y '@y as a subsheaf. Thus the micro-

local boundary value problems for pseudo-differential operators are formulated on
1S*N.

DEFINITION L.1. P(x, D)€ @%(c: SEX\S$X—iS*N) is called to have N as
a non-characteristic hypersurface if and only if the map ¢ : (SEX\SEX)N {c(P)=0}
—1S*N is proper.

Easily to see, each fiber of ¢: {(0, x'; {,, ip)eSFX\S§X; o(P)=01—
{(x’; in’}€iS*N is finite and its number counting multiplicities is locally constant.
Let m be this number. Then by Weierstrass’ division theorem for pseudo-dif-
ferential operators P(x, D) is decomposed into the product Q-R. Here Q and
R are sections of ¢xP%, Q is invertible and R has the following form:

R(x, D)=DT"+R\(x, D)D" "++-+Rulx, D),

with order Ri{x, D')<j. Therefore we will study essentially the pseudo-differ-
ential operators of this form.

ProproSITION 1.2. Let P(x, D)=DP~+Py(x, D)DP*+--+ P (x, D) (where
order P;<j) be a section of ¢xP%. Then the Cyiu,-solution of the problem :

Plx, D)u(x)=0 and &’u/ox{(+0, x)=Ff{(x") j=0, ---, m—1

Sfor given microfunctions “(fo, -+, fm-1)ECE is unique at every point of iS*N if
it exists.

PROOF. Let u(x) be a germ of Cyi, such that Pu=0 and (Dju)}+0, x)=0
for j=0, 1, ---, m—1. Then, easily to see, P(x, D)ext(u)=0 holds as a section
of Cy,ix. Therefore by Proposition 1.2.1 in [17] we have ext (u)=0.

Considering ext (u) instead of u, the analysis of micro-local boundary value
problems is brought to the analysis on S%,X. One of the advantages of the
micro-localization of the boundary value problems is that we can use not only
pseudo-differential operators, but also quantized contact transformations keeping

%.X fixed (see Theorem 4.2.17 in [16]). We give direct applications of these
tools.

ProroSITION 1.3 (Relationship among boundary values, cf. [151, [26]). Let
P(x, D)=Dp-+P(x, D)D"+ + Po(x, D') (with order P;<j) be a section of
txP% and let s be the number of poinis of zeros {{,=C; o(P)O, x5; &y, in5)=0,
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Re £, >0} counting multiplicities for a point (x4; in)EiS*N. Then there exist
sections of P¥, Qs(x’, D) (m—s<j<m—1, 0Lk<m—s—1), defined in a neigh-
borhood of (x4; int) such that every Cyy,-solution u(x) of Pu(x)=0 at (x{; in})
satisfies the following equations.

(12) (DI)(+0, x)="%"Qulx’, DYDI)(+0, ')
for m—s=j=m—1.

If P(x, D) is elliptic, that is, {{.€C; a(PX0, xi; Ly, in0)=0} NiR=, then (1.2)
s a necessary and sufficient condition for the solvability of the boundary value
problem P(x, D)u(x)=0.

We call the equations (1.2) “the relationship among boundary values”.

ProOOF. Consider the canonical extension of u,
P(x, Dyext (u):mz—)lfj(x’)(?‘”(xl) .
j=0

By the division theorem for pseudo-differential operators P(x, D) is decomposed
into the product P’P” of two pseudo-differential operators P/, PS¢ P% which
have the following properties: P” is invertible on {(0, x’; {,, inp")eS}X; x'=x|,
7'=%s Rel,>0} and P'(x, D)=Di+A(x, D)Di -+ Ax, D) (where order

A;=7). Therefore we have mﬁllfj(x’)ﬁ(f’(xl)e P'(x, D)Y({x'=xq, 5'=ni, Re {1>0},
=0
Cyix). We may assume 7,,>0 and apply the quantized contact transform g3
(use the formula in Prop. 1.1.4 of [17]). Hence it follows that
m-—1 . . ~
Z()(iCI)J(_Dn)]+lfj(x,)EP/(Cly %'y Deyy Do) ({x'=x0, 9'=1n0, Re >0}, o),
i=

where ﬁ’zﬁ;-P’(‘B“;)"l (see §1 in [17]). Now, using the formula (1.5) in the
proof of Theorem 1.2.3 in [17] expressing the residue modulo P’, we obtain the
following equation

% (—1y 827'+’f+1ﬁ;

f, S (3 S e T sermgr 0 #'3 0 Da))

x{(By S = Dof () fdw=0.

Here ﬁ{(w, x"; 7, {’)is the homogeneous part of ﬁ’(w, x', Dy, D) of order [ and
7 is a real analytic closed curve in C enclosing all the zeros of a(P')(0, x3; &1, 170)
((90)n=-+1). Since the left-hand side of this equation is a polynomial in {, of
degree less than s—1, it reduces to the following pseudo-differential equations for
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(fo; ) fm—l)-
(1.3) ’gB,q(x/, DYffx")y=0  for ¢=0, -, s—1,

where {B.(x’, D)} are pseudo-differential operators defined at (x}; ins)EiS*N
given as follows:

Bulats I W”“‘aﬁ{g Se-w( 2 Eerim
azj+r+1ﬁ/
X ggmrrger (0 375 0 D) (B Guwn—Dy)if (e Ndw)

Easily to see, the order of B,, is less than ¢-+1 and

1 or+ip /

runBx' s =g (], 5 G o G, 25 0,0)

x(Bigw, 25 0, ¢ W)~ L) dw)
Ly=0
Let a,(x/, T, -, a(x’, £) be the zeros of Ps(w x; 0, )_O‘(P Ww, x7; 0, )
=g(P")0, x'; —il,w, {’) with respect to w. Then, notmg that Piw, x'; 0, )
=(—1il) (w—a(x’, ) (w—ayx’, '), we have

Tar1(Big)(x’, {)=(— Cn)““

act {Sr(iw)qg(w—aj(xf} £y

%9 ([, O)au),

=2l R e, O

X(J1 Comap— 11 (w—ap)dw},

1=0

Here R is a sufficiently large number such that |a;| <R for every j. Therefore,

(1.4) Gon(Bo)(x!, C)=2n(—il, )" g1 8,, for 0=Vg<s—1.

Hence the pseudo-differential equations in (1.3) are solvable with respect to
(fo, =, fs-1). That is, there exist pseudo-differential operators C;,(x’, D)
€ Pl|ca); o> for j=0, .-, s—1, k=s, ---, m—1 such that (1.3) is equivalent to the
following equations:
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(L5) fj<x’>=j§10jk(x', DOfu(x)  for j=0, -, s—1.

To obtain the relationship among u,(x)=(Dju)+0, x’), we write f,(z’) as linear
combinations of u,, -, Upm-1:

I A B ol (M R~ R SN ED)

P gl B oxt

(Use the formula: D’f(Y(xl)f(x)):Y(xl)D’ff(x)—l—éD{‘l(é(xl)D’f‘ff(x)).) Remark

that this equation is solvable with respect to u,, -+, un_; in the following way.
L7 Ul xV=F gl XV Ej e (27, D) e (&)
FEjm-1f(x', D)fm_i(x’)  for every ;.

Combination of (1.5)~(1.7) yields the desired relationship (1.2). Conversely,
assume the relationship (1.2) among the boundary values uy(x’), ---, #m-i(z").

Then v(x)=FP(x, D)“(E}p‘j(x’)ﬁb(xl)) is well-defined as a section of Cyy on
b=

{0, x5; &, in0)eSFEX; o(PYO, xi, L4, ine)>=0 or Re{;>>0} (where {f}}; are defined
by (L.6)). Therefore, if P(x, D) is elliptic, v(x) is extended to {0, x¢; Ly, inh);
a(PY0, x{, 5, i95)=0 or Re{;=0} as a section of Cy,x. In particular, »(x) defines
a germ u(x) of éNIM+ at (xq; i) (recall that 5’N1M+:l;ECM+|X/\C§1X]iswx{m)/l*cmx
in Def. 2.1.5 of [17]). It is easy to see that Pu(x)=0 and (Diu)+0, x)=u,(x")
for j=0, ---, m—1. Thus the proof is completed.

LEMMA 14. Let (0, yq; iro) and (0, x5; ins) be two points in SEXMNIS*M and
@ be a real quantized contact transformation from a neighborhood of (0, ¥}; izy)
into a neighborhood of (0, xg; ine). Put Six, D,)=@y;0-' and R¥x, D,)
:Q)Dyj@‘l. Assume that SYx, D;)EPx-x.. Then @ defines sheaf isomorphisms :
CoixSChnix, CorpixCarx. Let k(X' y7) be the kermel function of the real
quantized contact transformation @' in N induced by @ in the following way :

(1.8) Q' y; @' *=8(x, D, 0, x"), O'D, 0" '=R(x, D, 0, x')

Sfor j=2, -, n. Here SUD,, x) or R¥D,, x) are the transposed normal ex-
pressions of S/ or R’ wvespectively; that is, all x-operators in each term are

disposed in the place latter than D -operators. Then the following formula
holds:

(1.9) @(5(y1)f(y’))=5(x1)-Sk(X’, YU yHdy”  for VA(yHeCy.

In fact, the contact transformation induced by @ keeps SEX fixed and so @
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defines sheaf isomorphisms CwxSCwix OF Carox3Cu, x (see Lemma 4.2.13 and
Theorem 4.2.17 in [16]). Furthermore the operators defined by (1.8) commute
with x, and satisfy the relationship: [R(%, D,., 0, x”), S*(x, D,., 0, x')]=6;3, -~ etc.
Therefore these operators define a real quantized contact transformation @’ in N.

Proor. Let K(x, y) be the kernel function of @. Then @O(y,) Xy —5F))

is given by K(x, 0, /). Use the theory on holonomic systems. We omit the
details.

REMARK. An arbitrary real quantized contact transformation keeping SiX
fixed is written as the composite of an inner automorphism and a quantized
contact transformation as above.

The following example is not covered by the proposition above. Nevertheless,
the micro-local Green formula is available to calculate the relationship between
the boundary values.

ExaMpLE 15. The following boundary value problem (where £=0, 1, --) is
solvable micro-locally at (xg; in)€iS*N (with 7,,>0) from the positive side
of N

{ Pu=(D?+xtDHu(x)=0 x>0,
(Diu)(+0, x)y=uxx") 7=0,1,

()
if and only if the relationship

(1.10) uix")+

Ia—1/(k+2) /1 vy
I'(14+1/(k-+2)) <i(k+2) D2> uo(x")=0

holds at (xg5; ins). Thus a fractional order derivative appears contrary to the
above proposition. Indeed the adjoint equation

tPv=(Di+xtD%v(x, ¥ )=0 x>0
w { v(+0, ¥/, ¥)=06(x"—y")
has a hyperfunction solution

v(x, y)=Cp0(x5—3) - 0(xn—ya)

X Stwl 71 U(“Z)‘/ZHE}@Z(Z}?TWZ[ xl(k+2)/2>€i”"”2'“>d‘0 )

where H{"(z) is the Hankel function of the first kind®and C, is a constant de-
pending only on k. Since the singular support of

0v/9x:(+0, ', y)=Ci-0(x"—3") Xgiwl 7 |2/ CEED g Tz



Micro-local theory of boundary value problems II 39

is also contained in {(x/, ¥'; iy/, iz’); x'=y’, n’+7'=0}, we can apply the
microlocal Green formula (see [17]). Therefore Suo(x’)(Dlv)(-}—O, x', ydx’
—-Sm(x’)v(-%—(), x’, ¥ )dx'=0 holds at (x;;in¢). This is just the relationship (1.10).

The sufficiency is also proved by using v(x, y’) as the fundamental solution of

@.

Next, we treat pseudo-differential operators which are semi-hyperbolic in one
side of the boundary (cf. [3], [12], [14], [8], [23]).

DErFINITION 1.6. Let P(x, D)=DP+ P(x, DYDT 4+ P, (x, D’y (order
P;<7) be a section of ¢,P%. P(x, D) is said to be semi-hyperbolic in the posi-
tive side of N at (xg; ing)<iS*N if the equation o(P)x; {;, 1%")=0 with respect
to {, has no root with positive real part when e2x, =0 and [ x'— x5l Se, |9 — 5l Se
for some positive constant e. We employ the same terminology for an equation
or for a symbol corresponding to such an operator.

As typical examples, we have P=D?—x4D% at (0;+idx,), P=D;—i(x,+x8)D,
at (0; idx,) etc.

REMARK. The terminology of semi-hyperbolicity is introduced by A. Kaneko
in [9]. This notion is deeply connected with “partial micro-hyperbolicity” defined
by Kashiwara-Kawai in [12]. That is, an operator semi-hyperbolic in the posi-
tive side of N at (x;; i%)=iS*N is partially micro-hyperbolic with respect to
the dx,-direction on {(x; ip)eiS*M; 0<x:<e, 9’0, [ X —x5l <e, |9 —nl <e}
for some &¢>0.

Now we give a generalization of the results on the solvability of boundary
value problems obtained by many authors (see Introduction). We first recall the
following lemma.

LEMMA 1.7. Let U be an open subset of iS*N with proper convex fibers.
Then the following Dx-sheaf isomorphism holds {cf. Proposition 2.1.21 in [17]).

(x| RCyix == (exlvo )l Asylr )/ Auln s

where Fy=F.NF-={(0, x'; wy, iv)eSyX; w:=0}CiSM and particularly Aylr,
ZjM_lpo holds (see Definition 2.1.15 in [17]).

Proor. Calculate R(zy|y) BeCyix in the same way as in Proposition 2.1.21 in
[17]. We omit the details.

THEOREM 1.8. Let A(x, D") be a kX k-matrix of pseudo-differential operators
of order less than 1 defined in a neighborhood of (0, xi; ins)Ee RXiIS*N. Suppose
that det ({,—a.(A(x, D)) is semi-hyperbolic in the positive side of N at (xy; i70)-
Then for every germ f(x)="f:1(x), -+, felx)EChs, and every data v(x)="(v,(x"),
v, v(X'NECE at (xg; in0), there exists a unique solution u(x)=*(u.(x), ---, ux(x))



40 Kiyémi KATAOKA

& Chyy, such that:

(D —A(x, DY ulx)=F(x) )
{ at (x4; 170) .
u(+0, xY=v(x’)

REMARK. Easily to see, inhomogeneous initial value problems for single
pseudo-differential operators which are semi-hyperbolic in the positive side of N
are reduced to this theorem.

Proor. Without loss of generality we may assume that »(x")=0, (x; in)
=(0; 1dx,) and that A(x, D’) is expanded into the following power series

Alx, D= 2 ar(n)D5 .

=(lg, iy

Here L moves over all multi-indices such that l,eZ, [,=0, ---, [,=0 and | L]
=[+--+1,=1. {a.(z)} are holomorphic functions defined in

Q={zeC"; |21 <R, |2|<R}
satisfying

sup [an(z)| S BA—[LD1 pHetei,

where lay(z)l=max |a?%z)| and B, b, ¢ are positive constants (cf. [4] §2 and
.q

£12] §2). In particular A(z, D’) is a section on {(z; {)e P*X; |z;|<R, |Z’| <R,
{1 <cle| for j=3, -+, n}. Furthermore by the semi-hyperbolicity in the posi-
tive side of N we may assume that:

(1.11) det &I —o(A)z, L)) never vanishes on {(z; )eS*X; y,=0,0=x,<R, |2/]
<R, [G1<cellel for j=3, -, n, —Im (/C)> B(|y" |+ 3§3llm(C1/C2)l)}-
(Apply the ordinary hyperbolic inequality to det({J,—a(A)2% 2o, -, 25, T
[3], [12]). By the softness of C’N,M+, it may be assumed that f(x) is a section
of C%, on {lx'| <R} with support in
U={(x"; in"); |x'1<r, [9;1<rp.  for j=3, -, n},

where r<min (¢/2, b/6, R/3) is taken small enough later (depending only on
R, b, ¢, n). Since DJ,—A(x, D) is invertible on {(0, x"; ;, in)eSEX; | x| <R,

177j|<%0772 for j=3, .-, n and [{,[>Tx,} for a sufficiently large number

T, w'(x)=(D,—A(x, D)y ext(f(x)) is defined as a section of Ckix on
O, x"; &, ipHeSFX; {x'I<R, [LI>T|9'} with support in {(x”; ip))el,
&1 >T1%’|}. By way of the ¢x+Py-sheaf homomorphisms
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CRixlisewso —> Cxixliswose/ t+Cix > R'tCyix

1w’ (x) (modulo (rxCwix)*) is identified with a section of (RCxyix)* on {(x'; ip’);
x| <R} with support in IU. By the preceding lemma and the cohomological
triviality of the sheaf Ay|y, we have a section G(z) of (JZM,r[FO)’Z on {(x"; iv")
€iSN; | x'| <R, (x'; wwHeUY={(x"; v); vZ|xI<RIJ{(x"; 1v); | x| <R,
vo=r(lvs| 44| v.l)} such that {—2—}5G(2) log zl} coincides with 4’ as a section

of (C3ixlisrwxe)® modulo (exCxix)¥. On the other hand by Prop. 2.1.21 [17], f(x)
is identified with a section F(z) of (Ay,)* on {(x'; in"); 1x'|<R, ve=r(Jvs]
G+ v, )} modulo (Aylx)®. Especially for sufficiently small numbers R/, R”

G(z) is holomorph1c on {ZEC”' | x |<2 R, R’>yz>7’<1y3|+ +lyal+ |1§ill>}

U{ZEC"‘ r<|x’ l< R z,=0, y—O} and F{(z) is holomorphic on {ZEC”;

1< 2R, <R, 91, R e (il bt a2 L)

U{ZEC"; r<|x’} <—§;R, z,:=0, y’zO}. From a technical reason we divide G(z)

into a sum G’(z)-+G”(2) of vectors of holomorphic functions such that G'(z) is

H o . I4 2 ’ | 121[ '
holomorphic on D_{zec ; |¥I<5R R > 52> (1pal 4+ 12al+ iz )}v{z

S ;|X’|<%R, yz>27(1ysi +-~+|yn|—]—l;i,> R, yzle} and G” is holomorphic
on D" ={z e C";|x’ |<§R R'>3,>2(135] + -+ +13nl +‘;1,,l) R'}. Infact be-
cause D'V D"={zeC"; || <§2R, y2>2’f< lysl + - +lyal + !;3} >_R'}

is a Stein domain, this is possible. From the assumption on G(z) it follows that
G’(z) is holomorphic on D:{ZEC"' | x’ |< R, y2>27(|y3]+ A+l yal+ ‘;i,[)}u
{r< [ x'] <%R, z:=0, y’:()}. Furthermore the boundary value of G’(z) coincides
with u’(x) as a section of (R',Cy x)* on {(x’; in’); 1x| <%R}. So, from now

on, we use G'(z) instead of G(z).

Now we recall the operations of pseudo-differential operators on holomorphic
functions ([4], [127). Let H(z) be a vector-valued holomorphic function defined
in an open set W. Then for a positive number ¢,

Az, DVHE= 3 an()DEHE, 3 Tzaf(i)lﬂ (a syt -t
><D5§~~D§gH(zl, S, zg, v, Zp)ds

is well defined if zeWNR, |z—ic|<b and 7({z}u{wecn; W=z, wy=ic,
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lw;—z;] é—i—]zz——iel j=3, -, n})CW, where 7 denotes the convex hull (see [4]).
Set e=min (b/2, cR/6n). Then A%(z, D)G’(2) is holomorphic on {zEC"' FARY

wi<zr, 131 <r, 33213l ot Ll H B U e e 2=0, y/=0, 1<
<2} if 0<6< R, |e+3ri<b, 2r+ e (3r+e)<1 R and 1(23" +n (H— ZVn
-(3r+s)><1—6r—. Easily to see, we can take r and d satisfying these conditions.

Note that the boundary value of A%z, D)G'(2) is equal to A(x, D)u'(x) as a
section of (R%Clhix) on {(x"; in’); 1x'[<2r}. So (DI y— A%z, D")G'(2)—F(z) is
holomorphic on {zeC™; z,=0, ¥y'=0, |x'[ <2r}. Consequently for a sufficiently
10nr

small positive number 7, (7’0 (3r4-¢), and r0<r> G’(z) is holomorphic on

V—{zEC" | x! 1< R, y,=0, yz>3r(«/n ly/'l'*“;i/])}

5 , R . — Xl
U{Zr<lx l<7, =0, yz>3r(«/n [y + R,,) ro},
and (D, ,—A%(z, D"))G’(z) is holomorphic on
«{zeC" | x/ ]< 7, ¥y1=0, 0= %, <7y, 'ro>y2>3r\/n—ly”l},

woere y'=(ys, =+, ¥z). Now using the assumption (1.11) on the semi-
hyperbolicity of P, we will show that G'(z) is extended analytically to {zEC”;
0= x,<ry, | 27] <—§—r, yi=Yy=r=3,=0, O<y2<1'1} for a sufficiently small number

r>0. By Lemma 227 in [17] this implies that the boundary value u(x)=
G'(xy, %210, X3, *+, x4) of G’'(z) defines a mild hyperfunction from the positive
side of N. Hence u(x) is the solution in C% ., of (Dd,—Alx, D'Vu(x)=F(x) at
(0: idx,). To do so, we employ Lemma 4.3 in [12]. Consider a family of real
analytic functions which are convex with respect to y”:

o1, 3, s yn)={47'«/7f+(e“1—l)(4r«/n_+l)}«/ly”lz+22+7‘< - _L)
B—x1 B

for 1=2>0, §>0. We claim that G’(z) is holomorphic on VUK\JM{ZEC"; ¥:=0,

ya=0 022, < B, 12/ |<R/2}D{z€C™; y:=0, y"=0, 3,>0, 0=x,<p, | x| <R/Z}

if the following conditions 1)~5) are all satisfled: Set S;={z€C"; y:=0, y.=0;,

0= x,<B, | x| <R/2}.
1) S,CV; this is satisfied if B*<R”/3r.
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2) Sin{lx’|>5r/4 or |y"|>p}CV, where p is a constant to be specified
below ; this is satisfied if f<7,R”/3r and 38/+/n R"<p.
3 SAVC{y,=0, 0= x,<ro, |2/ |£5¢/4, 3ra/n | 37| <y.<ro for ¥ie(0, 17;

this is satisfied if g<r, and 3r<«/n—pz—{——‘87)<ro.
o) Forevery €SV, 1)U WEC; wimat, womis, |w,—2}] S| d—icl

for j=3, -, npHc VU l;,}gl Sy ; taking account of the convexity of {y.=¢i}N
{z;=28} and the inequality 7o+ 1667”
Sr/n D) <drvn .

5) At every point of S;\V, the inequality 8¢,/0x,>B(|y”|+¢p,) holds (see
Lemma 4.3 [12]), where B is the constant appearing in (1.11); this is satisfied
if p<1/B.

Clearly we can take § and p so that they satisfy all the conditions 1)~5).
So by using Lemma 4.3 in [12] and Holmgren’s argument, our claim is justified.
Since ext (u)— (DI ,—A(x, D))" ext (f)€e«Cl% x, we have (D J,—A(x, D)) ext (u)
—ext(f)e(Dd,—A(x, D)) cxC% x. On the other hand (D.J,—A(x, D))ext (u)
—ext (f)=Trace () Xd(x,) always holds. Hence from the division theorem for
Cyix (matrix case) we obtain Trace (u)=0. Thus the proof is completed.

(e+2r+r)<e, this is satisfled if (e%—1)

COROLLARY 1.9 (Half solvability, cf. [8], [231]). Let P(x, D)=D}+
Py(x, DYDP*+---+P,(x, D) be a semi-hyperbolic pseudo-differential operator of
order m in the positive side of N defined on ¢ *((xt; ino)). Then the sheaf homo-
morphism

P(x, D): Cypx2u —> PucCu,ix

s isomorphic on () *((x4; ine)). In particular when P(x, D) is a hyperbolic
differential operator in the positive side of N defined at (0, x;)EN, the sheaf
homomovrphism

P(x, D): Ky (By)Du —> Pucdly (By)
1s isomorphic at (0, xp).

Proor. It suffices to show the solvability of Pu=f in Cy, x at every point
Do () (x5 ; ina))MiS*M for every germ f&Cy,x. Considering the surjectivity
Hy (Bu)—Cu,x/Cxix at p, (Proposition 4.2.10 in [16]), f is written as f=[f"]-+g
at po, where f'€H%,(By) at (0, x3) and g€Cxnixlp, Now we consider f/(x) as
a section of Cyy,. Then according to Proposition 2.1.10 in [17], the quantized
Legendre transform Bi(/)(C:, x*) ((x5; ing)E Vi is represented by a section
A, x) of 80 defined on {({, x)€CXR*'; Rel,>0, |x'—x;| <8}. Divide
A, x') into a sum A, x)+ AL, x') of sections of B, where A, is defined
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on {&,=C; Rel ;>0 or |&>2]t]} X {x"; |x'—xi]<d6} and A, is defined on
{£;eC; Rel,>0 or |G| <2l x {x”; |x'—x5| <8} (where poe=(0, xq; ito, i70)
and 7,=H1=¢). Note that (89 (A)ECrmxlp, and (B (ADE(ECupxN
C¥ xlissnxe)ial; i) Consequently f7 is written as a sum ext(f”)4-g’ at p,

where f”eC’NlM+I<x;);i,7;)> and g'€Cyixlp, So we have f=ext (f")+(g+g’) with
f”eC’NlMJr}(x;); i,> and g+g'€Cyixlp, Furthermore by using the division theorem
for Cyix, g+g’ is written as Ph—l—jz—:,:vj(x/)(?(f)(xl) with h€Cwixlp, and (vy);€
C¥le,; i,>- Thus the equation is reduced to Pu=ext (f”)+7§§vj(x’)5(”(xl). This

is solved by the preceding theorem.

In the rest of this section we shall treat the problems of propagation of
micro-analyticity of solutions up to the boundary. First of all we formulate
these problems in a micro-local view point.

DeFINITION 1.10. Let P(x, D)=DP+Pyx, D)DP 4+ Pp(x, D’) be a
section of ¢ P% of order m. Then P(x, D) is said to be Ny-regular (N.-regular)
at poeiS*MﬁNﬂSiﬁX if the following condition is fulfilled: If a germ u(x) of

CM+IX[\‘9[%S*MI,} x(Cy) (resp. C)M_IXmﬂ[gS*Mﬁ ~(Cy)) at p, satisfles P(x, DyueCy y,

then u belongs to Cuixlp,. We remark that this concept is invariant under
quantized contact transformations keeping Si,X fixed.

REMARK. P. Schapira defined the N-regularity in [26]. This is obtained
by replacing Cu,ix by Cy in the above definition.

COROLLARY 1.11. The operator P(x, D) is N-regular (see Schapira [26]) at
po tf and only if P is Ni- and N_-regular at p.

ProoOF. Recall the definition of N-regularity. Then the assertion follows
directly from the exact sequence,

0—Cyix —> CM+[X DCyox —>Cy—>0
at p, (see Proposition 4.2.10 in [16]).

The meaning of N,-regularity is explained as follows (cf. Schapira [26]).
We assume that ¢(P) has a zero of order s at po=(0, x¢; i%0,1, 1%0) With respect
to ;. Let v(x) be a €y, -solution of P(x, D) at (x5; iyp). Suppose that v(x)
is micro-analytic near p, in the positive side of N. By this terminology we will
mean that ext(v) is zero as a microfunction on {(x; ip)EiS*M; e>x,>0,
|x’'— x4 <e, |p—mnol<e} for some &>0. Considering that ext(v)ECy, ixN
Jf?swﬁ ~(Cy) at p,, we then obtain that ext(v)&Cwyy at p, from the N,-

regularity of P at p,. On the other hand by the same argument as in Proposi-
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tion 1.3, we can show that this is equivalent to the s-relations among boundary
values v(+0, x), .-+, DP'0(4+0, 2). In other words the s-boundary values
corresponding to the zero {;=iz,,, of multiplicity s vanish at (xg; ¢9;). Therefore
this means that the micro-analyticity of solutions propagates from the positive
side of the boundary up to the boundary.

THEOREM 1.12. Let P(x, D)=D7P+ Pz, DD *+---+Pnlx, D) be a pseudo-
differential operator of order m defined on ¢ *((xg; ine)) with (x5; ing)EtS*N.
Suppose that *P(x, D) is semi-hyperbolic in the positive side of N at (x§; —ins)-
In other words, the equation o(P)Yx; Ly, in")=0 with respect to £, has no root
with negative real part when e2x,20, [x'—xi|Ze, |9 —nil=e for some ¢>0.
Then P(x, D) is Ni-regular at every point of ¢ ((x7; iayé))r\iS*M. (Cf. Kaneko
[8] and Schapira [26]).

Proor. Fix a point p,=(0, x5; 70,5, ipé)eiS*M;;N. To show the N.-

regularity of P at p, we may assume that {{,&€C; o(P)0, x5; Ty, ine)=0}=
{inoa}. Set M=MXR"'=(x, y)=(x1, =, Xn, Vs, ==, ¥n)and N=NXR" % We
remark that, as an operator on functions in (x, y"), *P(x, D) is semi-hyperbolic
in the positive side of N’ at (xg, xo; —in, ine)€iS*N’.  So the following boundary
value problem has a CA’N,“;,;L-solution uy(x, vy for every k=0, ---, m—1:

{ YP(x, Dyuy(x, y)=0,
Dl ui(40, 27, 3)=05:-6(x"—y") §=0, -+, m—1
at (x5, xb; —ins, ins). Let v(x) be any germ of C’M“Xmﬂgswﬁzv(cﬂl) at p, with

Pv(x)eCy x. By the division theorem for Cyy we have a germ v'(x)=Cxyx at
po and germs fo(x"), -, fm-1(x") of Cy at (x¢; iny) such that P(x, D)v(x)—

v/(x)):mz_)lfj(x’)(?(”(x,). Recalling that P is invertible on ¢ ((x{; ino)— {po},
=0

w(x)=v(x)—v'(x) is extended to a germ of fCyu, ixNCx xlistuxe at (x4; 190).
That is, [w(x)] is a Cyx,-solution of P at (x§; in¢). In order to prove our
theorem it suffices to show that fi(x")=:=f,_(x")=0 at (x¢; in;). We apply
the micro-local Green formula to this case (§2.2 [17]). Indeed since
SS (D% uk(+0, x/, yNC(x!, 351, 17'); x'=y', »'+7'=0} for j, k=0, 1, ---, m—1
and SS (ext [w(x)])=SS (w(x))C {x,;=0}, the conditions are all fulfilled. Therefore
we have fi(y)=0 at (xg; in,) for j=0, 1, ---, m—1. Thus the proof is completed.

To conclude this section we give an opposite example.

ExAMPLE 1.13. P=D%+x%¥*D% (k=1, 2, ---) is neither N,- nor N_-regular at
(0; +idx,) (see Example 1.5), because it has a solution with singularity in x,=0.
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§2. An application to diffractive boundary value problems

We apply the results in §1 and [17] to prove the N.-regularity of diffractive
operators, for example P=D!—(x;—x,) D% (cf. [6], [28]). They are neither
operators treated in §1 nor operators studied by Schapira in [27].

Let P(x, D) be a pseudo-differential operator of finite order with real principal
symbol defined at p,=(0, xi; ipo)eiS*M?W(N——iSj‘;M. We consider the most

generic case of diffraction, that is,

2. {0<P><ﬁo):0y {o(P), 2} (p0)=0, {{o(P), xi}, a(P}(p0)=0,

Ho(P), x:}, 23 (p)=0, do(P)Ndxpo)=0.
In fact, let (x(#); in(f)) be the bicharacteristic strip for P passing through
po=(x(0); ip(0)). Then we have dxl/dz‘(O):%{a(P), x:}1{pe)=0 and d%x,/dt*0)

=—A{a(P), {6(P), x}}(po)>0. So the bicharacteristic strip is strictly tangent to
{(x; in); =0} at po.

By the condition {{¢(P), xi}, x1} =0%¢(P)/0{?x0 we may assume that P is a
pseudo-differential operator of second order written in the form: ¢(P)={i+
alx, Y +allx, &). Here a,, a, are real valued when x, {’ are real and ¢(P)=0
has a double root {;=i%,, for (x; {')=(x,; i7e) by the condition {a(P), x:}(pe)=0.
Therefore by a suitable real contact transformation keeping {x,=0} invariant,
ag(P) and p, are transformed into o(P)=Ci47(x, {’) and pe=(0; 0, in). Noting
that 7(0, int)=0and 8r/0x(0, in5)=(1/2){{a(P), x.}, o(P)} =0, we can write »(x, {’)
as —(xi—o(x’, I'Valx, {'). Here ¢(x/, &) and a(x, &) are real valued analytic
functions homogeneous of degree 0 and 2 with respect to &’ respectively. Further
(0, 70)=0, a(0, »)=0. Since de=x0 follows from do(P)Adx,*0, we can take
olx’, ')=x, Thus o(P) is transformed into the following form:

(2.2) o(P)=0—(x1—xa{x, ) at pe=(0; 0, ino).

Here a(x, €') is a positive valued real analytic function homogeneous of degree
2 with respect to & defined on a neighborhood of (x; &)=(0; 7¢) (we have
chosen a>0 because in this case the bicharacteristic strip passing through p, is
contained in {x;=0}).

PROPOSITION 2.1. We inherit the notation from above. Let u(x) be a section
of C’N,M+ defined on a neighborhood U of pe=t(po). Assume that P(x, Dyu(x)=0
on U (particularly P(x, D) is defined on X U)). Then there exists a section v(x)
of Cxuy on U whose support is compactly contained in U such that Pu{x)=00n U
and v(x)=u(x) at pi.

ProoF. We may assume P(x, D)=D}—(x:—x,a(x, D). We denote by
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7(=(x(t, p); in(t, p)) (—6=t=9) the bicharacteristic strip passing through
p=7,(00 {a(P)=0}, that is, (x(¢, p); 5(t, p)) is the integral curve for Hycp.
Without loss of generality we may assume that 9/0x,((x;—zx2)a(x, n'))>0 on
{lxil<ea, (x;ip)eU}, which implies d*x(¢, p)/di*=2dxn(t, p)/dt>0 there.
Choose positive numbers 4, ¢ and a neighborhood V&U of pg such that the
integral curve (x(z, p); =n(f, p)) is defined as an analytic mapping (¢, p)—
(x(t, p), 7(t, p)) from [—8, 81X {(x; 7); o(PXx, 7)=0, |x:| e, (x'; inHEV} to
{(x; 9); Ixl<a, (x';ip)eU} and satisfies x,(x0, p)=2¢ for every pe
{o(P)(x, 9)=0, |x.|=e, (x'; inyeV}. By the softness of Cyu,, there exists a
section w(x) of Cyy, on U with support in V such that w(x)=u(x) on a
neighborhood of p;. So the support of P(x, D)w(x) is contained in V\{pe}.
Consider f(x)=ext (P(x, D)w(x)) which is a section of Cy_ ix on {(x1, x"; &y, i9”)
eSi,. X x:<, 7'*0} with support in {(x,, x'; {, i9)eSH,X; x.:=0, %'=0,
5 i) E VNN Uz, 275 oy i9)ESE, X5 0= <2, Al =17/, (x5 i) VAIT}
for a small number 0<A<e¢, and a small neighborhood W&V of p{ in 1S*N. By
the flabbiness of €3 we can cut the support of f(x) in {x,>0} such that (the
support of f(x)N{x;>0} is contained in {(x, x"; in, ip)EiS*M; 0<x, =y,
Al =iyl (75 phe VAW}. Here p<Ais a positive number such that the
intersection of the bicharacteristic 7,(¢#) passing through p, with {0=x,=g} is
contained in {(x; in)eiS*M; (x'; ip)eW}. P(x, D) is of real principal type
and the support of f(x) has a compact intersection with every bicharacteristic
strip {7,(2)}. Therefore we can find a section g(x) of Cy satisfying P(x, D)g(x)
=f(x) defined on {(x; ip)€iS*M; | x| <4 7'=0, (x'; ip/)eU} with support in
K=[(support /)NiS*MII[{| x| <A N {re(2); 2] =0, p(support /HN{c(P)x, 1)
=0}}]. By the flabbiness of Cy and By, there exist sections G.(x), G_(x) of
By on {|x;] <2, x'==xy(U) with support in {x,=0}, {x,=<0} respectively such
that g(x)=[G+(x)]+[G_(x)] holds as a microfunction on {|x,| <4, (z’;iyp)<U}.
Consider the difference r(x)= ext (w(x))—[G.(x)]. This is a section of Cy, 1y 0D
{(x1, 275 Lo ip)ESH,X; 0= 2,<2, 5'%0, (x'; ") U} and it satisfies P(x, D)r(x)
= w(+0, x6 (x)+(Dw)(+0, x76(x)+1(x)—P(x, D)LG(x)] = w(+0, x)0'(x)+
(Dyw)(+0, x)0(x)+P(x, DILG-(x)]€l(U, (¢7)+Cx_1x). Noting that (¢MsCuoxN
(e)4Ca_1x=t+Cx1x, We have P(x, D)r(x)el(U, txCxx) and r(x)E (U, ()sCiyix
NCiixlisswxea) Since [Gil=—[G.]€Cymx on {(x; ipEiS*M; x,=0, 5'=0,
(x"; ipYe U\e(KNn{x:=0})}, [G+(x)] represents a section of ¢xCxx on UN(KN
{x,=0}). Therefore »(x) defines a section wv(x) of Cwyx, on U with support
compactly contained in UU. Then Puv(x)=0 on U and v(x)=u(x) at p;, because
(K {x;=0}) is compactly contained in U\{p;}. This completes the proof.
Assume that P(x, D)=D3—(x,—x,)A(x, D) is a second-order differential
operator defined in a neighborhood of the origin and that o(A)Xx, &)=0 for
every x and every & &R"'. On account of hyperbolicity of P in {x;—=x,>0},
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any hyperfunction solution of Pu=0 defined on {x;>0, | x| <R} can be continued
to {|x|<r, x1;—x:>0U{|x| <R, x:>0} as a solution for a small >0. Then
this solution is identified with a solution defined on {(#, x)eRXR"; 0<i<],
lx}<7, x;—tx:>0} of the following system of differential equations:

{(Di—(xl—Xz)A(x, Du(t, x)=0,
D.u(t, x)=0.

We can consider the boundary value of u(t, x) to x,—fx,=0, which in its
turn satisfles a certain equation. Thus by means of the artificial variable ¢ we
can paraphrase the problem of propagation of regularity by this new equation.

We want to apply this argument to the general case; that is, P(x, D) is a
pseudo-differential operator in (2.2) and u(x) is a micro-local solution (that is,

C wiu,-solution) of P(x, D)u=0. To do so we must employ the method used in
Theorem 1.8.

LEMMA 2.2. Set

U:{(07 x,; Cl; 177,>ES,>7\§X: 7]n:+1; IC1|2+7]§++773;—1<52} ’
and

K.={0, x'; wy, iw)eSu, Xly; vazev(—uditvi++vio}

(where (£)s=t if t=0, =0 if t<0). Let f(x) be a section of Duiy, such that
ext (f(x)) represents a section of R ww/x|uv)Cwix; in other words, for a suitable
closed set ACU which is compact in every fiber of mwy/x, ext(f(x)) can be con-
tinued to SE¥X—A as a section of Cyix. Then f(x) is written as the boundary
value of a section of (tlg,)xAu,. (As for the definitions of Sy, X, Au,, see
§2.1 in [177)

PrROOF. We denote R'I'g, xtyixOx[1] by ¢my, where ry,x is the projection
from the monoidal transform ¥X of X with center N to X (see CH I in [24]). Then,
Proposition 1.2.2 in CH I in [24] shows that Cyix=Rrirnk gy xQwy x{n—1],
where ¢’ : DNX:(I/Z)SNX;; SEX—StX, n’: DyX—SyX are canonical projections.

Using this expression, after a direct calculation of derived functors (cf. Proposi-
tion 2.1.21 [17]), we obtain R(zy, x|)iCrxix=R(z|x)xqmx[—1] with K;={(0, x’;
wy, 10)ESKX; va=ed |wy|2+vi+-+vi )} (the dual cone of U). Set K.=
{0, x7; wy, (v)ESy.X; va=ev(u)i+vi+-+vi-). Note that K.NK_ =K,
gvix=qu.=qu_=qu,un_ o0 K, (as for the definitions of qu,, qu_, qu,un_, s€€
Definition 2.1.15 and the proof of Proposition 2.1.21 in [17]) and that the fibre of
K=K.\UK_ is cohomologically trivial (that is, a Stein manifold) for the sheaf
qu,usx_. Thus we have the exact sequence
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00— (TlK)*QM+uM_ - (T[K-;-)*QM.;. D Elxdsqu. —> (TIKO)*QNXX —>0.

This implies the lemma. We omit the details.

From now on, we assume P(x, D)=D?—(x,—xz)a(x, D’), where a(x,{’) is
the one defined in (2.2). In fact by inner automorphisms lower order terms are
negligible because do(P)Aw=0, where w={,dx,+ - +{,dx, is the fundamental
1-form.

PROPOSITION 2.3. Let P(x, DYy=D?—(x,—x5)a(x, D) be the pseudo-differential
operator as above, and f(x) be a Cwu,-solution of Pf(x)=0 at pi=(0; ino).
Assume that (9bs, -, nen)=0, in other words, do(PYAdx;Awx0 at pe. Set
M =RXM>(t, x,, -, xn), N={t, x)EM’; x;—tx,=0} 2(¢, x") and Mi={{, x)
eM’; x,—tx,=0}. Then there exists a hyperfunction g(t, x) defined on 2=
{4, myeM’; 0<i<], x;—tx:>0, | x| <r} with small >0 satisfying the following :

1) D.g(t, x)=00n Q. The canonical flabby extension G(t, x)=g(¢, x)Y(1)Y(1—1)
is mild from the positive side of N’ at every point of {(t, xYEN';0=t=1, 2’| <r}.

ily G@, x) satisfies the pseudo-differential equation P(x, D)ext(G(t, x))=0
as a section of Cuix[Cynixe in a  meighborhood of {(t, x; tedt+in’dx'+

Cud(xy—tx) €S, X5 x=0, 0511, Li=r=0, y’=1}.

i) g(+0, x) and g(1—0, x) arve mild on {xEN; |x|<r} and {xeM; [x]<
7, x1—x,=0} from the positive side of x,=0 and x,—x,=0 respectively. g(+0, x)
coincides with f(x) as a germ of Cyu, at pe=(0; inH)€iS*N and g(1-0, x)
coincides with ext (f(x)) as a section of Cy on {(x; ip€iS*M; x>0, x1—x.>0,
[x|<r, [p—nif <r}.

PROOF. After a suitable change of coordinates, we can take p,=(0; idx,)
(n=3). In the coordinate system u,;=x;—Xxs Us=2Xs, '+, Up=Xq,, P(x, D) 1is
written as D}, —wuia(ust+us, ', Dy,—Dy,, Dy, -+, Dy,). Hence the Weierstrass
division theorem for pseudo-differential operators admits the following decomposi-
tion

P(x, D)y=E(u, DYDY, —uB(u, Duw)Dy;—uiC(u, Dur))

in W={(w; D=(u+iv; p+tiv)eS*X; |w,|<2R, |w'|<R, |3;]<R|,] for every
j%=n} for some R>0. Here E(u, D,) is elliptic on W; B(u, D,.) and C(u, D,.)
are pseudo-differential operators of order 1 and 2 respectively defined on W such
that ¢(B)w, ), 0{C)w, 2) are real for real w, 2 and that o,(C)(u, £)>0 for
every (u; y)eS*Mf\W. Further, by taking R small enough, we may assume
that :

2.3) 22—uy0.(B)uy, w, )2 —u.0(C)uy, w’, A’) never vanishes on

{(w; DeW; Im w,=0, and Im (,/2.)>Iv%; (Im w’| +]Im ('/A)])
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if 4,20, Im (4/2,)>IvV—=u; if u;<0}.

Here I is a suitable positive constant. Then, as in Theorem 1.8, there exists a
constant d>0 such that, with respect to {w,=ie}, B%(w, D, )H(w) and
Cw, D )H(w) are well-defined if {w,—iel<d, |w;]|<2R, |w'|<R and H(®) is
holomorphic on y({w}\J{@ ; #,=w,, W,=1e, |W;—w;| =1/R)|W,—w,| for every
j=2, «-, n—1}).

Now return to the solution f(x). By Proposition 2.1, we may assume that
f(x) is a section of Sy .y, on N whose support as a section of ¢ wur, is contained
in a sufficiently small neighborhood U of ps=(0; idx,); and that P(x, D)f(x)=0
holds as a section of €y . everywhere on iS*N as well as P is defined. Since
Plx, D)ext (f(x)elW(U, t«Cy x) and P is invertible on {(0; {,dz;+idx,)eSHX;
=0}, for every £>0 we can take U small enough such that ext(f(x)) is
extensible as a section of Cy;x to

S”&X——{(O, ' G, inheSHX; [/ <k, 7]n>-1£«/]C1|2+77§+'“+77%—1} .

Hereafter we fix k2 and f(x). The constant k(< (1/2)R) will be chosen small
enough depending only on 7, R, d as specified later. Then by Lemma 2.2 f(x)
is identified with a holomorphic function F(z) defined on {z=C"; 6> y,> k{—x1)+
Fxi =@ H v yaaD), [ I<RIV{zeC™; y=0, x:=0, k=|x"{<R} for
some 6>0. Replacing F(z) modulo an element in Ay|y by the same argument
as in Theorem 1.8, we may assume that F(z) is holomorphic on

D={z€C"; y,>2k{(—x)+H(x1=0)s+ | y:|++1yail}, X 1<R}
J{ya+0>2-{(— 2 Hta—0)s | 31|+ F 1 ynal}, <2 <2R/3}

for some smaller 6>0. In the coordinates w, D is written as {weC"; v,>
2}3{(_ul_u2)++(u1+u2_5)++lV1+'U2!+lU21+"'+|Vn—1I}: ]u/l<R}U{Uﬁ+5>
2R{-}, R<|u’|{<2R/3}. Setting e=—min {d/2, R%/2+/n },

Qw, Dy)F(w)=(D},,—w,B(w, Dy ) Dy, —w.C(w, Dy ))F(w)

is holomorphic on {{u’| =2k, Jw.|<2R, W' |<R, E>v,>2k{(—u;—ts)s+{u+u,
=&t vt vel +lvel ++lvaoil}} if 2k+('\/n_/R)(3k+€><R, k+2R((n+1)/R)
(8k+e)<e, and 3k+e<d. These are fulfilled if 2 is taken small enough.
Remark that the boundary value of Q°%(w, D,)F{(w) is equal to

Qu, D) =D}, —uB(u, Dy )Dy—u,Clu, Dy ))f

as a section of R‘(nN,XIWQSEVX)!C’N,X on {|u’|=2k} (see Lemma 22). Since

E(u, D,) is elliptic on W and E(u, D,)Q(u, D,)f=P(x, D.)f=0 holds as a section
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of Rl(ﬂN/X|WﬂS:NX)ICNIX (thlS is true when k<R/2'\/ﬁ), Qs(w, Dw)F(lU) is holo-

morphic on Z= {|u,+u,| S&', |u'|S2k, (v, 20, vi+-+v%.,<6" for some &’ >0.
To prolong F(u,;, w’) analytically (cf. §4 in [12]), we introduce a family of
piecewise real analytic hypersurfaces {S;} (0<i=1):

Sa={(uy, wHERXC™ 1 vy=(Uy, Us, Vg, ***5 Vnei)
+2k(u+uy—0) . +2k(—us—uy,—2a)s, |u' | <2R/3, u<a}.

Here ¢; is given by

{(8kv'n +1)(e? @0 —1)+-8ka/11 } v/ A+ v+ vE_ +hiluy)
+h ul ZA/uZ—I—Wa —|——a>

with h;(t)=8k(~#*+1*—1), and « is a small positive constant specified later.
Choose a<min {6/2, d/4k, §'/2, 0'/12k}. Then we have SN\DC{|u'|ZE, a>u,
22V ud+(1/8)a’—a, vi+-+vi =da?/n} and S)\DCZ for every 2A<(0,1].
Therefore F is continued analytically to

DU U SZ:DU{|u’|<2R/3, WS, v,>
1220
(Bk/1 +1)(e! 0 — 1)+ 8ka/7 )/ DEF T 08,

+16%((—udeH(— s t2, /uz+g¥a2—%a)+)}

if the following conditions are satisfied :

1) S,CD; this is satisfied if 8kvn >2kQa+2+/n Ca/+/ 7)), that is, «
<(2/HVn .

2) For every (u}, w*) € SAD, r({(uf, wW\I{(ul, w'); we=ie, |w; — wi| =

(1/R)|ie—w}| for every j=2, ---, n—1}) is contained in U Sz,<C ¥} SX,UD);
Azl 12422

considering the convexity of S;~{u,=ul}, this is satisfied if k+(/n /R)e+E+
12ka)<2R/3 and e>12ka+[((8kvn +1)(e** ! —1)+8%+n )v/n +32P7(1/R)(e+E—+
12Fka) (use the formula A(¢,+1)=h(t)+16E]1,]).

3) At every (ul, w")eS;\D the surface S; is real analytic and non-character-
istic for Q(w, D,); that is, S; is written locally as {v,=¢;} and satisfies the
following inequalities at this point:

3 8901

SDZ>1«/u1(l(pz|+«/v R T 1+’ if 20,

90 rym i <o,
0u,
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(see Lemma 4.3 in [12] and the assumption (2.3)).

Easily to see, these are fulfilled if a<1, Iv/a <min {1/6, 8k}. Surely we can
take k2 and « small enough such that they satisfy all the conditions listed till
now and that % depends only on n, R and d. Consequently it follows that F(z)
is holomorphic on {z€C™; |x'| <R, ¥, >2k(—x1)++(x1—8) s+ | 1|4+ Vo1 )}
Vx| <2R/3, x1— 2= &, ¥1= Yo, ¥ > (81 + D)l @1tz _ 1) L 8FA/7)
VI A 2R 16k (s — 21— (3/Da+2v/ X5 (1/8)a%); +(x,—x1)+)} hence on

{zeC™; | x| <B, ¥2>16k-min {{—x1s, (x2— x4}, Y1=+=Yn-1=0}

for some small £>0. So G'(f, x)=F(x1, =, Xn-1, xn+i0Y{(x,—tx)Y(H)Y(1—1¢)
is a well-defined hyperfunction on {(#, x)eRXR"; |x|<f} with support in
{xi—tx,=0, 01 <1}, Set g(t, x)=G'(4, Olioct<t, zy-tep>0.  Then g, x) is a
hyperfunction defined in {0<t<1, x;—¢x,>0, |x|<f} and satisfies D,g(t, x)=0
there. Hence G’(t, )lizy-tz,>0 1S equal to the canonical flabby extension
g(t, )Y()Y(1—1t). Further, though we omit the proof, we can show the
mildness of G'(¢, x) on {x,—tx,=0} by prolonging F(w) analytically (cf. §2 in
[12]). Note that G’(t, x) defines a section [G’(¢, x)] of Copxi/Cxix: oD @

neighborhood of L={(¢, x; irdt+idx,+{id(x;—tx) €Sk, X' ; x=0, 0=, (=
=0} ; and that Q(u, D,)[G'(¢, x)] coincides on L with

HQ*(w, Dw)F (W)}t imuw = mtmw gm0 X Y(21— 2 ) V() V(1= 1) J1maaw =0
€0 @ Y1 —2:1)Y(1)Y(1—1).

(This is not a formal triviality. It requires a proof which is long, but easy. So
we omit it.) Therefore Q(u, D,)LG'(¢, x)]=0 holds on L, which is equivalent
to P(x, D)LG'(t, x)]=0 on L. It is easy to verify the claim iii) in the state-
ment of this proposition. Thus the proof is completed.

THEOREM 2.4. Let P(x, D) be a pseudo-differential operator with veal
principal symbol defined at po=(0, x{; iyjo)EiS*Mi;N——iS’;;M. Assume that:

{a(P)(po):{a(P), x} (p0)=0, {{o(P), x3}, 23 (po)=0,
He(P), xi}, a(PO, x5, 70)<0, do(P)ANdx;Awx0 at p,.

Then P(x, D) ts Ny-regular at po. In other words, this is equivalent to the
Sfollowing statement. Without loss of generality we may assume that P(x, D) is
a second-order pseudo-differential operator of the form D+ Pi(x, D')D,+Pyx, D).
Then any boundary value of a Cyy,-solution f(x) of P(x, D)f{x)=0 at pi=c(py)
is micro-analytic at pg if SS(ext (NN pN\{x:>0=@. Here 1,, is the bicharac-
teristic strip passing through p, defined in a small neighborhood of p,.
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Proor. We may assume P(x, D)=Di—(x,—x,)a(x, D’)and po=(0; idx,) as in
Proposition 2.3. So by this proposition, for the given solution f(x) there exists
a hyperfunction g(f, x) as described there. Hereafter we use the coordinates

(s, Uy, =, Un)=(t, Xx1—xst, Xy, +*+, x,). Therefore P(x, D) and D, are written in
the form:

{PZDil—(ul—(l—S)uz)a(u1+suz, w, Duy=5Dyyy Dyy, -+, D),
D,=D,—u,D,, .

By Weierstrass’ preparation theorem for pseudo-differential operators P can be
decomposed into the product R’R of pseudo-differential operators on L=
{(s, u; idun)ES”ﬁ};LX’; 0=s=1, u=0}. Here R’ is elliptic on L and R is a second-
order pseudo-differential operator of the form

R=D}—(ui—=(1—)ua)B(s, ©, Du)Doy—(us—(1—=)u)Cls, u, D).

Hence from ii) in Proposition 2.3 we obtain a pseudo-differential equation for
sections of C’M;,X,/CN,,X. on L,

(D% === 8)u) B(s, 1, Du)Dyy—(us—1—5)u)C(s, u, Dy} [ext (G)]=0.

Since R(s, u, D,) is invertible on {(s, u; AduiFiduy,)eSE X, u=0, 0<s<1,
A, €C\{0}}, this implies

R(s, u, D,)G=0

as a section of C’N,IM,+ on {(s, u’; idu,)€iS*N’; 0=s<1, u’=0}. On the other

hand from i) it follows that (Ds—u2Dy )G=D,(g(¢, x)Y(1)Y(1—1))=g(+0, u)d(s)—
&(1—0, uy+u,, u)d(s—1). Here g(-+0, u)=f(u) as a germ of Cwur, at (0 iduy)
€i1S*N, and, because P(Ds—uzDul)G:(Ds—uzDul)PGzo, g(1—0, ustusu’) is a
C’N.,M;-solution of R(l, u, D)¢p=0 at (0; idu,)=iS*N”, where Mi=/{(s, u)e

M ; s=1, u;=0}, N"={uesM/; u,=0}. Furthermore, recalling that g(1—0, u,
+usu’) coincides with f(u;+u., ') as a section of Cy. on {(u; wdu)siSE=M” ;
r>u >0, r>utu,>0, |u'| <7, [v—(0, -, 0, )|<r}, we can apply the N’
regularity of R(1, u, D,) to this case. In fact R(1, u, D,) is just the operator
D —u:B(u, Dy )Dy,—u,C(u, Dy) introduced in Proposition 2.3 which is hyper-
bolic to the codirection du, in {r>u,>0} for small »>0. So this is N/-regular
by virtue of Theorem 1.12. Remark that the punched bicharacteristic Strip 7p,—
{po} is contained not omly in {x,>0}, but also in {x;—x,>0}. Hence the
assumption SS (ext (N7, {x: >0 =@ leads to SS(ext (g(1—0, uy+us, w'NC
{u;=0} mnear (0; idu,)<iS*M”. Therefore by the N%-regularity we have
g(1—0, ustu,, u)=0 at (0; idu,)SiS*N” as a germ of C’N.IM;. Consequently it
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follows that
(Ds—usDy )G(s, w)=1(u)d(s)

holds on {(s, u"; idu,)SiS*N’; 0<s=<1, u'=0} as a section of Cyou,. Hence,
set
ho(s, u)=G(s, +0, ) and hy(s, u =Dy (D, GX(s, +0, u),

and take the boundary values on u;—-0 in these equations:
{ R(s, u, D)G(s, u)=0,
(Ds—up Dy )G(s, w)y=f(u)i(s).

Then we have the following system of pseudo-differential equations of frst-order
for sections of Cy. :

ho
24 {Dsl,— A(s, u’, Du')}( ' )2

(f(-l—O, u')o(s) )
hy

D (D, (A0, u")d(s)

on a neighborhood of {(s, u’; idu,)SiS*N’; 0=<s=<1, u'=0}, where

( 0, Dy, )
—(1=5)uiDz Cs, 0, w', Dy), —(1—s)uiD3i B(s, 0, u’, Dy)Dy, .

Recall that the supports of G(s, 40, ') and (Dy,GXs, +0, u’) are contained in
{(s, w)eN’"; 0=<s=1} by the definition of G. Hence ho(s, u’) and hy(s, u’) belong
to Cyipe at {(s, u'; iduy); s=1, w'=0}, where Ni\={(s, w)eN'; 1—s=0} and
Y’ ishja complex neighborhood of N’. Considering the injectivity of D,JJ,—A:
C’N,Jr|y,—>CN,+|Y, at (1, 0; idu,), we have, by (2.4), ho=h,=0 at (1, 0; idu,). So,
{SS (h)\JSS (A} NUC {0=<5<1~8} holds for some small 6>0 and some neighbor-
hood U of {(s, u’; idu,)=iS*N'; 0=<s=<1, w'=0}. Note that the determinant of
the principal symbol of D l,— A(s, u’, D) is given by

(2.5) A+A=s)ufoi(B)s, 0, w', A)A+(1—s)uieLC)s, 0, u’, ).

Here B, C have real principal symbols with a(C)>0 on {0=sZ1, u'=0, I’=
©, -+, 0, D}. In particular D,J,—A is elliptic on £,={(s, ' ; iv;, W)ESIS*N;
0<s<l, 0<us<e, [0/ <e, |va|++|vpil <evn) and hyperbolic on 2_={0<s<1,
—e<u:<0, {u'|<e, [vo|+ - +|vai| <ev,} for small ¢>0. Therefore {SS (hg)\J
SSINU'C{0=5<1—-5, u,=0, vs=0}\U {s=0} for some smaller neighborhood U".
Indeed, in £_, DJ,—A is a hyperbolic operator with small velocity of order [u,|%/?
(K ]uzl). Hence, for sufficiently small e’>0, every point of £2_NUn {det (vsl,—
o A)s, u’, v)=0, [u’'| <e’, 0<s=1—3, |yl |vny| <e&'v,} is combined with
some point of UN{s=1—6} by a bicharacteristic strip (for the symbol (2.5))
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contained in 2_NU. Consequently we can take U’ as above. On the other hand
in the regular involutory submanifold :

V={(s, u’"; iv;, 1v')EiS*N’; v,=0, u,=0},

the micro-Holmgren theorem of Bony (Théoréme 3.10 in [1]) is available. In
fact, since the micro-principal symbol of the symbol (2.5) along V is 4%, the
micro-analyticity of (h., h,) propagates along integral curves of 9/ds in U'N
{0<s<1, u,=0, v,=0}. Thus we have U'N{SS{(h)\JSS (A} {s=0}. At the
last step of the proof we use Schapira’s theory in [27]. Since N={xeM; x,=0}
={(s, u)YeN’; s=0} is non-micro-characteristic for D l,—A(s, u’, Dy.), DJ,—A
is a N-regular operator according to his theory (Théoréme 2.2 in [27]). Thus
(DI y—AYho, h)=4S(+0, u"), DyL(Dy f)+0, u)NR@O(s)E(Cyiy)* (where Y’ is a
complex neighborhood of N’} leads to “(he, h)ye(Cxiy)® at (0, 0; idun)eiS*N’;ﬁN.

Finally by the division theorem for Cyyy (see §1 in [17]) we have f(40, u’)
=Dz (Dy /)0, u)=0 at (0; idu,)=iS*N. This completes the proof.
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