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1. Introduction and Theorem.

In general it seems to be difficult to know whether or not a given initial
value is on a stable manifold. The purpose of the present paper is to give a
comprehensive example of initial values on the stable manifold through the well-
known equation (1.1) below (I. M. Gel'fand [3], H. Fujita [27).

In the preceding paper [4], the author showed that non-minimal® solutions w

2
of qu; +e¥=0 (—I<x<) with w(—)=w()=0 are conditionally stable as a sta-
tionary solution of
dv_ v | '
{ W——W"I—e (—i<x<l, t>0),
(1.1)
1 v(x, O=a(x) (—i< <),
v(—I, H=v(, t)=0 >0,

where [ is a positive constant. That is to say, there exists a manifold S, in
IjVé(—l, [), called a stable manifold, having the following property : if ¢ €S, then
the solution v of (1.1) converges to w as t—--oo, where W%(—l, [) is the subspace
of the usual Sobolev space Wi(—I, I) with norm || |; which consists of elements
satisfying the homogeneous Dirichlet boundary condition. On the other hand,
we know that w is unstable in the sense: if a<w (az=w) then v of (1.1) con-
verges to the minimal stationary solution wpy;, as ¢—-co uniformly in x, and if
azw (azw) then v grows up or blows up, where we write simply a%w for

a(x%%)w(x) (—1<x<!) (Fujita [2]). Thus we immediately see that initial values

on S, must cross-w. We shall describe the set S, more precisely later.
In order to state our theorem, we recall a famous result by Gel’fand [3]:

1) Wmin is said to be minimal if w(x) = Wmin(x) (—{<x<) for any solution w of the equa-
tion.
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There exists [, (=0.93:--) such that, when /<[, (1.1) has two stationary solutions,
when [=/, it has only one stationary solution, and when [>/, it has no stationary
solution. These solutions are given by

(1.2) wq(x)=a—2log cosh (2e%)'/2x (—l<x<)),
where a is a positive root of the equation
(1.3) e*'*=cosh (2e*)%] .

[Note: When [</, (1.3) has two solutions a,, a; (0<a;<a,), when [=[, it has
only one solution @,>0, and when [>[, it has no solution.] Since we are in-
terested in the non-minimal solution, we confine our consideration to w,, in the
case [<l, In what follows, we simply write w, @ for wa.,, @, respectively.
dw
dx
Our theorem now follows.

Note that <0 for 0<x <.

THEOREM. Assume that [<l,. Let w be as above. Suppose that given
ao, e €Wi(—1, 1) satisfy

(1.4) aoéwgal.

Then, there exists a 7 in 0=y=<1 such that the solution of (1.1) with the

Fig. 1
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initial value ya,+(1—7)a, converges exponentially to w as f—-o in the norm
I il if lae—wll, lla;—wl; are sufficiently small. (See Fig. 1.)
Note: If a,7%Fw (i=0, 1), then solutions »; of (1.1) with vi(x, 0)=ax) never
converge to w as t—-co (Fujita’s result).

In the next section, we prove this theorem by showing that ya;+(1—7)a,
lies on the stable manifold S, constructed in [4].

2. Proof of Theorem.
In the work [4], S, was defined as
@1 Sw=1{aeWi—1, I): a—weS},

where S is a stable manifold for the trivial solution u=0 of

%=(%+ew)u+ew(e“—l—u) (—i1<x<l, t>0),
(2.2)

u(x, O)=a(x)—wx) (—l<x<D,

u(—1I, tH)y=u(l, )=0 (t>0).

This S has the following property: If a—weS, then the solution u of (2.2)
decays exponentially as t—-co in the norm || |l,. (See Theorem 2 in [4].)
For the proof of Theorem, therefore, it is sufficient to show that ya,+(1—7)a,
—weS. To show this, we prepare some notations and lemmas.

Let X be Vf/é(—l, ) with the norm | « [=[(A¢+Bo)"* I 12c-1.1y, Where A, is
dZ
dx?
is a positive constant such that A,+f, is positive. We note that | | is equiva-
lent to | |, and that X can be endowed with the inner product (-,')=
(At Bo) 2+, (Ap+Bo)/*-)12. Let Y be the subspace generated by the eigenspace

the operator —( —|—ew> with Dirichlet boundary condition in L*—I, ), and S,

2
corresponding to non-positive eigenvalues of —(%Z——Few) in X, and Z be the

complementary subspace of Y. Let P, @ be projections onto Y, Z respec-
tively.

Lemma 2.1, The above S may be represenied by
(2.3) S={0b): be B},

where B={beZ: |b||<r} (r is some positive constant), and 0 is a continuous map ;
B—X, with Q0(b)=b for be B.

(For the proof, see the proof of Theorem 2 in [4].)
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LEMMA 2.2. Let 2, 2, be the smallest eigenvalue and the second smallest
one, respectively, of the eigenvalue problem

(dd;z“”)sbﬂsb:O (—i<x<l),

2.4)
—D=¢()=0.
Then H=D=90)
2.5) A=0<2,.

Also, let ¢y, ¢, be eigenfunctions corresponding to Ay, Ao, vespectively. Then, ¢,
does not change its sign in (—1, 1), and ¢, has only one zero in itf.

(We shall give the proof of Lemma 2.2 later.)

We show that ya,+(1—7a,—weS for some 0<y<1l. We may assume ¢, >0.
By Lemma 2.1 and Lemma 2.2, S may be expressed as

S={f(b)p+b: beBY,

where f(b)=(0(), ¢,). This f is a continuous functional on B. Set Ct=
fueX: uz=0, uzx=0}, C={usX: u=0, uz=0}. Then C* and C~ are convex
cones in X with the origin as their vertices, and they satisfy

(2.6 {pd,: p>0cCrCl{pdt+z: >0, z€2},
@7 {pds: p<OyCC-Clud+z: u<0, zeZ}.
The fist inclusion of (2.6) (or (2.7)) is trivial. For any ueX,
(u, p)=Ao+Bo)""*u, (Ao+ Bo)"/*P1)re
=(u, (Aot Bo)gv)re=(4+po)u, Pi)z2.

Since Ay+pf, is positive definite, 2,4+8,>0. Hence, (u, ¢)>0 if ueC*, and
(u, ¢,)<0 if ueC~. This shows the second inclusion of (2.6) (or (2.7)).

By Fujita’s instability results about w, C*"\S=¢ and C-"\S=¢&. Furthermore
we have

(2.8) Crnipd+b: peRYC{ug,+b: u>1f(b)} (be B),
(2.9) C-nipd+b: peRyC{ud+b: n<flb)} (beB).

Indeed, if there exists p=s(b) with p¢,+b<C*, then 0<u=s(b). Thus, by (2.6)
and the fact that C* is a convex cone,

F0)ps+b=(f(b)— p)h1+(peh1+b)eCH.
This contradict the fact C*"\S=¢. Thus (2.8) has been proved. Similarly (2.9)
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can be proved.
Let ||a;—w]<r (i=0, 1). We may represent a;—w as
(2.10) ai—w=ph+b; (=0, 1),

where p,=(a;—w, ¢), bi=a;—w—ppeB. By (14), a;—wel*, a—wel-.
Hence, by (2.8) and (2.9), we have p,<f(bo) and p,>f(by). Setting

&&)=fCb:+(1=Ebo)—(Em+T—Eps)  (0=£=1)

and noting that f is continuous, we see that g is a continuous function on [0, 1]
such that

80)=/(bo)— >0,
gV)=f(b1)—:<0.
Hence, there exists 0<7<1 such that g(7)=0. By (2.10),
Tar+(1=nac—w=p-+1=7))dr+7b:1+1—7)bo
=f(rbi+A—1bo)di+7bi+(1—1)bs
eS.

Thus Theorem has been shown except for the proof of Lemma 2.2.

3. Proof of Lemma 2.2.

Since w is unstable in Fujita’s sense, so is w in the usual Lyapunov sense
(in the norm || ||). By Theorem 1 in [4], therefore, we see that 2,=0. The
claim about ¢, ¢, is well-known (R. Courant & D. Hilbelt [17).

We show that 0<2,. We first note that the symmetry of w yields that x=0
is the only zero of ¢, We may assume that ¢.(x)}>0 for 0<x<!I. By (2.4) and
the fact that ¢,(0)=0, 2, is an eigenvalue of the eigenvalue problem

d | . 3
(3.1) (d—x+e )¢+1¢—0 (0<x<l),
PO)=¢()=0,

and the restriction of ¢, on [0, /] is the eigenfunction corresponding to As.

LEMMA 31. Let o=C*0, [], and ¢(x)>0 for all 0=x=l. Then

3.2) inf [_ @"(x)+e” Do(x)

<
osz=l go(x) ]:22-
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d2
Tdxt

"

where

Proor oF LEMMA 3.1. Since 4, and ¢, satisfy (3.1), we have, noting ¢.(0)
=¢ (D=0, $3(0)=0 and ¢(H=0,

11
Ozgo(ﬁbg + ew¢2+22¢2)§0dx
!
=[¢£SD—¢2§0/]5+SO¢2(§0”+ewg0—i—22go)dx

l
<[ a7 oot aprd.

Hence

t :
Zzgogbz@dx Z— So¢2(§0”+ ep)dx

inf [—ﬁﬂﬁ]gigbz@dx .

oszxst ©

v

Since S:¢2gpdx>0, we obtain (3.2).

Let us construct a function ¢ satisfying assumptions in Lemma 3.1, and
: o w
Jnf [—(p"+e”p)/¢1>0.
Set

o(x)=—w'(x)+(e—w'(x)) cos%%,
where p is an arbitrary positive constant, and ¢ is a positive constant to be
determined later. By (1.2), ¢&C?*[0, 1] and ¢>0 (since w'(x)<0 for 0<x<).
dZ
dx?

Moreover, 0=w=e«, and < —l—ew>w’:0. Hence if we take ¢ so that it satisfies

[ea_<2(lj—p)>2]e< l-:p sin 2(7£,0) ’

then we have

go”—{-ewgo:( dd; -{—ew)[(s— w') cos

7(x+p) ]
2(l+p)

:[e[ew‘(zui p)>2]+(2(lj— p>>2wl] cos gézxj pp))
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T
B EP R TS

ée[ea"(w:p)ﬂ_ l—:p sin 2(17:-pp)
<0.

Therefore, we have

0< inf [—ﬂ]gzg.

oszsl SD
This completes the proof of Lemma 2.2.

REMARK. The stable manifold S, belongs to the “lower half space”
{eeX: (a—w, ¢)=0}.

Proor. Since A,+f, is positive, it is sufficient to show that (a—w, ¢12=0
for any a<S,. Let a€S, and v be the solution of (1.1) with the initial value
a. Then v converges to w in | || as t—-co. On the other hand,

%(v— w, ¢1)L2:(%’ ¢1)L2

:(%{v——w)—l—(e”—ew), ¢1)L2,

(by the mean value theorem and integration by parts)

=(v=w (Fte)o)

F(evre D (y—w), dre 0=0=1)
=—2{v—w, P12
Therefore, (v—w, ¢)2=e 1 a—w, ¢z If (a—w, ¢1)12>0. Since —2,20, this
contradicts the fact that ||[v—w|—0 as t—-+oco. This completes the proof.
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