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§1. Introduction

Let M be a Kihler manifold of complex dimension m and TM be its holo-

morphic tangent bundle. As in [5], we define (holomorphic) bisectional curvature
HE¢, ), §, neT.M, ze M, by

H(Ey n):—R(éy é: un 77)!

where R is the Riemannian curvature tensor. We say that M has semipositive
bisectional curvature of rank » if for all z&M and for all &, pel,M,

H(, 7)=0

and if 7 is the smallest integer such that for all zeM, for all nonzero £€T.M
and for all linearly independent (r-+-1) vectors #,, -+, nr+:1< T.M,

7+1
3 HE 70>0.

When M has semipositive bisectional curvature of rank », A"™"'TM is quasi-
positive in the sense of Wu [18]. As a special case of Theorem E in [18], we
have

Fact: Let M be a compact Kihler manifold whose bisectional curvature is
semipositive of rank »<(m—1)/2. Then M is simply connected and H*M: Z)
=Z.

In this paper we shall prove

THEOREM 1. Let M be a Kdhler manifold and f: PNC)—M be a locally
energy minimizing harmonic map. If M has semipositive bisectional curvature of
rank r=(m—1)/2 then f is holomorphic or antiholomorphic.

Theorem 1 has been proved by Siu and Yau [16] when M has positive
bisectional curvature. Making use of it they succeeded in giving an alternate
proof of Frankel conjecture which had been proved by Mori [13] with the method
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of algebraic geometry of characteristic p>0. In this paper we shall use Theorem
1 to prove the following theorem.

THEOREM 2. Let M be a compact Kihler manifold of dimension mz=3 with
semipositive bisectional curvalure of rank 1. If M satisfies either A or B below,
then M is biholomorphic to complex ;brojéctive space P™C) or complex quadric
Q™).

A. o(M) is not a genevator of HXM; Z)=Z.
B. AWM)Y={[E1eP(TM)| for some nonzero n=TM, H(E, 7)=0} is an irredu-
cible subvariety of codimension 1 in P(TM).

Let M be an m-dimensional compact irreducible Hermitian symmetric space.
Then M is known to be a Kihler manifold with nonnegative curvature. In the
last section of this paper we shall compute the rank » of semipositivity of

bisectional curvature of M. The remarkable result obtained from the computa-
tions there is

c(M)=(m—r+Da

where « is the positive generator of H¥M; Z)=Z.
The author would like to express his thanks to Professor T. Ochiai for many
helpful suggestions.

§2. Harmonic maps

First we review the definition and some properties of harmonic maps. Let
(M, g) and (N, h) be compact Riemannian manifolds. A smooth map f: N—M
is called harmonic if f is a critical map of the energy functional

EN=5{ o)
T2 Ne
where

_ e 0
e(f)’*‘h Jaxi axj gﬂﬁ‘

We confine ourselves to consider the case when N is 1-dimensional complex pro-
jective space P! with the Fubini-Study metric and M is a compact Kédhler mani-
fold with Kihler form

w=+v—1 guzdz*NdZ .

We regard P! as C\J{co} and take w as the coordinate on C. Then

[, fro=EN—E")



Compact Kdhler manifolds 113

E(f)y=E(f)-+E"(f)

where
=, e e LT awnaw
2=, e Ty awnaz.
Hence
2=+ Fo
and

2B (N)=E(N)-| Fro.

By the homotopy invariance of SPI f*w, we can see that a smooth map f: P'—=M

is harmonic if and only if

af _ 0 g OF 37

29w owdw 7V ow ow

Hence if f is holomorphic or antiholomorphic then f is harmonic. Let f,: P'—M,
0=<¢=<1, be a smooth family of smooth maps such that f, is holomorphic. Then

E(f)=E'(f)=E"(fo—E"(fo)
:E/(fl)—E”(fl)é E(f1) .

This implies that a holomorphic map attains the minimum of E in its homotopy
class.

PROOF OF THEOREM 1. f*TM can be considered aé“the holomorphic vector
bundle over P! associated to the analytic locally free sheaf generated by
local sections sy, -+, Sm of f*T'M such that v;s;=0 ([16]). Then by the theorem
of Grothendieck ([7]), /*TM splits into holomorphic line bundles Ly, -+, Lp.

Step 1. Suppose there are (r+1) nonnegative line bundles L,, -+-, L,4;. Then
there exists a holomorphic section s; of L; for 1=i=r-+1. We may regard s; as
a holomorphic section of f*TM. Let f;,: P'—M be a variation of f parametrized
by {t=C]||t|<e} such that

fi,ozf,

0f st

=3; =0 F
ot s; at =0 Fand
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Then the second variation of E” at =0 is

82
<— e
0: ataf L=0E (fl,l)
« 37
=SP1 aﬁ;’g% gj; sisiv/—1dwAd@T

since V;s;=0. Since s;’s are holomorphic sections, their zeros are isolated. From
this and the curvature assumption it follows that f must be holomorphic.

Step 2. Suppose now that the number of the nonnegative line bundles in
Ls are at most ». Since r=(m—1)/2 there exist at least (#-+1) negative line
bundles, say Ly, ---, L. We shall construct (r-+1) smooth sections Sm-r, -,
sm of f*TM such that V,s;=0 for m—r<i<m and that they are linearly inde-
pendent except at their zeros. Since each L, is negative, the dual bundle L% of
L; is positive and there exists a holomorphic section s¥ of L¥ for m—r=<i<m.
Next we extend s§ to a smooth section of f*7T*M so that s¥(¢;)=0 for all local
holomorphic sections ¢; of L;, j#i. Then v_s¥=0 since

0
* N L ek N
<VES1.: t> aw <sl, t> 0
for all local holomorphic sections # of f*TM. Set

sF=s¥.dz*

and define

0

s%:gaﬁs;ﬁa_ﬁa— .

Then v,_s;=0. Finally if we set s;=s} then we obtain V¥, s;=0. We can easily

see that s,-, -, Sn are linearly independent except at their zeros. Let f;,: P*
—M be a variation of f parametrized by {f=C||t]<e} such that
fi,0:f7
of
—Jaf;’—t=si at t=0 and
0fie _
5 =0 at =0

Then we obtain
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82
<. Y
0= dtot

E'(fin)

=0

ore off -~
:SPIRaﬁrg-a%—a%sst—l dwAdm

for m—r=i=m. From this and the curvature assumption it follows that f is
antiholomorphic, completing the proof of Theorem 1.

§3. Types of rational curves

Partly using the arguments in the proof of Theorem 1, we can prove the
following theorem:.

THEOREM 3. Let M be a Kihler manifold whose bisectional curvature is
semipositive of rank v. Given a nonconstant holomorphic map f: P'—M, f*TM
splits into nonnegative line bundles Ly, -, L, in which there are at least (m—7r)
positive line bundles. Furthermore there exists at least one positive line bundie
of degree greater than ov equal to 2.

ProOF. By the theorem of Grothendieck, f*TM splits into holomorphic line
bundles L,, -, Ln. Each L, is a nonnegative line bundle since in general the
curvature of a quotient bundle E/F of a holomorphic vector bundle E by a
subbundle F is greater than that of E (p.79, [6]).

Assume there were at least (r+1) trivial line bundles in L,’s. We repeat the
same argument as in Step 2 in the proof of Theorem 1. We can construct
smooth sections sy, :-+, s;4; of f*TM such that ¥,s;=0 and that they are linearly
independent except at their zeros. Computing the second variation of E’ at f
with the variation vectors s; 1=i<r+1, we see that 9f/ow=0. This implies
that f is a constant map and contradicts our assumption. Thus there are at least
(m—r) positive line bundles.

On P'=C\J{oo} there exists the holomorphic vector field 3/0w with the zero
of order 2 at co. If we project f(0/0w) onto each L,, then at least one of them
is nontrivial. Thus we have at least one line bundle of degree greater than o
equal to 2. This completes the proof of Theorem 3.

We will say that a holomorphic map f: P*—M is of type I (resp. type II)
if f*TM splits into positive line bundles (resp. otherwise). A holomorphic map
of type Il is characterized as follows

LEMMA 4. Let M be a Kidhler manifold whose bisectional curvature is semi-
positive of rank r=1. If a holomorphic map f is of type 1l, then there exists a
nonzero §€TrcyM such that H(E, (@f/0w)w))=0 for each w= P,
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Proor. If f is of type II, then f*TM admits a trivial line subbundle and the
argument in the proof of Theorem 1 shows that there exists a nowhere zero

smooth section s of f*TM such that v,s=0. From the second variation formula
with the variation vector s, we see that

SPIR(%, % 5, SW=IdwAdw=0.

Thus H(s(w), df/ow)=0. This completes the proof.

§4. Convergence and splitting property of a sequence of rational curves

Let M Dbe a compact simply connected Riemannian manifold. Then =,(M)
is in one-to-one correspondence with the free homotopy classes P*—M (p. 384, [177).
So we can define the sum in the free homotopy classes P'— M.

Given a smooth map f: P'—M we define

B fD=int {SEGO| kN, fi: Pt — M, 7=371},

where the sum means that the sum of free homotopy classes represented by fi's
is the free homotopy class represented by f.
In this section we shall prove

LEMMA 5. Let M be a compact Kihler manifold with semipositive bisectional
curvature of rank 1 and with m=3. And let f;: P'—M, jeN, be a sequence of
holomorphic maps such that

1) fjs are homotopic to one another and
2y (@f;/owX0)| =1 forall jeN and (3f,;/0w)(0) converges to some E€T,M as
j—oo, where 0 is the origin of CCP*.

Then one of the following holds :

a) There exists a holomorphic map f..: P*—M such that (0fo/0w)0)=¢£ and fx
1s homotopic to fi.

b) There exists an integer v=2 and nonconstant holomorphic or antiholomor-
phic maps g;, o, g, P*—M such that __Ey;giZfl and that E([flj):}ile(gi).

c) There exists a holomorphic map g: P'—M of itype Il such that g is
homotopic to f, and that g(0)=z and (dg/0w)(0)=0.

Proor. First we claim that E([ f,])=E(f;) for all je N. Since f,’s are holo-
morphic and homotopic to one another, we have E(f,)=E(f;) forall i, j. If there were

° |
By -, hy: P'—M such that é he=fy and %, E(h)-+e<B(f), then we can con-

struct a piecewise smooth map h: P'—M parametrizing h;: P'—M and a curve



Compact Kdhler manifolds 117

between h.(c0) and A,(0), hy: P'—M and a curve between h,(c0) and £,(0), con-
tinuing this way at last h,: P'—M. Then

Area (=3 Area (h)= 2 B(hd < E(f)—e .

Since dimpM=6 we may approximate h by a smooth immersion & : P'—M such
that Area (A)<E(f.)—e/2. There is an orientation preserving diffeomorphism
from P! to P! pulling back the conformal structure defined by fi*ds% to the
standard conformal structure. We define h to be A composed with this diffeo-
morphism so that h is conformal. Then

E(h)=Area (h)=Area (k)< E( fl)—% )

This contradicts the fact that f, is energy minimizing in its homotopy class.
Thus the claim is proved.

Since MAIN ESTIMATE 3.15 in [14] is valid for our f; and E(f;)=E({f.])
for jeN, the arguments of §4 in [14] apply to our f;. If a subsequence of f;
converges in C*(P?, M), this reduces to case a). Otherwise there exists a finite

subset {xi, -, x,} of P! with the following property. Taking a subsequence if
necessary, f; converges to a harmonic map f. in C(P'—{xy, -, x5}, M) but
not in CY{P*—{xy, -, Xi-1, Xit1, **s Xn}, M) for 1=i=n. At each x; a nontrivial

harmonic map g; from P! to M is made up and we have
E(f)+3 Blgo<lim E(/)=B(LfD).

As in [16] we can see that each g; is energy minimizing in its homotopy class.
If n=2, then E([fi])—E(g,)>0. It follows that there exist nontrivial harmonic
maps g, «, g from P! to M such that fi=g,+gi+-+g and that E(f)=
E(g)+E(gy+-++E(g) as is seen in [16]. It is clear that each gj is energy
minimizing. From Theorem 1 each g} is holomorphic or antiholomorphic. This
reduces to case b). The case when n=1 and E(f.)>0 is also reduced to case
b) by the same argument.

Now we consider the case when n=1 and E(f.)=0. By assumption 2) we
must have x,=0 and there must exists a sequence y; j<N, such that y;—x,=0
and that

b:=ldfj(yj)l=r;1§ggl dfyl—>0c0 as j—>o0
for otherwise |df;| is bounded on a neighborhood of 0 and f; converges on this

neighborhood. We define 7 ;1 P'—=M by 7 {w)=fA{w/b;+v;) where P' is considered
as {weC}U{wo}. Let ¢;: P'—P' be ¢, (w)=w/bj+y, Then f;=f;¢; and
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ldf {w)|=|dfw/by+y )| | desw)|. We have

This mequallty implies that, taking a subsequence if necessary, f, converges to
some fo.: P'>M in CHP'— {0}, M) since Lemma 4.2 in [14] holds for our 75
If |df,;| is unbounded on every neighborhood of oo, then by the same argument
as in the case n=1 and E(f.)>0 this reduces to b) since |df,(0)l—>1 as j—co
and E(f.)>0. If |df;| is bounded on some neighborhood of oo, then f; converges
to f. in CY(P', M) and —b;y, converges to some y.=P!. We may assume that
¥»-=0 by composing an automorphism of P!. If f.. is an immersion at 0, then
it is easy to see that f.(0)=z and (Bfw/aw)(O)—cE, ceC*, This reduces to a). If
fm is not an immersion at 0 and if f°° is of type II, then this reduces to case c).
Now we suppose f.. is of type I and that fw is not an immersion at 0. Let
0/0w be the holomorphic vector field on P! with zero of order 2 at co. Then
Foux(8/0w) is a holomorphic section of 74TM and has 3 zeros counted with multi-
plicity. Since f.. is of type I we see that

ldow)|* =1+ w] 2)2%(1—{- ;%4_3,],
7 J

and so

| S+ Tl (L[4

Frc (M) P]234+(m—1)=m-+2.

By Fact in §1 M is algebraic and z,(M) is isomorphic to H,(M; Z). Noting
these facts we conclude that this reduces to case b) by Theorem 3 in [13]. Now
the proof is complete.

§5. Proof of Theorem 2

By Fact in §1 there exists a positive line bundle F such that ¢,(F) is a
generator of H¥M; Z)=Z, and =,(M) is isomorphic to H,(M; Z). Let fo: P*-M
be a smooth map which represents a generator of the free part of (M) such
that §eu(F)[P*]=1. Then there exist energy minimizing harmonic maps
S o frr P'—=M such that fi4--+fi=f, and E(f)+-+E(f)=E{Lf]) by
Proposition 2 in [16]. By Theorem 1 they are holomorphic or antiholomorphic.
If f; is antiholomorphic, we put fj(w)=f@) which is holomorphic. By Theorem
3.16 in [14], there exists ¢>0 such that if s is a harmonic map and E(s)<e then
s is a constant map. Thus there exists k,& N such that

ko=max {neN| 3 fi=fo T EFI=ECLD}.



Compact Kdhler manifolds 119

So we may assume that % is chosen as large as possible. In this situation we
see from Theorem 3 in this paper and Theorem 3 in [13], each f¥TM (or f¥TM
when f; is antiholomorphic) is isomorphic to

D o)D) D Do) Do(l) or

o) i) Do) Dol)yDe  or
i) o@D o) Bo)D - Dol)Bo  or
iv) o2)Do1)D Do) Do.

Let c(TM)=2c(F). First we assume A1 which is assumption A. Then
one sees easily that ffc (TM)[P*]J=2(m~+1) for all ¢, or f¥c (TM)[P*]J=+m for
all 7. Since we know that A is positive by curvature assumption, we obtain

Se(TM)LP ]Jzm.

We conclude from the theorem of Kobayashi and Ochiai [11] that M is biholo-
morphic to P™(C) or Q™(C).

Next we consider under the assumption B. We will say that a holomorphic
map f: P*—M of type I is of type II, if f can be (holomorphically) deformed to
a map of type I. A holomorphic map of type II, will be a map of type Il which
cannot be deformed to a map of type I. In the list of %, if f*TM is isomorphic
to iv) then f is of type lI,. If f*TM is isomorphic to ii) or iii), then we cannot
discriminate whether f is of type II, or of type Il.

The following claim is proved in [16], §5.

Claim 1. Let f: P'*—M be a holomorphic map of type I or of type II,. Then
there exists a proper subvariety Z; of P(TM) such that for all [£1eP(TM)—2Z,
there exists a holomorphic map 7: P'—M homotopic to f with (87/0w)0)=¢&.

By the similar argument with the aid of Lemma 4, we can prove the follow-
ing claim.

Claim 2. Let f: P'*—M be a holomorphic map of type I,. Then there
exists a proper subvariety Z, of A(M) such that for all [§]l€ A(M)—Z, there
exists a holomorphic map f: P'—M homotopic to f with (3f/0w)0)=¢.

The proof of Theorem 2 will be finished if we prove the following claim.

Claim 3. There exists a holomorphic map f: P'—M such that f,=F modulo
torsion in Hy(M; Z). To be more precise, arranging f, ---, f» we have holo-
morphic maps f,, .-+, f,, f, antiholomorphic maps g, -**, g, 2v+1=F and

{f¥cdTM)+g¥c(TM)I[P']=0 for 1=iZvy.

Proor oF Claim 3. If 2=2, one sees that there exist a holomorphic map
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f: and an antiholomorphic map g, in f;’s. We have only to consider the three
cases below.

Case 1. Both f; and g, are of type I or of type IL.

Case 2. Both f; and g, are of type Il,.

Case 3. f, is of type I or of type I, and 3, is of type II,, or the converse.
In the cases 1 and 2, we can lead a contradiction as in §6 of [16] by making
use of Claim 1 and Claim 2.

Now we consider Case 3. We may assume that 7, is an immersion at QP!
and that (35,/6w)(0)=&. By Claim 1 there exists a sequence of holomorphic maps
f1;: P*—M homotopic to fy such that (8f 1;/0w)(0)—& as j—oo. We apply Lemma
5 to fi; If a) occurred, then we can lead a contradiction as in §6 of [16]. By
the choice of %, b) also cannot occur. Thus only ¢) can occur and we may
replace f; so that f, is of type II, (8/1/0w)(0)=0 and

FETM=0(3) @ o) @ - B o(1) B 0.

Choose we P! at which £, is an immersion and put (af,/dw)(w)=%. By Lemma
4 we have n€ A(M). By Claim 2 there exists a sequence of holomorphic maps
g1;: P*—M homotopic to g, such that (0g1;/0w)(0)—7 as j—oo. We apply Lemma
5 again. We conclude as before that we may replace Z; so that Z; is of type
11, (8Z,/0w)0)=0 and

FHTM=o3)Do()D - Do) Do.

This implies that f;+g,=0 modulo torsion in Hy(M; Z).
If k—2=2 we repeat the same argument.
Finally we obtain

fo=f1-g1+-+f,+g, modulo torsion in Hy(M; Z)
or fo=f+fit+g+-+/,+g modulo torsion in Hi(M; Z).

1f the former occured, we have f¥c (F)[LPY]=0 and this is a contradiction. If
the latter occured, 7 must be holomorphic. Otherwise 7 is antiholomorphic and
Frc(F)[PY]<0 and this is a contradiction. Thus Claim 3 is proved.

The proof of Theorem 2 is complete from Theorem 3 and the theorem of
Kobayashi and Ochiai [11].

§6. Irreducible Hermitian symmetric spaces of compact type

In this section we calculate the rank of semipositivity of bisectional curvature
for irreducible Hermitian symmetric spaces of compact type. We shall use the
same notation as in [8].

Let G/K be an irreducible Hermitian symmetric space of compact type with



Compact Kihler manifolds 121

g and t as the Lie algebras of G and K, g=t@p the Cartan decomposition, J the
complex structure and R the Riemannian curvature tensor with respect to some
G-invariant Kihler metric g. Then it is known that
RX, VVZ=—[[X, Y], Z] for X, Y, Zeyp
and that
g(RX, V)Y, X)=g([X, Y], [X, Y]).
Thus g(R(X, Y)Y, X)=0 if and only if [X, Y ]=0. On the other hand we have
HE, 9)=—R(X—iJX, X+iJX, Y—=iJY, Y+iJY)
=4R(X, Y, X, )+4R(X, JY, X, JY),
where é=X—iJX, n=Y—iJY. Hence H(, 7)=0 if and only if [X, Y]=0 and
[Xx, Jy1=0.
Type BD 1: complex quadric S0(m+1)/S0@2) X SO(m—1), r=1.

The notations being as above, we have

g=o(m+1), I=0(2)Do(m—1) and

00 —tu
p={| 0 0 —'v u, v (m—1)-column vectors.
uwv 0

We identify p=R™*@R™"* and an element of p will be denoted by (u, v). The
complex structure is then expressed by J(u, v)=(—wv, u). By a direct computa-
tion, for X=(u, v) and Y=(s, 1), R(X, Y, X, )=0 holds if and only if <u, £
=<v, s> and uAs+vAt=0, where ¢,> is the usual inner product of R™
Hence for &=(u, v)—iJ(u, v) and 5=(s, t)—1/(s, ), H(, 7)=0 holds if and only
if lu|=|vl, <u, v>=0 and s—it=c(u—+iv) for some ceC. It follows from this
that bisectional curvature of SO(m~+1)/S02) x SO(m—1) is semipositive of rank
1. It is interesting to note that the fiber of A(M) in Theorem 2 is complex
quadric again.

Type A llI: U(p+q)/U(p)xU(g), r=(p—1)x(g—D.
The Cartan decomposition is

u(p+=u(p) D ul@) DBy,

P
= Xg complex matrixy.
b X 0 pXq

where

As complex vector spaces, p with the complex structure J is isomorphic to C?*?
with the usual complex structure. From now on we will identify them. For
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X, Yep, HX, Y)=0 if and only if X*¥=0 and ‘XY=0. Let Ax(V)=(Y'X, tXY).
To compute the rank of semipositivity of bisectional curvature, we have only to
seek a nonzero vector X<p such that the kernel of Ay has the greatest dimension.
Let X=p be any nonzero vector. We assume the ij-element of ‘X is nonzero.
We denote #; the j-th column vector of ‘X and #; the i-th row vector of ‘X. If
Y belongs to the kernel Ker(Ay) of Ay then Yx;=0 and %;Y=0. Thus

dim¢ Ker (Ax)=dimg{Yep| Yx,;=0, %, Y=0}=(p—1){¢g—D.
On the other hand if we take
10
X=|0 0

then dimcKer (Ax)=(p—1)g—1).

Type D HI: SO@2n)/U(n), r=(n—2)(n—3)/2 for n=2.
The notations being as before we have

A —'B
g={ ‘ A, De3so(n), B nXn matrixy,
B D

A —B
f:{ l Aeso(n), B symmetric matrixt,
B A

A B
p_—_-{( )\ A, Beé’o(n)} and
B —A

0 —I
J= .

I 0
A B
We denote (A, B) for ( B —A) for short. Then J(A, B)=(—B, A). Thus for §

=(A, B)—iJ(A, B) and p=(C, D)—iJ(C, D), H(&, 7)=0 holds if and omly if AD
—=BC and AC=—BD. We only need to seek a nonzero vector (4, B) such that
the kernel of the linear map (C, Dy—(AD— BC, AC-+BD) has the greatest dimen-
sion. It is easy to check that (A, 0) where

01
A= -1 0
0 0

0

is one of the desired vectors and that the dimension over C of the kernel is
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(n—2)(n—3)/2.

Type C1: Spn)/Um), r=n(n—1)/2.
The Cartan decomposition is

ap(n)=u(n) D1p,

where

A B
pz{( )’ A, B symmetric aXn matrices}.
B —A

A
B
pressed by J(A, B)=(—B, A). Thus for §=(A4, B)—iJ(4, B) and 5=(C, D)—3x
tJ(C, D), H(&, =0 holds if and only if AC+~BD=0 and AD—BC=0. We want
to seek a nonzero vector (4, B) such that the kernel of the linear map (C, D)
—(AC+BD, AD— BC) has the greatest dimension. One easily sees that (A4, 0)
where

We denote (A4, B) for ( ——i) for short. Then the complex structure J is ex-

0 0

is one of the desired vectors and that the dimension over C of the kernel is
n(n—1)/2.

To study in two exceptional cases, we recall the root system. We keep the
notations as in the beginning of this section. Let § be a maximal abelian sub-
algebra of t and let g¢, Ic and §¢ be the complexification of g, ¥ and §. Then
hc is a Cartan subalgebra of ge. Let 4. be the system of roots of g¢ with respect
to he and ay, -+, a; be the simple roots such that the center of %, is given by
o,==a,=0. We put

=lasdla>ay},

yr=21¢%, p= X g%,
acQ -acQy
where g is the root subspace corresponding to w<4,. Then the complexification
of the tangent space (G/K),QC is identified with p*@Pp- and E,—E_, is the
complex conjugation where E, is a basis of g% Thus for &= ZQ) &2E, and
a€Q 4+
= 2 p*E, in p*, H, )=0 holds if and only if X E“n_ﬁ[Ea, E_g1=0 since p*
a&Qy a,feQy
and p-~ are abelian subalgebras. To compute the rank of semipositivity of bisec-
tional curvature we have only to seek a nonzero vector X<p* such that the
linear map
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ad(X)-Y=[X, Y], Yep-
has the smallest rank.

Type E III: E¢/Spin (10)xS0(2), r=5.
The positive roots of E, are

i . . . - 6
b xy (0<0), xitxixe G<G<R), glxi,
where 1=i, j, £=6, and the simple roots are

ai=x;— x4 (1=I25), ae=x,+ x5+ %6,

see [1]. Hen-ce‘Q+ consists of
xi—xs Q<IZ6), xitai+x; (2Si<j=6), and {glx

By a tedious but easy calculation of the matrix representation of ad(X), we can
see that any vector corresponding to a root in Q. is one of the desired vectors
and that the dimension of the kernel is 5. -

Type E VII: E,/EXS50(2), r=10.
The positive roots of E; are

xo—x; (ISI<GED), xitxitxe 1SI<G<RET)

and 3 x,—x; Q=<i<T).
=1

and the simple roots are
a;=x;i— X4y 1S156), ay=x5T %1 %1,
see [1]. Hence Q. consists of |
xi—x; CZiST7), vt xitx; C=Si<GED)

and 3 x;—x; C<Ii=T).
j=1

One sees that any vector corresponding to a root in Q. is one of the desired
vectors and that the dimension of the kernel is 10.

Let D be an irreducible bounded symmetric domain. Calabi and Vesentini
[2] and Borel [17 computed a number 7(D) defined by 7(D)=S/mA, where S is
the scalar curvature and 2; is the smallest eigenvalue of the curvature operator.
In comparison with Table 1 in [2] we have y(D)=m—r--1. Let M be the com-
pact Hermitian symmetric space corresponding to D. Then ¢,(M)=y(D)-a where
« is the positive generator’of H¥(M ; Z)=Z. Hence we obtain ¢,(M)=(m—r-+1a.
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