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0. Introduction

In [7], T. Petrie made the following conjecture :

Let X be a closed, smooth 2n-dimensional homotopy complex projective space
which admits a smooth non-trivial S'-action, and let #: X — CP” be a homotopy
equivalence. Then

W AHCPM=HX),
where A(X) is the total J-class of X defined by
HX)=TI(x:/2)(sinh x;/2) '€ H¥X; Q),

and where the elementary symmetric functions of the x% give the Pontrjagin
classes of X.

This conjecture is equivalent to the following statement.

Let X be as above and x a generator of H¥X; Z). Then the total
Pontrjagin class p(X) of X is of the form

0.1 pO=1+27)m+,

DEFINITION. A closed, smooth 2n-dimensional manifeld X is a cohomology
complex projective space (X is a cohomology CP®) if its cohomology ring has
the form

HXX; Z)=Z[x]/(x**), x€HXX; Z).

In this paper we shall consider the above conjecture for cohomology com-
plex projective spaces. Concerning this, A. Hattori proved the following prop-
osition in [4].

ProprosiTiON 0.1 (Hattori). Let X be a cohomology CP™ If X admits a
non-trivial smeoth S'-action of the linear type ov of the Petrie type, then the
total Pontrjagin class of X must be of the form (0.1).
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Here the definitions of the linear type and the Petrie type will be given in
Section 1. Then our main theorem is the following.

THEOREM 0.2. Let X be a cohomology CP™, If X admitsa smooth St-action
whose fixed point set consists of four connected componenis, then the S'-action on
X is of the linear type ov of the Petrie fype.

Combining this with Proposition 0.1, we have

COROLLARY 03. Let X be the same as Theorem 0.2. Then the total
Pontriagin class of X must be of the form (0.1).

Previously to our result, the following facts are known.

Let X be a cohomology CP” If X admits a smooth S*-action whose fixed
point set consists of two connected components, that is, if the action is semi-free,
then T. Yoshida and K. Wang proved independently the above conjecture in
[15], [16]. In this case, however, the S'-action on X is of the linear type. If
X admits a smooth Sl-action whose fixed point set consists of three connected
components, it is known that the S'-action on X is also of the linear type ([141).

With regard to our result T. Petrie constructed the manifolds, which are
homeomorphic to CP?, with the Petrie type S'-actions whose fixed point sets
consist of four connected components ([8], [107).

This paper is organized as follows. In Section 1 we shall state some results
due to G.E. Bredon, J.C. Su, W.Y. Hsiang and T. Petrie on cohomology complex
projective spaces with non-trivial S'-actions, and define the linear type and the
Petrie type. Finally the equivariant Gysin homomorphism, which is our main tool,
will be introduced and its some properties will be stated. In Section 2 an alternative
proof of Proposition 0.1 will be given. Then it will also be proved that the total
Pontrjagin class of each S'-fixed point set component is of the form (0.1). In
Section 3 we study a Z,-fixed point set component Y in X such that the S'-fixed
point set in Y consists of two connected components, where Z, denotes a finite
cyclic subgroups of S with order m. Section 4 is devoted to prove one proposi-
tion. In Section 5 Theorem 0.2 will be proved.

Notation. 1) Let X be a G-space. Then F(H, X) denotes the H-fixed point
set in X where H is a subgroup of G (H may equal G). If we put F(G, X)=
UF,; where {F;} are its connected components, then F{H, X); denotes the connected
component of F(H, X) containing F,.

2) Let X be a smooth manifold and let ¥ be a smooth submanifold of X.
Then MY, X) denotes the normal bundle of ¥ in X.

3) For a compact Lie group G, let X be a left G-space and EG— BG a uni-
versal G-bundle which may be regarded as a right G-space. Then X; denotes
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the orbit space obtained from EG XX by identifying (ug, g7*x) with (u, x) for
us EG, x€ X and ge=G.

In concluding this introduction, I would like to express my hearty thanks to
Prof. A. Hattori who gave me many useful suggestions, and some methods used
in this paper are due to his lecture.

1. Preliminaries and definitions

In this section we shall recall some results due to G.E. Bredon, J.C. Su,
W.Y. Hsiang and T. Petrie on cohomology complex projective spaces with non-
trivial S'-actions, and give the definitions of the linear type and the Petrie type
stated in our introduction. Finally we shall introduce the equivariant Gysin
homomorphism and state its some properties.

From now on let X denote a cohomology CP™ with a smooth non-trivial S'-
action. Let G denote the circle group S* or Z,» which is the cyclic subgroup
of S with prime power order p". We put the G-fixed point set F(G, X)=\F;
where {F;} are its connected components. Then, as is well known, each F; is
a closed orientable smooth submanifold of X. Let x be a generator of H%X; Z)
and x; its restriction to F;. Then the cohomological property of F(G, X) is
given by the following.

PropPOSITION 1.1 (Bredon [17, Su [12]). Let the situation and notations be
as above. Let L denote Z (resp. Z,) if G=S' (resp. Z,r), where p is a prime
number. Then the cohomology ring of each F; with L coefficient is of the form

HXFy; Ly=L{x/(x)"

for some integer n;<n, and moreover the relation E‘J(ni—l-l)zn—i—l holds.

We shall recall the concept of the equivariant cohomology.

DEFINITION. Let G be a compact Lie group and M a G-space. Then we
define the equivariant cohomology H¥(M) of M by

HEM)=H*(Me) .

For a space X, which is a cohomology CP™ with a non-trivial smooth S'-
action, W.Y. Hsiang determined the ring structure of H¥1(X; Z) which plays an
important role in this paper. Before stating the structure, we shall give some
remarks on H%(X; Z). Until this section ends, all cohomology groups will be
assumed to be with Z coefficient unless otherwise indicated.

Let us consider the following diagram
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x 2> x0 2> Bs
A
l-:

Fs1

where = and ¢ are the inclusions, p is the projection and F=F(S?, X). We always
regard H§(X) as the H*(BS"-algebra through p*: H*(BS")—H%(X). Since the
ordinary cohomologies of X and BS* vanish at every odd degree, the Serre spec-
tral sequence of p collapses. This means that ¢*: H§(X)— H*(X) is surjective.
Therefore there exists a lifting y of a generator x of H*X), and we shall fix
jt. Then from the definition of ¥ and Proposition 1.1 we see that

T>’<

8(X) —> H3(F )E;(HZ(Fi)@Hz(BSI))
yl— iE(eraia)

where {F;} are connected components of F=F(S!, X), a is a generator of H*(BS")
and {a;} are integers.
Now we can state the ring structure of H%i(X).

PROPOSITION 1.2 (Hsiang [2], [5]). Let the situation and notations be as
above. By Proposition 1.1 each F; is a cohomology CP™ for some n;. Then the
ring structure of H%(X) is given by

§1(X)=H”‘(BS‘)[y]/l'i[(y—aia)"”1 .
Movreover integers {a;} are mutually distinct.

We remark that the integers {a;} depend on a choice of a lifting v, but that
the differences {a;—a;} are independent of its choice. In fact, if we let {a;} be
the integers induced by another lifting of x, then a;—=al+a for some integer a
independent of i. Conversely, for any integer q, there exists another lifting of
x satisfying the relation a;=aj-+a for any 1.

We shall put GW,={a;—a;|j#1i} for each i and call them the global weights
at F;. T. Petrie indicated that the global weights GW; at F; have the following
geometrical meaning.

ProrosITION 1.3 (Petrie [71). Let Z,, be a cyclic subgroup of S* with order
m. If S'-fixed point set components F; and F; are contained in a same connected
component of F(Zn, X), then the difference a,—a;=0 (mod m). Moreover if m is
a prime power, then its converse holds. Therefore our S-action is effective if
and only if g.c.d. of GW; equals 1 for each 1i.
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Let M be an arbitrary smooth manifold with a non-trivial smooth S!-action
and let {F;} be connected components of F(S*, M). We shall give some remarks
on the normal bundle N(F;, M).

As is well known, N(F;, M) has a unique decomposition into Whitney sum
of complex vector bundles

N(F;, M)= MEZEMON F(m)
such that, for each m, ve N¥(m) and geS'CC, we have

gyv=g"v

where gy denotes the differential induced by g: M— M.
If, for each m,

N m=VHV’
is a decomposition into complex vector bundles, then
Nim)=V Qv

is also a decomposition of real vector bundle N{(m) into complex vector bundles
where V’/ denotes the complex conjugate bundle of V’. Here we note that for
ve V' and geS'CC, we have
gxv=g""v.
Therefore setting
V=Nym), V'=N{—m),

we obtain a decomposition of N(I%;, M)

NFsy My=_ 3% Ni(m)

which is called an admissible decomposition.

Again we shall consider about a cohomology complex projective space X and
let {F:} be connected components of F(S, X). Fix a point p;€F;. Then an
admissible decomposition of N(F;, X) makes N(F;, X)|p; a complex S-module.
Let t denote the standard 1-dimensional S'-module.

DEFINITION. A smooth S'-action on X is called of the linear type at F; if
there exists an admissible decomposition of N{(F;, X) such that

NF;, X)= 32 Ni(di'“llj)

i
where dimeNy(a;—aj;)=n;+1. This means NF;, X)|p;= %J,(nj—i—l)t“i‘“f. 1f there
J#i

exists the above admissible decomposition for every F; then the Sl-action is
simply called of the linear type.
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DEFINITION. A smooth St-action on X is called of the Petrie type if there
exists an admissible decomposition of N(F;, X) for each 7 such that

(L. N(F;, X)|pi+t+1tPi= é)'(n,«+l)t“i‘“f—{—tp+t’1
FEak]
where p and ¢ are mutually coprime positive integers independent of 1.
For an admissible decomposition > N{ws;) of N(F;, X), we put LWi={w:j}
J

and call them the local weights at F; associated with an admissible decomposi-
tion X Ni(wiy). Recall the global weights GW,={a;—a;|j#*1} at F;. The defini-
J

tion of the linear type at F; is equivalent that there exists an admissible decom-
position of N(F,;, X) such that the global weights GW; coincide with the local
weights LW, associated with it. For an arbitrary smooth S'-action on X, GW;
and LW, do not coincide. However there is the following relation between them.

ProrosSITION 1.4 (Petrie [7]). Let X be as-above and jZ}Ni(w,-j) an arbitrary

admissible decomposition of N(Fy, X). Then an identily
jl;Ii la;—a;] =§I|w¢jl
holds for each 1.

We need one more result on the dimension of a connected component of
F(Z., X) where Z, is a cyclic subgroup of S* with order m.

PROPOSITION 1.5 (Su [13]). Let X and Z, be as above and Y a connected
component of F(Z, X). If YNF(S', X)#J, then

dim Y = 2(¢(Y)—1)

where (V) denotes the euler number of Y. When the Staction on X 1is of the
linear type, the equality holds for any subgroup Zn of S

REMARK. When m is a prime power, the equality holds by Proposition 1.1
and the fact y(Y)=¢(F(S', ).

REMARK. Since X is a cohomology CP" with a non-trivial smooth S-action
and Z,, is a subgroup of S, it is not difficult to see that ¥ is an even dimen-
sional orientable closed smooth manifold.

Now we shall introduce the equivariant Gysin homomorphism, which is our
main tool, and state its four properties, see for example [11].

Let M and N be m and n dimensional closed oriented S*'-manifolds respec-
tively and let f: M—N be an S'-map. Then the equivariant Gysin homomor-
phism

Fii HYW(M) —> HE™(N)
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is defined for any ¢ and has similar properties to the ordinary Gysin homomor-
phism. Throughout this paper the notation f, will represent the equivariant
Gysin homomorphism of an S'-map f unless otherwise indicated.

Property 1. Let M, N and V be closed oriented S'-manifolds and let f: M
—N, g: N—V be S*maps. Then we have

(gefh=grf.

Property 2. Let M and N be closed oriented S'-manifolds and f: M—N an
St-map. Then for ue H§:(M) and veH$:(N), we have

SR )= (Vv .

Property 3. Let M be a closed oriented S'-manifold and let M, and M, be
closed oriented S'-submanifolds of M. Let j;: M;—M be the inclusion maps
(i=1, 2). If Mi~\M,=, then both j¥ej, and j¥-j, are zero maps.

Let N be a closed oriented smooth S!-manifold and M a closed oriented
smooth St-submanifold of N. Then the normal bundle N(M, N) becomes an
orientable S!-bundle.

DEFINITION. The natural orientation of the normal bundle N(M, N) means
such the orientation that the given base orientation plus the fiber orientation of
N(M, N) coincides with the given one of N.

Property 4. Let N, M be as above and j: M—N the inclusion. Then we
have .

e(N(M, N)si)=7*71)

where 1 represents the standard generator of H%:(M) and e(N(M, N)s1) denotes
the Euler class of the vector bundle N(M, N)si— Mg with the orientation in-
duced from the natural orientation of N(M, N).

DEFINITION. For an oriented Si-vector bundle E— M, we define the equiv-
ariant Euler class ¢5(E) by

SYE)=e(Eg1).
Similarly for an complex (resp. real) S'-vector bundle E— M, we define the equiv-

ariant i-th Chern (resp. Pontrjagin) class c¢§(E) (resp. p$(E)) by ci(Eg1) (resp.
P Es1))

The following lemma shows one way to compute SYN(M, N)) when M is a
connected component of F(S, N).

LEMMA 1.6. Let E—M be a complex S*-vector bundle in which M is fixed
under the S'-action, and assume that this bundle has no trivial factor, that is, if
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an element v of E is fixed under the S'-action, then v must be zevo. Then this
bundle has a decomposition

(1.2) E= 3 E(m)

meZ, m+0

by the previous remark, where g-v=g"v for ve E(m) and g S'CC.
If we pui formally

c(E(m)= I;I(1+€i(m))
and orient the bundle E— M by the right side of (1.2), then
e (B)=IT (ma+&(m))

where aSH¥BS") is the generator given by the first Chern class of the associated
vector bundle with the universal S*-bundle ES*-— BS*.

ProOOF. From the definition of the equivariant Euler class we see
S E)=T1e"(E(m)) .
Therefore it suffices to prove
(1.3) e (E(m))= Llna+&dm)) .

Let H— BS* be the associated vector bundle with the universal S'-bundle
ES'— BS'. Then we can construct a bundle isomorphism s between the bundles
Em)si— Mg and Hm®E(m)’_’Msl as follows, where H™ denotes the m-fold
tensor bundle of H, and Mg=BS*XM by our assumption.

For ueH and ve E(m) we define

hlu, vD)=umQv.

It is easy to check that this definition is well-defined and that A is a bundle
isomorphism.
On the other hand, from the definition of o we have

c(H)y=14a,
hence it follows that

c(H™ & E(m)=TI(1+na-+&(m)),

in particular

«(H™ @ E(n)=TL(ma-+E(m).

Thus the identity (1.3) follows. q.e.d.
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DEFINITION. Let N be a closed oriented smooth S'-manifold and M a con-
nected component of F(S!, N). We know that N(M, N) decomposes uniquely
into
1.4 NM, N)= X Nim)

meZ, m>0
by the previous remark. Then the normal orientation of the normal bundle
N(M, N) means the orientation of N(M, N) induced by the ordinary orientation
of the right side of (1.4).

2. p%(X) of the linear type and the Petrie type

Let X be a cohomology CP™ with a non-trivial smooth S'-action as before.
Then the tangent bundle TX— X is naturally regarded as an S'-vector bundle
via the differential g4: TX—TX induced by g=S*. Hence we can consider the
vector bundle (T X)gi— Xsi. In this section we shall compute the equivariant
Pontrjagin class pS(X)=p%(TX) for the case where the S'-action on X is of
the linear type or of the Petrie type, and give an alternative proof of Proposi-
tion 0.1.

Our main result in this section is the following.

THEOREM 2.1. Let X be as above and notations the same as Proposition 1.2.
If the given S'-action on X is of the linear type, then

PUX)= LA+ (y—aw@)yre.

If the given S-action on X is of the Petrie type defined by (1.1), then

(1+p’a’X1+q¢%a®)
(I+a®)(1+p*gPa®)

We remark that there is a natural bundle map

PHX)= HA+(y—aw@y)™

TX (T X)s1
Loy
X Xs1

where ¢ and ¢ are inclusion maps defined by @(v)=le, v] and ¢(x)=Le, x] for
veTX, x€X and an arbitrary fixed e= ES'. Therefore we have

2.0 e* S (X)=p(X)
by the naturality of characteristic classes. Moreover we have

(2.2) e¥y)=x, *¥a)=0
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by the definition of y and «, where x is a generator of H*X; Z). Therefore,
if we use (2.1) and (2.2) and recall the relation >(n;4+1)=n-1, then we can
deduce Proposition 0.1 from Theorem 2.1.

Furthermore we shall prove the following in the proof of Theorem 2.1.

THEOREM 2.2. Let X be a cohomology CP"™ with a non-trivial smooth S'-
action. Then each connected component Fy of F(S*, X) is also a cohomology CP™
for some integer n; by Proposition 1.1. If the given S'-action on X is of the
linear type or of the Peirie type, then we have

PF)=1-xp"*!
for each Fi, where x; 1s a genevator of HXF;; Z).

In order to prove Theorem 2.1 we need several lemmas. In the following,
to simplify our discussion, let Y denote a connected component of F(Z,, X)
satisfying F(S?!, Y)# @, where Z,, is a subgroup of S.

Let F. be a connected component of F(S!, Y) and j,: Fr,—Y the inclusion.
We shall study the normal bundle N(F,, Y), in particular, calculate its total
Pontrjagin class. For that purpose we shall calculate its total Chern class under
a certain complex structure induced by the S*-action on Y. Our idea is to com-
pute eSYN(F,, Y)) in two different ways and compare them. Namely, in one
way we make use of the equivariant Gysin homomorphism j,, and Property 4.
In the other way we consider a decomposition of N(F,, ¥V) into complex vector
bundles induced by the S'-action and use Lemma 1.6. If we compare these coef-
ficients of each power of @, we will obtain various informations about the Chern
classes of N(Fy, Y).

We shall compute ¢S'(N(F,, Y)) in the first way. To this end, it is desirable
to know the structure of H¥(Y; @) as an H*(BS!'; @)-algebra. But it seems
difficult to determine it. Fortunately the structure of the localized ring
SIH%(Y: Q) as an STH*(BS'; @)-algebra is determined, where S=H*(BS'; @)
— {0}, and it suffices for our purpose.

LEMMA 2.3. Let X, Y and S be as above and let j: Y—X be the inclusion.
Then the structure of ST'H%(Y ; Q) as an ST*H*(BS*; Q)-algebra is given by

STHE(Y ; =S H*(BS*; Q)[i]/ng(y'—aka)”k“
where §=j*(y).

PROOF. Let ¢: F(S*; Y)—Y be the inclusion. Then we have the natural
commutative diagram
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*
STHE(Y; Q)
[Ea
SUHH(X; Q)

2 STHFy; @)

FpCY ,l\

2 STTHE(Fy; @)
FpCX

where all the maps are induced by the natural inclusions. We remark that the
horizontal maps in this diagram are isomorphisms by the localization theorem,
see for example [5, Chapter III, Theorem III. 1]. Moreover since the right
vertical map is trivially surjective, j* is a surjection. This fact and Proposition
1.2 mean that S'H%(Y; @) is generated by the set {1, ¥, 3% ---, 5"} as an
STH*(BS'; Q)-module. :

However we have

S/’*(Flchy(y'— aka)”“‘)— II xpe+'=0,

FpCY

so it follows that

(2.3) I (F—a,a)*et'=0
FpCY
from the fact that ¢* is an iéomorphism. Hence STIH%.(Y ; Q) is already gener-
ated by the set {1, ¥, ¥, -+, ¥*7%} as an S 'H*(BS'; @)-module, where h=
> (ny+1). On the other hand the rank of > S 'H%(F.; @ as an
FRpcY FpCy

S*H*(BS'; @)-module equals F%y(m—%l):h, because STLHE(F, ; Q) is isomorphic
k

to STIH*(BS'; QY QH*(F, ; Q) for each F, by Kiinneth formula. Therefore the set
{1, 5, 3, -+, ¥*71} forms an additive base of ST'H%:(Y ; Q) as an ST H*(BS*; Q)-
module. Our lemma follows from this fact and the relation (2.3). g.e.d.

Now we shall give some remarks about orientations. We choose a generator
x of H¥X; Z) and fix it. We shall orient X by x"[X]=1. Recall that each
connected component F, of F(S!, X) is also a cohomology CP"t and that x; is
a generator of H¥F,, Z) where x, is the restriction of x to F,. If F;, is not a
point, we orient F, by xp*[F,]=1. If F, is a point, we give it the standard
orientation. Moreover, for a connected component Y of F(Z,, X), we shall
choose an arbitrary orientation on Y and fix it for a while.

The following lemma is useful to compute eS'(N(Fy, Y )=j¥j.(1).

LEMMA 24. Let F,, Y and X be as above and let j,: Fp,—Y, j: Y—X be
the inclusion maps. Then we have

2.4 13, a)]'k:(l)=F I (F—aw™ in STHHY; Q),

ICY, i#k

where f(5, a) is a polynomial of 5 and « determined by
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=y, &0 II (y—aa)™s*.
FsN¥=0

In particular f(¥, o) has the following two properties:

2.5) %deg 17, a):x(Y)—l——é—dim Y
where deg f(¥, a) denotes the degree of f(F, a) in cohomology.
(2.6) 73, ) H5(Y ; Z).

PrOOF. Although j, (1) belongs to H3(Y ; Z), we regard it as an element
of ST1H%(Y; @ by the natural homomorphism: H#:.(Y; Z)— H5:(Y; @ —
S1H%(Y ; Q). Since F;n\F,=@ for i=k, we have, by Property 3,

FFie(1)=0 for i# k such that F;,CY.

Hence it follows from Lemma 2.3 that j,,(1) must be divided by (§—a.a)**** for
such ¢. Thus it is written as

2.7 JeD=g:(F, ) TI (F—a)™*
FiCY,i%k

— % — .y RiFL
=500 1, o).

where g,(v, a) is an element of ST*Hi(X, Q).
For j()eH¥«(X; Z), we can do the above argument within H%(X; Z) by
Proposition 1.2. Thus we have

D=0, @), T] (3= e

where we remark that f(v, a) belongs to H¥:(X; Z) by Proposition 1.2.
Therefore, using Property 2 and (2.7), we obtain

@8 iinM=iMesy, @) T (y—a@)*
=y, )gs(y, a)ig(y—aia)"i+l.
On the other hand, for the composition joj,: F,— X, we have
(e iD=c I (y—asa)i*

by the same discussion as the case of j)(1), where ¢ is an integer. If we restrict
this identity to the ordinary cohomology and use the fact that the restriction of
(j+7s) is then the ordinary Gysin homomorphism, we see that the integer ¢
must be 1 (here X and F, are oriented by the previous remark). Hence we have

2.9 JGeIN=0* jah(D= .Ea(y—aza)"i“
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by Property 1.
Equating (2.8) with (2.9) and using Proposition 1.2, we deduce the relation

F, @)gw(y, @)=1 mod (y—a,a)"*** in STH(X; Q).

Therefore if we multiply (¥, a) on both sides in (2.7) and use this relation and
Lemma 2.3, then we obtain the desired identity (2.4).

Finally if we compare the degrees of both sides in (2.4), then the property
(2.5) follows. g.e.d.

We remark that f(y, @) depends on Y but it is independent of each connected
component of F(S', Y). We shall call it the defect of Y. In the following we
shall compute the defect f(y, @) of ¥V in the cases of the linear type and the
Petrie type.

LEMMA 2.5. Let Zy, be an arbitrary cyclic subgroup of S*. If the given S'-
action on X is of the linear type, then the defect f(y, @) of Y must be +1 for
any connected component Y of F(Z,, X).

PrOOF. Recall that in this case we have
dim Y=2(x«(Y)—1)

by Proposition 1.5. Hence it follows from the property (2.5) that deg f(y, @) is
zero. This and the property (2.6) show that (v, «) is a constant integer.

We note that since our S'-action is of the linear type, the restriction of
N(F,, Y) to a point p,=F, is equal to - C;%k(ni—l-l)t“k‘“i where ¢ denotes the

iCY. 1

standard 1-dimensional S!'-module as before. Therefore we have
k(o — —. nitl
@k(]k!(l))—sFic].;[’i#k((ak as)a)

where ¢, : p,—7Y is the inclusion, e==+1. Here ¢ depends on a choice of an
orientation of Y.
On the other hand since pf(¥)=a,a, we get

ot(, T G—awr+)= T (ai—aa).

{CV, {4k FiCY, i

Therefore if we apply ¢ to the identity (2.4), we see that f(y, @) must be e=
+1. q.e.d.

Next we shall compute f(y, @) in the Petrie type. Recall that

(2.10) N(F4, X)]pk—l—t—}-tm:Zk(nj—i-l)t“k'“j—{—tp—i-tq
J#

where p and ¢ are mutually coprime positive integers and they are independent
of each connected component of F(S!, X). We notice that the above identity
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(2.10) implies that there exists a; such that |a,—a:|=pq.

- Since Y is a connected component of F(Z,, X), it is not difficult to see that
2.11) dim Y=2(x(Y)—1) or 2(x¢(Y)—2).

In fact the identity dim ¥=2(y(Y)—2) holds if and-only if m divides pg but di-
vides neither p nor gq. The fact (2.11) means

deg f(y, a)=0 or 2,

that is, f(y, @) is a constant integer or a linear combination of y and a over Z.
Let us assame dim Y=2(3x(Y)—2) and show f(y, a)==pqa. First we remark
that we have

(2.12) Ny V) pa= 5 (gt 1)os esbngores
i i
2.13) . NEF;, Dpi= 2 (nptDtin%n,t%m %%
- omlagmay
J#k T

if we choose suitable complex structures in N(Fi, V) and N(F;, Y). Further
notice that we have

(2.14) NY, X)|p+itn= *Z‘, (ns-Dt g s +15+ 1%
miap-ag

where feY and t, is the restriction of ¢ to the character ring R(Z,). Since
we assume dim Y=2(3(Y)—2), m is not equal to 2 by Proposition 1.1. Therefore
the right hand side of (2.14) and {, have the ordinary orientations. We may
assume, if necessary by giving the reverse orientation to Y, that the orientations
of both sides in (2.14) coincide when the natural orientation is given to N(Y, X).

On the other hand, if we give the natural orientation to N(/,, X), then the
orientations of both sides in (2.10) coincide because we have

sazkfk!(l):};k (ar—a)a)*

by (2.9), where @,: p,—X and f'k: F,— X are the inclusions.

Let us give the natural orientation to N(F,, ¥). Then, by the above argu-
ment, it is not difficult to see that the difference of the orientations of both
sides in (2.12) is given by sign(a,—a,). Similarly, in (2.13), their difference is
given by sign(a;—as).

LEMMA 2.6. Let X support the Petrie type S'-action given by (2.10) and let
Y be a connected component of F(Z,, X). If dim Y=2((Y)—2), then the defect
(v, @) of Y is =pqa.

ProoF. The assumption dim Y=2(y(Y)—2) implies that f(y, ) is written as
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Ay-+Ba, where A and B are integers. By Lemma 2.4 we have
(Ay+ Boz)jkg(l)ng (F—a )"
(AF+Ba)ju(l)= E (F—a)™.

Restrict these equations to points p,=F; and p;F; respectively, so we obtain
Aay+B=|a,—a,l
Aa;+B=la;—a,]
by (2.12), (2.13) and the remark followed by (2.14). Hence it follows that
A=0, B=la,—a;|=pq.

Finally we note that if we change an orientation of Y, then f(y, a)=pqa
turns into —pga. g.e.d.

Now we shall compute the equivariant Pontrjagin class of the linear type.
In the following we fix F,.

DEFINITION. Let /; denote the indices of the S'-fixed point components
{F:} except F,. Then we define a partial ordering “=” among them as follows:

i=j means that (ay—ay)l(ar—ay).

If i<j and |a,—a;|#|ar—a;|, then we write <j.
We shall compute the equivariant Chern class of N.(a,—a;) inductively on
this ordering.

Let Y be F(Z,, X)., that is, a connected component containing F;, in
F(Z,, X). Since our S'-action is of the linear type, N(F,, Y) decomposes into

N(Fy, V)= 3 Nilar—ay)

miap-ajg

where dirncNk(ak—ai)=ni—|—l.
LEMMA 27. If we put ¢(Np(ar—a)y=TL(1+E,D) formally, then
q

ST Ta—adat&@= TT (@y—adatx)™ .

£k ik

Proor. This lemma follows immediately from Lemma 1.6, 2.4 and 2.5.
q.e. d.

LEMMA 2.8. Let N(F,, X) decompose into Z; Nilar—ay) where dime Np(a,—ay)
i*

=n;+1. Then, for each i, we have
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CS:(Nk(ak_ai»:(l’l‘(ak—ai)a"‘r’xk)ni-ﬂ ’

p31(Nk(ak_ai)>:(l+((ak—ai>a+xk)2)ni+1 ,
hence
PN, X)= T (+(as—adatz )™

PROOF. We have only to compute ¢$'(N.(az—a;)) for each i because the
rest of the above statement is easily deduced from this.

Step 1. First we shall compute it for a maximal element : with respect to
the partial ordering =<.

When |a,—a;|#|ar—a;| for all j+#i, we consider F(Zs,-a;, X)s. Then,
by Lemma 2.7, we have

I;I((ak—ai)a+€q(i))=((ak—ai)a+xk)”i“

where ¢(Np(ar—a:))=TI(1+&,3). We regard both sides of this identity as
q

polynomials of «, and replace a by (1+(ar—aa)/(ar—a;). Then we obtain an
identity

1;[(1+(ak—ai)a+5q(i))=(1+((ak—ai)a+xk)"f“

where the left hand side of this identity exactly represents the equivariant Chern
class of N,(a,—a;).

When laz—a;|=|a,—as| for some h+i and |a,—a;|#|ar—a;| for all j=
i, h, we obtain the desired result by the similar argument to the above and we
shall omit the details.

Step 2. Suppose that this lemma holds for all u such that i<u.

When |az—a:|#|ar—a;] for all j#i, we have

g((ak—ai)a_&_fq(i))‘g (ar—awa-txg) = y]_((ak-— apea+x,)"

by the assumption of induction and Lemma 2.7, where ¢(N(a,—a))=IL{1--E,LD).
q

Comparing the coefficients of various powers of @ both sides of this identity and
repeat the same argument as Step 1, we obtain the desired result.

When |az—a;|=|ar—a,| for some h#i and |a,—a;|#|ar—a;| for all j=#
i, h, the similar discussion holds and the desired result is obtained. We shall
omit the details. q.e. d.

By Proposition 1.2, p5(X) can be written uniquely as

P XO=TLA+(y— )™ h(y, @)
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where h(y, ) is a formal power series belonging to Z[[y, all/II(y—a )™+
Let fk: F,— X be the inclusion. Then we have

@15) 0=t T+ edat 2", o).
On the other hand, since there is a bundle isomorphism

TX]Fk:TFk@N(Fky X)’

we have
TEPSHX)=pS (Fo) pS (N(Fy, X))
(2.16) )
=p*(FD IT A+(ar—adatz,))me
by Lemma 2.8.

Comparing (2.15) with (2.16), we obtain

PIFD=A+x,) " T5h(y, a).

We note that the total Pontrjagin class of F, belongs to the subgroup H*(F, ; Z)
QHBS'; Z) of H&(Fy; Z)=H™F,; Z)YQH*BS'; Z). Hence j¥h(y, @) must
also belong to H*(¥,; ZYRQHYBS'; Z). Since the above argument holds for
every connected component of F(S!, X)=F, the restriction of A(y, a) to Fs: must
belong to H¥F, Z)QHBS'; Z). Here we have the following fact, see [6],
Proposition 3.7.

LEMMA 2.9. Let v: Fsu—Xg1 be the inclusion and let u be an element of

HE(X; Z), where q is a non-zero integer. If z*u belongs to the subgroup
HY(F; ZYRQHNBSY; Z), then u must be zero.

Let us put Ay, a)=1+ é‘ah’?(y, a) where h%y, «) is the element of degree
q

2¢ in h(y, ). We apply this lemma to each A%y, a), so we see h(y, a)=1.
Thus Theorem 2.1 has been proved in the case of the linear type S'-action.

In the case of the Petrie type S'-action, the similar argument holds using
Lemma 2.6. We shall omit the proof.

Finally we note that Theorem 2.2 follows from Theorem 2.1 and Lemma 2.8.

3. Some properties about Y such that F(S!, V) consists of two connected
components

Let Y be a connected component of F(Z,, X) such that F(S', ¥) consists
of two connected components. Then we shall deduce some properties about Y
using several lemmas in Section 2.

Recall that each normal bundle N(F;, ¥) has a unique decomposition
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msEZ, mg>0

where {F;; i=1, 2} are connected components of F(S', ¥). Let m; be the maxi-
mum element of {m,}. Then we shall consider F(ij, Y), and again write it ¥
and m; as m. Therefore, from now on until this section ends, Y will be as-
sumed to denote a connected component of F(Z,, X) such that F(S*, Y) consists
of two connected components and that gev=g™v for any veN(F; Y) and g
SicC. '

Since each F; is a certain connected component of F(S!, X), F; is a cohomol-
ogy CP™ and an integer a; is assigned to Fi.

PROPOSITION 3.1. Let Y satisfy the following two conditions:
(1) dim Y=2(x(Y)-1),
(2) either ny or ng is non-zero.

We put
h=max{bcZ; 2°|a,—a.}.

If 2% divides m, then m must equal |a;—a,].

Proor. First we remark that N(F;, Y)=N,(m) for each i. By the condition

(2), we may assume n,=n, and n,=1. It follows from the condition (1) and
Lemma 2.4 that

ciF (D=8 F— ar0)" =(x+(a,—a)a)*™?

where ¢ is an integer.
On the other hand, if we put ¢(N,(m))=11(1+¢&, formally, then we deduce
q

e ¥ (D=eS{Ny(m))= 1;[(§q+ma)

from Property 4, Lemma 1.6 and the condition (1), where e==1 denotes the
difference between the natural orientation and the normal orientation of N(Fy, Y).
Compare the above two identities, so we obtain

3.1 ec 1;_[<Eq+7710(>:(x1+(a1—a2>a>n2+l ,
in particular
(3.2) ecm™eti=(a,—ay) .

We regard both sides of the identity (3.1) as polynomials of & and replace a by
(14+ma)/m. Then it turns into
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(3.3 801;1(1+ma+Eq)=(x1+(a1—az)(1+ma)/m)"2“ .

Here the class IT(1+ma—+§&,) represents exactly the equivariant Chern class of
q

N,(m), hence it belongs to the integral cohomology H¥$:(F;; Z). 1f n,=0, then
ny=l=n,+1 by the condition (2). Hence, if we compare the coefficients of x72
of both sides in (3.3), then we see |¢]=1. This and (3.2) show m=|a;—a,]|.
Thus we may assume n,=1.

By Proposition 1.1 and the assumption n,=#n,, the cohomology element x72
is non-zero, and the coefficient of x?z in the right hand side of (3.3) is (n.-+1)
X(a,—as)/m. Therefore, if we divide both sides of (3.3) by &c, then we see that

ng_i_l

5
must be an integer, where (3.2) is used.
Suppose that m and |a,—a,| are distinct. Then we have |a,—a,/m|=3,
because m is a divisor of a;—a, by Proposition 1.3 and we assume that 2* divides
m. Hence we have

(3.4) (ne+1D(a1—asz)/e cm=

la;—as/ml™2=3"2>n,+1  for n,=1,
which contradicts the integrality of (3.4). q.e.d.

REMARK. The condition (2) is essentially necessary. In fact, T. Petrie con-
structs the counterexamples ([8], [100).

In the following we shall study the case where dim ¥ <2(3¢(Y)—1).

ProposITION 3.2. If dim Y <2((Y)—1), then the dimensions of F, and F,
must coinside, that is, ni="ns.

This proposition follows immediatelly from the following proposition.

PROPOSITION 3.3. If ni# ny, then dim Y=2(3(Y)—1) and N(F;, V)=N,(la;~as])
for each 1.

Before the proof of Proposition 3.3, we shall prepare the following lemma.

LEMMA 3.4. Let R denote the subring of H§(Y ; Q) generated by ¥ and «,
and let ji: Fi—Y be the inclusion. Then

J¥, R— Hu(F; Q)
1s injective in degrees not more than 2n,.

Proor. The subring R is also generated by (§—a.«) and «. Recall that
e (F—a10))=a’xt for all integers s, ¢ and that the class {a’x!; s+i=Zni}
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forms an additive base of H¥.(F;; Q). Therefore this lemma clearly follows.
qg.e.d.

PROOF OF ProPOSITION 3.3. Since n, and n, are distinct integers, we may
assume n;=n,+1. Using Lemma 2.4 for the inclusion j,: F;— 7Y, we obtain

(@, )t iaD=(x4+(a;—aga)"***.

Note that both (¥, a) and j¥j,(1) are homogeneous elements of H%(F,; Z)
and that x{ does not vanish for s<n,+1 by the assumption n,=n,+1. There-
fore the above identity implies that J¥f(J, @) must be of the form
+(x,+(a;—aa)y for some g=n,+1. Hence, it follows from Lemma 3.4 and
the assumption n;=n,+1 that f(¥, a) must be of the form +=(F—a.,a)L

On the other hand, using Lemma 2.4 for the inclusion j,: F;—Y, we obtain

(3.5) 7 (3, a) jEja(D=(xsF(as—aa)™* .

Since f(¥, a)=3x(§—a,a)® by the above discussion, we have j¥f(¥, a)=1xx4
Suppose that ¢ is positive. If we restrict the identity (3.5) to a point of F,
then its left side vanishes, and its right side equals ((¢,—a)a)**** which is non-
zero because @, and a, are distinct by Proposition 1.2. Thus ¢ must be zero,
that is, f(¥, a«)=-1. This means our proposition. q.e.d.

If dim V<2(3(Y)—1), then n,=n, by Proposition 3.2. From now on we shall
put n,=n,=r and assume

(A) r=l,

Qur aim is to show that the defect of Y is equal to =+(a,—a.,)a under certain
circumstances.

By Lemma 2.4 we have

J¥(F, a)jfin)=(x:+(a,—az)a)*
JH(F, @) jal)=(x+(as—apa)**.

(3.6)

We shall represent j¥f(¥, @) and j¥j.,(1) as polynomials of x; and « in H§:(F;; Z),
and regard them as elements of the polynomial ring Z[x;, @]. Then, since x7*

=0 and x%#0 for ¢=r in H¥%(F,; Z), we have an identity as elements of
Zxy, o]

3.7 5, a)i¥in(D=(x1+(a1—a)a) "' —hxi*
where h is an integer.

Assertion 3.5. {h]|=1.
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PROOF. Suppose h=0, then (3.7) shows that j¥/(#, a) must be of the form
£ (x;+(ay—a)a)® for some ¢. Then, the same argument as the proof of Proposi-
tion 3.3 implies that ¢ must be zero, that is, degf(y, a)=0. This contradicts
our assumption dim Y <2(y(¥Y)—1).

Next suppose that k is a positive integer. Let us consider the identity (3.7)
in CLx,, a«]. The right hand side of (3.7) decomposes into %’[(x1+(a1—a2)a—Cb Xx1)

where b=""/h and { moves over all (r+1)-roots of 1. Hence j¥f(3, a) is of
the form

A3, a)zcg(x1+(al—az)a—?;"b x1)
where ¢€Q and {’ moves over a- certain subsét of (r-+1)-roots of 1. Since
dim Y =dim F,+2=2r4+2, we have
deg (5, a)=2(x(Y)—1)—dim ¥
=4r+2—dim Y=2r.
Therefore, by Lemma 3.4, f(¥, «) must be of the form
3.8 13, a)=61}((§—aza)—C’b(y”—ala)).
Recall that we assume N(F;, Y)=N,(m). Therefore, if we restrict each
identity of (3.6) to a point of F; using (3.8), then we obtain
lellai—a. | ¢mi=]a,—a,|™*,
tellb(az—an]* ™= ¢me=a,—a;|"™**,

where 2d=dim Y. Since we assume that % is a positive integer, we deduce the
fact A=1 from these equations.

For the case where h is a negative integer, we deduce hA=—1 from the
same discussion as the above case. g.e. d

Thus we have the following two equations from (3.7):

(3.9 I3, a)ZCI;.’[(xﬁ(al—az)a-%-C’xl)
(3.10) [4 jikjlz(l):Ici[(xl‘*‘(al*az)a'%“cﬂﬂ)

where £’ and {” move over certain subsets of 2(r-+1)-roots of 1.

For the sake of simplicity, we moreover assume the following:
(B) 2*|m, where h=max{b=Z; 2°|a,—a,} as before,
(C) there exists a connected component V of F (Z,, X) containing Y with
F(St, ?):F(S‘, Y), where p is 2 if a,—a, is even and an arbitrary prime number
dividing m otherwise.
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We remark that ¥ is fixed pointwise under the restricted Z,s-action on X.

LEMMA 36. Let ¥ be as above and p: Y—Y the inclusion. We shall put
p!(l):f(j”/, o) where ¥ denotes the restriction of y to Ysi. Then we have

sJ(, )=£y, a)
where s is a non-zero integer.

ProoOF. Consider the diagram

p .7
Y—>Y —> X
J
where all the maps are the inclusions. On one hand we have

HD=fy, a)myzg(y—aja)”f“ .
On the other hand we have
HD=7eD))
=7(7*/ (5, @)
=fy, &)1
=/(3, @ s, 1 (=,
where f!(l):stI;;[@(y—aja)"f“ for some non-zero integer s because dim V=
Fiy

2(;((17)—1). Equating the above two identities, we see
f(y, )=s (3, @)  mod(y—a,a) " (y—a.) .
Here we note that
deg f(y, @)=deg /{3, @)=2(Y)—1)—dim Y=4r+2—dim Y=2r.
Thus f(y, a) and sf(y, ) coincide. q.e.d.

Now we shall determine f(v, @) under the above circumstances. First we
shall prove the following.

Assertion 3.7. The coefficient of x¥*1"¢ in j¥f(9, @) vanishes, if the condi-
tions (A), (B) and (C) are satisfied.

Proor. Let flz F 1—>}~’ be the inclusion. By (3.9) and Lemma 3.6 we have

(3.11) s JEF(F, a>=c1;1<x1+<a1—az>a+c'xl>.
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Let A denote the coefficient of x27*'-¢ in ]}(xl-i—(al—ag)a—i—C’xl), then
(3.12) PA]= ll}(l—}-C')l =2reind
The term J¥/(F, a)= fi“p!(l) represents the equivariant Euler class of the

restricted S'-bundle j¥N(Y, ¥) over F.. Let FEN(Y, ¥) decompose into
BANY, V)= % Nmy.

mjEZ, m >0

We shall put dime N(mj)=d; and c(N(mj))zl;[(l-{—Eq(j)). Then
(3.13) T, @)=7Fol)=¢ IT (myect-£,( 7))

by Property 4 and Lemma 1.6, where e=+1.
Thus, by (3.11) and (3.13), we have

@19 s I (ma-H& D= (ryH(a—aa+ L)
J.aq '
in particular
(3.15) [sIImfi|=]|c(a;—a)**"¢].
Since the term TI (mja+&,(/)) represents the total equivariant Chern class of
J:q

FEN(Y, V), it belongs to H¥:i(F,; Z). Hence

cA | A|
o N N

IIm§s

must be an integer by (3.14), where (3.15) is used.

We assert that |a,—a,|/m;=3 for any j. In fact, Proposition 1.3 and the
assumption dim Y <2(3(Y)—1) imply that any m; is a divisor of a;—a, but it is
not equal to [a;—a,[. Moreover the assumption about the prime p means that
each m; is divided by 2*. Thus the above inequality holds.

Therefore, if we note > d;=2r+1—d, then we have

(al_a2)2T+1—d

3.17) Tim#i

232T+1—d

Since 2r—i—1—d:X(Y)—l—% dim Y >0 by our assumption, the fact A=0 follows
from (3.12), (3.17) and the integrality of (3.16). g.e.d.
Assertion 3.8. In the same situation as Assertion 3.7, m=|a;—a,|.

ProoF. Let B denote the coefficient of x%~" in the term ICI(xl-{—(al—az)a
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+{"x,) in (3.10), hence IBI=1¥I(1+C”)1§2‘1“T. The identity (3.7) means that

the coefficient of ax? in j¥/(F, a)j¥jn(1) is non-zero. Hence B must be non-zero
by Assertion 3.7.

Suppose m*=|a;—a,|. We know that m is a divisor of a;—a, and assume
that m is divided by 2%, so it follows that |a,—a,|/m=3.

Restrict the identity (3.10) to a point of F), so we obtain

(3.18) lem® | =lai—a,|*",

hence
lel=la—as/m|¢"=3%",

Note that jF¥j(1) is an element of H§:«(Y, Z), so the quotient B/c must be an
integer. However we know that 0= |B{=2%" and d—r>0, hence we have an
inequality

0+ |B/c| =(2/3)¢ <1

which contradicts the integrality of B/c. q.e.d.
Thus it follows from Assertion 3.8 and (3.18) that
(3.19) lel=1.

PROPOSITION 3.9. If the conditions (A), (B) and (C) are satisfied, then the
defect f(y,a) of Y is equal to *{a,—asa. Therefore we have N(F;, Y)=
N(lay—asl) for each i and dimY=2(y(Y)—2).

PrOOF. Recall that we have
T3, a)=es I (mja+&(7))=c g[(xﬁ(al—az)aw%’x;)
e !

by (3.14). Assertion 3.7 means that a certain {’ must be —1 and a certain £.;)
must vanish. We may assume &;(z) vanishes. Therefore the above identity
reduces to

du dj
esmue I Omua+8,(u) IT TT Omja+-8,(7)
=c(a;— “2)“;,11_ (x1+(ai—aa+{"x1).

Then, if we repeat the same argument as Assertion 3.7, then we deduce the fact
2r—d=0. This fact, Assertion 3.7 and 3.8 imply this proposition. q.e.d.

Summing up the results obtained in this section, we have

COROLLARY 3.10. For every prime number p dividing a,—a, we assume
F(SY, Y)=F\IF, where Y, =F(Z, Xh=FZ,, X),. We orient Y, suitably and
give the natuval ovientation to N(F;, Y,) for i=1, 2. Then
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N{Fy, Yp) | pr=nattr%e1%2,
N(Fy, Y )| po=n,t®e 14 t-v2,

where p;=F; and w, is an integer satisfying plwpla—as Here, if ni#n,,
then |w,| must equal |a,—a.|.
Moreover, we have

(xiHa—aa)met!
(a1—a)a

S N(F,, V)= (w,) ,

(1 (g~ aga))e
1+(a:—a,)a?

where N(wy) is a trivial complex line bundle if |w,|#|a,—a.l, and the similar
statement holds for N(Fy, Y,).

PN, Y= (I+wpa®),

PROOF. If n,#mn, then this corollary easily follows from Lemma 2.4 and
Proposition 3.3, If n,=n,=0, then the statement is trivial. Therefore we assume
n=n.=1. Let N(F;, Y,) decompose into %0 Ni(m;) and consider F(Zn,, X):

where m;, is the maximum element in {m;}. Then, if a,—a, is odd, our state-
ment easily follows from Lemma 2.4, Lemma 3.6 and Proposition 3.9. When
a,—a, is even, we consider the case where p=2 first. In this case, our corollary
follows by the same reason as the case where a;—a, is odd. This means that
the first half of this corollary holds for any p. If |w,|=la,—a.l, the rest of
the statements follows from Lemma 1.6, 2.4 and Property 4. If |w,|#la.—a.l,
then the consideration of the case where p=2 implies

QSI(Nl(Ch—az)>:(x1+(01“az)a)n2+1/(al_'az)a .

This means ¢(N(w,))=1 for any p. Therefore the rest of the statements
follows. q.e.d.

4. One proposition

Henceforth we consider the case where X admits an effective smooth S*-
action such that F(S!, X) consists of four connected components. Put F(S', X)

3
=\ F;, then each F; is a cohomology CP": and an integer a; is assigned to it,
i=0

where {a;} are mutually distinct. This section is devoted to prove the following
proposition.

PrOPOSITION 4.1. Let X and {a;} be as above. If there exists some i such
that |a;—a;|>1 for all j#1i, then the S"-action is of the linear type.

QOur proof is based on the method used in [14]. In the case of four com-
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ponents, however, the proof is more complicated than that of three components.

First we note that we can translate {a;} into {a;+a} for any integer a by
changing » to y-+aa. Therefore we may assume that a,=0 and [a;]|>1 for
i=1, 2, 3. Since our S'-action is assumed to be effective, g.c.d. (ai, a,, asz=1
by Proposition 1.3. From now on until this section ends, if we write a;, a,, a,
etc., then the indices 7, v, g etc. are not zero, that is, a, is excluded.

We shall consider the following three cases:

Case I. a, /) a, for all distinct v and p.
Let (i, j, k) denote a permutation of (1, 2, 3) until Lemma 4.5 has been proved.

Case II. For a suitable choice of (i, j, k) we have a;la; but a, } a;.

Case IlIl. TFor a suitable choice of (4, 7, k) we have a;la; and a,|a;.
Here we notice that the case where a;la; and a;la, or a;la; and a;la, does
not occur because g.c.d.(ay, a,, as;)=1. Therefore the above three cases cover
all the cases which actually occur.

Before the investigation into these three cases, we shall prepare two lemmas.

Let s be an arbitrary prime power dividing a; and let ¢ be that dividing a;.
We assume s/} a; and ¢t f a;. Then the following three cases on a, occur:

Case A. sfap; t)a.,

Case B. sl|lap; tfa,or stay; tlhas,

Case C. slaz; tlas.

Let Y, and Y, denote F(Z, X), and F(Z,, X), respectively. Then the in-
tersection of the normal bundles N(F,, Y,) and N(F,, ¥,) becomes also an S!-
vector bundle over F,. In fact, if we put

N(Fo, Y= 3 Nolso), NF, Y= 3 Nty
$18q,354>0 tity, Lp>0

then their intersection is given by X N,(u) where {u} is the intersection of the
sets {s.} and {#;}.

LEMMA 4.2. If Case A or Case B occurs, then the intersection of N(F,, Y)
and N(F,, Yy) is trivial, that is, N(F,, YONN(E,, Y)=F,. If Case C occurs, then
dime N(F,, YONN(F,, Y)=n,+1.

ProOOF. First consider Case A and Case B. Suppose that the intersection
of N(F,, Yy) and N(F,, Y,) is non-trivial. Then there exists a local weight u at
F, divided by the multiplication si. Consider F(Z,, X), and write it Y, then
obviously dim Y >dim F,. Hence, by Proposition 1.5, ¥ must contain a certain
connected component of F(S* X) other than F,. However, since we assume
sfaj;and t)a,; u does not divide any a, This contradicts Proposition 1.3.
Thus the first statement of this lemma is proved.

Let us consider Case C. First we shall show
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4.1 dime N(Fo, YINN(F,, Y)zn,+1.
From our assumption we easily deduce
dime N(Fy, Y)=n;+14n,+1,
dime N(Fo, Yo=n;4+14n,+1.

(4.2)

On the other hand, we have clearly
dime N(Fy, X)=n;+14+n;+1+n,+l=n—mn,.

Therefore the inequality (4.1) follows.

Next we shall show its converse. Let us consider F(Z,, X), and write it
Y. The multiple st divides neither a; nor a;, and dim Y >dim F, by (4.1). Hence,
by Proposition 1.3 and 1.5, ¥ contains F, but it contains neither F; nor F;. Thus,
if we use Proposition 1.5 again, then we have

dim Y=2(n,+n,+1).
This shows that the converse of the inequality (4.1) holds. q.e.d.

REMARK 4.3. In this proof, we use the assumption that s and ¢ are prime
powers, only to show (4.2). Therefore, even if sor ¢ is not a prime power, this
lemma holds if (4.2) is satisfied.

LEMMA 4.4. Suppose that N(F,, X) decomposes into
> No(m)P z|:2No(mz>EB E} No(mg)
mylQ msidg

myiay

where dime S Ny(m)=n,+1, dime D No(mo)=n.+1 and dime 2 No(ms)=ns+1.
Then every |m,| must equal |a,| for each v.

PrOOF. Since we assume m,|a, for each v, we have
Hlm11H]m2|H|m31é‘allnlﬂlazlnz“[aslnsﬂ-

However, by Proposition 1.4, the equality must hold. Thus this lemma follows.
q.e.d.

REMARK. For any other normal bundle N(F,, X), this lemma clearly holds
if the similar assumption is satisfied.

Now we shall deal with Case 1. First we shall prove the following.

LEMMA 4.5. If an S'-action on X salisfies the condition of Case 1, then 1t
must be of the linear type at F,.

PROOF. Since we assume that each a, does not divide any other a, and that
la,l>1 for every v, the following four cases can occur with respect to prime
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powers dividing each a,.

Let the condition (*v) mean that a prime power p, divides a, but it does
not divide any other a,.

Case 1.1. There exists a prime power p, satisfying the condition (*») for
every v.

Case 1.2. There exist prime powers p; and p; satisfying the condition (*7)
and (*j) respectively, but no prime power satisfies the condition (*).

Case 1.3. There exists a prime power p; satisfying the condition (*1), but
no prime power satisfies the condition (*j) or (*k).

Case 1.4. The other case.

First let us deal with Case 1.1. We shall consider F(Z,,; X), for each v
and write it Y,. Then each N(F,, Y,) has the trivial intersection with the others
by Lemma 4.2. Since p, is a prime power dividing a,, dim¢ N(Fy, Y,)=n,+1.

Therefore, if we note é(nv—i—l):n——no, we see that N(F,, X) decomposes into

ZN(F,, Y.
Let each N(F,, Y,) decompose into

N(F, Y)= 2>0N0<m») .

We remark that any m, divides a,. In fact, if we consider F(Z,, ; X), it must
contain F, by Proposition 1.5. Hence m, must divide a, by Proposition 1.3.
Thus, in Case L1, our lemma follows from Lemma 4.4.
Next we shall deal with Case 1.2. If we consider prime powers dividing
a,, we see that the condition of Case 1.2 implies that there exists prime powers
g; and ¢; satisfying

Qi‘a'j) ar; Qi/yai;
qjlak, ai; Qanj-

Let us consider F(Z,,, X), F(Z,,, X)o, F(Zy,, X)o and F(Z,, X), and write
them Yy, Y, ¥; and ¥, respectively. Clearly

dime N(F,, Yi)=n4--1, dime N(F,, Yy)=n;+1.
Furthermore, by Lemma 4.2, we have
N(Fy, YONNE,, T)=NF,, Y)NNF, ¥

=N(Fs, YONN(F, ¥ )=F,
and
dime N(Fo, YONNF,, ¥ )=n,+1.

These facts mean that N(F,, X) decomposes into
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N(Fy, X)=N(F,, Y@ NF,, Y)PNF, YINNE, ¥)).

Therefore, if we repeat the same discussion as Case L1, our lemma is proved in
Case 1.2,

For Case L3 and Case 14, we have only to repeat the similar process to the
above cases. We shall omit the details. qg.e.d.

LEMMA 4.6. If Case 1 occurs, then the S'-action is of the linear type.

PrROOF. The linearity at F, implies that the other normal bundles N(F,, X)
decompose into the forms

(4.3) N(E,, X)=N(la,) DI N, (w,)
where dime N(|a,])=n,+1. For the investigation of the remaining weights {w,}
at F,, we shall consider the following three cases.

Let us put V={la;—a,], |a;—asl, |as—ayl}.

Case LA. There exist exactly two elements among V which equal 1.

Case LB. There exists exactly one element among V which equals 1.

Case LC. None of V equals 1.

These three cases cover all the cases which really happen, because {a,} are mu-
tually distinct.

First we shall deal with Case LA. We can assume that |a,—a;|=|as;—a;|
=1, if necessary by permuting the indices of the fixed point set components F,.
Then |a;—a,| equals 2 because {a,} are mutually distinct. Therefore, if we
consider [(Z,, X), we easily see that this lemma holds in this case.

Next we shall consider Case 1LB. By the same reason as Case LA, we can
assume |a,—a;|=1. We shall investigate N(F;, X). Since |as—asl=1, |a;—a,]
and |a;—a,| are mutually coprime. Hence there exist prime powers 7, and 7,
satisfying



156 Mikiya Masupa

7ol Q1—aa} 72X G1—as,
rslai—as; v a1—as.

Therefore, if we recall (4.3) and consider F(Z,,, X), and F(Z,,, X);, we see that
N(F,, X) decomposes into

(44) N, 0=Ni(laD® 5 Nm® 3 No(w)

where dim¢e SIN,(m)=n,+1 and dim¢ 3 Ni(w)=ns+1. Moreover, by the same
reason as Case L1 in Lemma 4.5, each m (resp. w) divides a,—a, (resp. a;—as)
Thus, it follows from Lemma 4.4 that our S'-action is of the linear type at Fy
too. This fact and the assumption |a.,—a,|=1 imply our lemma in this case.

Case L.C is more complicated than the before cases. In this case, it suffices
to prove the linearity at F; because the proof of the linearity at another F, is
the same. We shall distinguish the following three cases with respect to the
divisibility relation between |a:—a,| and |a,—asl.

Case L.C.1. The case where |a;—a.| } |a:—as| and a1—as| f a—a.l.

In this case, the same argument as Case LB holds and this lemma is true.

Case 1.C2. The case where |a;—a,| }la,—as|l and |a;—asl|la;—a.| or
lai—azl]la:—as| and |a,—asl| } [a;—a.l.

We shall prove only the former case. The proof of the latter case is the
same as the former.

For an arbitrary prime power s dividing a;—as,, let us consider F(Z,, X);
and write it Y. The effectiveness of our Sl-action implies that s does not divide
a,. Therefore, by Lemma 4.2, N(F,, Y) coincides with S N:{m)EB> Ni(w) stated
in (4.4). This shows that both {m} and {w} are divided by s. Since s is an
arbitrary prime power dividing a,—as, both {m} and {w} are divided by a;—as.

Now, to determine the remaining local weights {m}, {w} at F;, we need to
examine N(F,, X). Then the global weights at F, is given by {a,, a,—a;, a;—as}.
The condition of Case 1.C.2 means that there exists a prime power ¢; satisfying

gi|lae—ail; ¢k lay—asl, las—a:l.

Consider F(Z,,, X). and F(Z,, X), where ¢, is a prime power dividing a.,—as.
Then we see that, by Lemma 4.2 and (4.3), N(F,, X) decomposes into
4.5) N(F;, X)=Ny(la:D® >  N(mHB 2  Nyw’)

gqqlm’,m'>0 qglw’, w' >

0
gy tw’

where dim¢ 2 N,(m')=n,+1 and dim¢ 2 N{w')=ns-+1. Here, it is not difficult

to see that each m’ (resp. w’) divides a,—a; (resp. a,—a;). Therefore the line-
arity at F, follows from Lemma 4.4.
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Thus, if we consider F(Zq,-q,; X), We easily see that our S'-action is of
the linear type at F; too.

Case 1.C.3. The case where |a;—a.|=|a,—a,l.

In this case, the first half in the proof of Case 1.C.2 already shows the line-
arity at F.. qg.e.d.

Now we shall investigate Case II. We may assume a,]a,, if necessary by

permuting the indices of the fixed point set components {F,}. First we shall
prove the following.

LEMMA 47. If an S*-action on X satisfies the condition a,la, of Case I,
then N(F,, X) decomposes into

N(Fo, X)=Nyla,)D No()

agla,;)>

where dime No(|asl)=n,+1.

PROOF. Since we assume a,|a,, the condition of Case I and the effectiveness
of our S'-action means a; /[ a;, a;. Hence there exists a prime power p, satisfying

Dslas; psk ay, as.

Moreover the effectiveness of our S'-action and the assumption a,|a; imply that
a; and a; are mutually coprime. Therefore, if we consider F(Z,,, X), and
F(Z,,, X), where p, is a prime power dividing a,, then we see that N(F, X)
decomposes into

N(F,, X)= 3 Nm@ 3 Nyw)
. vpglm,m>0 p?;uz}itwv>0A -

where dime > No(m)=n,+1, -

Here, it is easy to see that all m divide a5 Conversely, we shall observe
that a, divides all m. Let ¢ be an arbitrary prime power dividing a,. Notice
that F(Z,, X), does not contain F,. In fact, the relation w } a, holds, because
w has a divisor p, but a, does not contain it. Therefore, when ¢ divides nei-
ther a; nor a, it is easy to see that ¢ does not divide any w. Hence ¢ must
divide every m because dime N(F,, F(Z,, X))=n;+1. When ¢ divides either a,
or as, dime N(Fy, F(Zp,s, X)) equals either n,+1 or n,+1 respectively by Lemma
4.2. This implies that ¢ must divide all m, because p, divides all w. Since ¢
is an arbitrary prime power dividing a., as divides all m. Thus, the fact m=
lasl follows.

Next we shall observe that all w are divided by a, Since as;}f ai, as
F(Z\qq, X), does not contain nejther F; nor F,. Take an arbitrary prime power
g dividing @, and consider F(Z,, X),. The effectiveness of our S'-action implies
that ¢ does not divide a,. However, since dime N(F,, F(Z,, X))=n,+1+n,+1, ¢q
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must divide all w. This shows that a, divides all w. a. e.d.

Since ajla;, let us put a;=ha, where A is an integer distinct from 1 be-
cause {a,} are mutually distinct. We shall distinguish the following three cases
concerning the integer h:

Case ILA. h=-—1.

Case ILB. h=2.

Case II.C. h#—1, 2.

Lemma 4.7 implies that N(F,, X) decomposes into

“8) N, X)= B Nm@, 3 Niw),
wtag

where dime S N(m)=n,+1+n,+1. The fact w/} a, follows from Proposition 1.5
and g.c.d.(as, az=1.

Assertion 4.8. If our S*-action satisfies Case ILA, it is of the linear type.

Proor. We note that the assumption a;=—a, implies that the case where
la;—as!=|as—as|=1 does not happen. Therefore, we may assume, if necessary
by changing the indices of F; and F,, that every absolute value of the global
weights {a;, a;—a,=2a,, a;—a,} at F, is greater than 1. We shall distin-
guish the following two cases moreover.

Case ILA.1. The case where [a;—a;l|la;—a.|(=]2a;]).

Since the effectiveness of our Sl-action implies g.c¢.d.(a;—as, a))=1, |a;—a,l
must equal 2. Therefore, if we consider F(Z,, X); and use Remark 4.3, the
linearity at F; follows from (4.6). Then, it is easy to see the linearities at the
other F,.

Case ILA.2. The case where |a;—as;| } [a1—a.|(=]2a,]).

In this case, the condition of Case II is satisfied at F,. Hence we can apply
the F, version of Lemma 4.7. Therefore, we have w=|a;—a,] for all w, that
is, the decomposition (4.6) becomes



Smooth S'-actions 159
N(F;, X)= 2 Ni(m)DN:(la;—asl) .
aglm

Consider F(Z,, X), where g is the maximum power of 2 dividing 2a,, so we
can see the linearity at F;. Then, it is easy to check the linearity at the other
F,. g.e.d.

Assertion 4.9. If our S'-action satisfies Case 1L.B, it is of the linear type.

PROOF. When [a:—a;|=la,—a;|=1, we have |a,]=2, [a,|=4 by easy
calculation. Therefore, if we recall (4.6) and consider . F(Z, X),, we can see
this assertion in this case.

Therefore, there is such F, that the every absolute value of its global weights
is greater than 1. Then the proof is paraliel to that of Case ILA. q.e.d.

Assertion 4.10. If our S'-action satisfies Case ILC, it is of the linear type.

PROOF. We may assume, if necessary by permuting the subindexes of {F.},
that every absolute value of the global weights {ai, a,—d,, a;—as}={ha.,
(h—1)as, a;—as} at F; is greater than 1. The assumption A#—1, 2 means that
integers ha, and (h—1)a, do not divide each other. Moreover, the effectiveness
of our S*-action implies that

(h—Das ¥ a,—as,, hasf a,—a,.

Thus, the following three cases can occur with respect to remaining divisibility
relations between the global weights at Fi.

Case II.C.1. a;—as ¥ (h—Da., ai—asf ha,.

Case I.C2. a;—a,f(h—Da,, a,—aslha,.

Case IL.C3. a;—aslth—Da., ai—as) ha,.

In Case ILC.1, the condition of Case I is satisfied at F,. Therefore our as-
sertion follows from Lemma 4.6.

In Case I1.C.2, the condition of Case Il is satisfied at F,. Hence, if we recall
(4.6) and use the F; version of Lemma 4.7, we have

NF, X)=N(la,—a.DB 3  NmHS ¥  Ni(w)
Fud st
where dime Ni(la,—a.])=n.+1 and dim¢ SN (m)=n,+1.

We shall observe that all m’ equal [a,]. Let Y, and Y, be F(Z,,,, X), and
F(Z\64-aq, X): respectively. Then the intersection Y, Y,=Y is exactly F(Z., X)o
=F(Z,, X): where u=Lc.m. (|a,l, |a,—as|).

Let » be an arbitrary prime power dividing a,. If »|a, or #|a,—a,, then ¥
is clearly fixed pointwise under the restricted Z,-action. Therefore, let us assume
v { as, a;—a,, hence v f a;—a,, as. The fact v f ay, a;—a, means F(Z,, X),CY;
and F(Z,, X),CY,, hence
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F(Z,, X)0oNF(Zy, X CYiNY, =Y.

Here, if we consider the dimensions of these two spaces, we see that they coin-
cide, that is, Y is fixed pointwise under the restricted Z,-action. Thus, it follows
that m’=]a,| for all m’.

Hence, the linearity at F, follows from Proposition 1.4. Then it is easy to
see the linearity at the other F,.

In Case 11.C.3, the argument is parallel to that of Case ILC.2. q.e.d.

Now we shall consider Case III. This case reduces to the previous two
cases.

LEMMA 4.11. Let our S-action satisfy the condition of Case Il at some S'-
fixed point set component. Then the situation of Case 1 or Case Il occurs at an-
other S'-fixed point set component.

PROOF. We may assume that a.|a: and a,]a;, if necessary by permuting
the indices of {F,}. Since a, and a, are mutually coprime by the effectiveness
of our St-action on X, a, is written as ha,a; where 4 is an integer.

Now, the global weights at F, is given by {ai, ai—as a;—as}=1{ha.a,
(ha;—1)a,, (ha,—1)a,}. Let us distinguish the following three cases:

Case IIL1. |ha,—1l=lha,—1]=1.

Case 1IL.2. |ha,—1]=1, l|ha,—1|+#1,

or |ha,—1|=1, |ha,—1|=1.

Case 1113, |has—1|#1, [ha,—1]=#1.

We note that since a, and a, are distinct non-zero integers, the first case does
not really happen.

We shall observe that the global weights at F; satisfy the condition of Case
1l on both cases in Case 111.2. We shall consider only the former case because
the proof of the latter case is parallel to that of the former case.

Recall that |a,! is an integer greater than 1. Hence the solution of the
equation |ha;—1][=1 is given by

h=1, a;,=2,

or
h=—1, a;=—2.

Therefore, the global weights at F; are given by
{2(12) Ao, 2(@2—1)} 1f hzl ’
{2a,, as, 2(a;+1)} if h=-—1.

It is easy to check that these global weights satisfy the condition of Case IL
In Case 1I1.3, we assert that the global weights at F; satisfy the condition
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of Case I at Fi. In fact, if we note that, by the condition of Case IIL3, each
absolute value of the global weights at F; is greater than 1, and that a, and a,
are mutually coprime, then we see this assertion. g.e.d.

5. Proof of Theorem 0.2

In this section we shall prove Theorem 0.2 stated in Introduction. We con-
tinue to assume that F(S!, X) consists of four connected components. By Prop-
osition 4.1 and taking a suitable lifting y, we have only to consider the case
where the set {4} coincides with {0, @, 1, a1} for some positive integer a.
Moreover we can assume

a=0, a,=a, a;=1, a;=a-+1,

if necessary by permuting the indices of {F:}.
We shall compute the equivariant Euler class of N(F,, X) in the different
two ways. In the one way, we already know

6G.D eSUN(Fy, X)=(x0—aa)™* (x,—a)"*(x,—(a-+1)a) s+

by the proof of Lemma 2.4. In the other way, considering F(Z,, X), for various
prime powers 7, we see
N(Fo, XY p=nat= 1014 o 4 iPsf b4 ppt = @004 o g

where peF,, and

SN(F,, X)=- " 2O () ) () TT (@t )
(5.2) aa =1
{xo—(a+Da)s+t

X (a+Da

(g.00) -+ (gse0)

by Corollary 3.10, where c(Ny(1))=TT (1), |$1X = X pol=a and |g: - Xq.|
j=1

=a-+1.
Comparing the coefficients between (5.1) and (5.2) in each power of «, we
obtain

5.3 a’ M T (e )=(x,—a)"2*,

LEMMA 5.1. If no=n,+1, then s=t=1, that is, our S*-action is of the linear
type at Fy. If no=n,, then s+t=3.

PrOOF. If no=n,+1, then x72*! is a non-zero element. Hence, it follows
from (5.3) that s--¢#—2=0, that is s=¢=1.
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If n,=n,, then x?2 is non-zero. This and the identity (5.3) means our lemma.
q.e.d.
LEMMA 5.2. If no#n,, then our S'-action is of the linear type.

PROOF. Since the same discussion as F, holds for F,, we may assume 7,>> 7l,.
Then, by Lemma 5.1, our S'-action is of the linear type at F,.

Assertion 5.3. pS(X)=(no+ 1y +(n,+1)(y—aa)*+(n.+1)(y—a)

+(ns+D(y—(a+Da)+hy?
where £/ is an integer.

PROOF OF Assertion 5.3. Since the set {y? «ay, a?t forms an additive base
of H4:1(X, Z) by Proposition 1.2, p$'(X) is written uniquely as

X =(no+1)y*+(n+D(y—a@)+(n,+1Xy—a)*
+(ns+ Dy —(e+Da)+h,y +hay+hsa?
where {h;} are integers. Hence we have
FEPS O =(not D g+ (s + 10— a ) +(nah Dato—a)?
s+ (xe—(a+ D)+ hixd+hoaxothaa?,

54

where 7,: F,— X is the inclusion.
On the other hand, since there is a natural bundle isomorphism J¥TX=TF,
P N(F,, X), we have
(5.5) FEpSX) =T (F)+pT (N(Fy, X))
Here, since our S'-action is of the linear type at F,, we have
(5.6) SHN(Fo, X))=(no+1)xi-+(n+1)(xe— aa)*+(n.+1D(x,— )
(et (e (a+D)a)?
by Lemma 2.8.
Therefore, if we compare (5.4) with (5.5) using (5.6), then we have

SUE)=h,xi+heaxethaa®.

We remark that p$(F,) must belong to the subgroup H(F,; ZYRHXBS'; £)
and that we have n,=1 by the assumption n,>n, Hence h, and h; must be
zero. This proves Assertion 5.3.

Now we return to the proof of Lemma 5.2. We shall consider the following
two cases.

Case I. The case where n,=n..
When n, is distinct from n,=n., we shall consider F(Z,, X), and F(Z,;, X).
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where p and ¢ are prime numbers dividing ¢ and a-+F1 respectively, and apply
Proposition 3.3 to each fixed point set. Then we see that our S-action is of
the linear type at F,. The linearity at F, and F, implies our lemma.

Thus we assume n,=n,=n,. Then, the following three types at F, together
with the linear type can happen, by Lemma 5.1, with regard to a decomposition
of N(F,, X).

Let p, be a point of F, and ¢ the l-dimensional standard S'-module.

Type 1. N(Fy, X)| pe=(no— Dt F 0.1 - ngd o+ 1014 g2 g P14t 2

where w; and w, (resp. m; and m,) divide a—1 (resp. a), and w;w,—a—1 (resp.
MM =0).

Type 2. N(Fy, X)| pe=not+nat® 1 (n+ D% 1v14¢%2,

where w; and w, divide ¢—1, and w,w,=a—1.

Type 3. N(F,, Xl pa=not+(n+ Dt - ngi o tmaftme

where m, and m, divide a, and m.m,=a. .
We shall show that none of these cases really happen. In Type 1, the re-
striction of p$'(X) to a point p, is clearly given by

{nla—1+na?+witwi+mi+mitn,—1}a?.

On the other hand we can deduce its alternative representation from Assertion
5.3. Equating these values, we get

(GNp) a*+Ha—1D*+h+2=witwi-tmi+mi.

Next, since our S'-action is of the linear type at F, and N(F,, X) has the
above decomposition, N(F;, X) has a representation

N(Fy, X)) pr=(no-+-Dt - n,t® I ngt -+t W1} f 22
where p,eF;. Therefore, by the same argument as N(F,, X), we get
(5.8 (a-12+14hae’=wi+wi.
Furthermore, if we repeat the same process for N(F,, X), we get
(5.9) a?*+1+hla+12=mi+ms.
By easy calculation using (5.7), (5.8) and (5.9), we obtain
a=0 or —1.

However, this contradicts our assumption that a is a positive integer.

In Type 2 and Type 3, we can deduce a contradiction in a similar way as
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Type 1.

Case II. The case where n;#ns.

We may assume #;>ns. Then our S'-action is also of the linear type at Fi
by Lemma 5.1. Hence H(F., X) has a representation

N(F, X)lpzz(no+1—k>t+<n1+1>t“'1+nsta+é g

where [[m;=a. Therefore, if we consider p5%(X) and repeat the same argument
as Case I for N(F,, X), then we get

>Smi=a*+k—1.
On the other hand, an easy calculation shows that the equality
>Smi<attk—1
holds for £=2. Thus 2 must be 1, and Lemma 5.2 follows. g.e.d.
LEMMA 5.4. Unless no=n=ny=ns, our S'-action is of the linear type.

PrROOF. First we notice that the same argument as Lemma 5.2 holds in the
case where n,#n, Therefore, unless n,=n, and n,=n, our S'-action is of the
linear type. Hence we assume no=n, and n;=n,. When n,#n; we consider
F(Z, X)o and F(Z,, X)), where p and g are prime numbers dividing ¢ and a-+1
respectively, and apply Proposition 3.3 to each fixed point set. Then the linearity
at F, follows. The linearity at the other S'-fixed point set components is simi-
larly proved. q.e.d.

By this lemma, we assume n,=n;=n,=n; and put it » in the following.
Then, if we exclude the linear type, the circumstances of N(F;, X) are restricted
to the following two types by Lemma 5.1

Type L N(Fy, X)| po=rt+rto-F(r+D1e 1P +19,
NF, X)) py=rt-+r+Di% Hrio4-124+19,
N(Fy, X)| po=ri-+r+DteHrio+t? 17,
N(Fy, X)| ps=rt+rto+(r+1)et 47 419,

where p and ¢ (resp. p’ and ¢’) are mutually coprime positive integers distinct
from 1, and pg=a (resp. p'q¢’=a).

Type IL N(Fy, X} po==ri+(r+1toriottf4+17,
N(F, X)| pi=ritrte Do+ +1v,

(5.10)
N(F,, XD\ po=rit+rte i+ +1,
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N(Fy, X)| pe=ri-+(r+-1)te4-rtor 4447,

where u and v (resp. #’ and v’) are mutually coprime positive integers distinct
from 1, and uv=a+1 (resp. uw'v'=a—1).

LeMMA 55, In Type 1, the set {p, q} coincides with {p’, q'}, that is, our S*-
action 1s of the Petrie type.

Proor. Let ¢;: p;— X be the inclusion for each 7. Then, using the above
representation of N(F;, X)|p;, we can compute gp’é‘pfl(X). On the other hand,
we put pSNX)=Ay*+Bya+Ca® where A, B and C are integers, and restrict it
to each p;. Equating these two values for each 7, we obtain four equations.
Solve these equations using the relation pg=p'q’=a, so we deduce this lemma.

q.e.d.

Next, let us investigate Type II. The assumption that g is a positive integer
shows a=2 because a#1 by Proposition 1.3. If ¢=2, then it is easy to see that
our St'-action is of the linear type. Therefore we assume g¢=3.

LEMMA 5.6. Type 1 does not veally happen.

ProoF. Consider the normal bundle of F(Z,, X) in X. Then, we see that
the relations

u'=xu+tca
v'=2v+da

hold where ¢ and d are integers.

Case 1. The case where u'=u-cae and v'=v-+da.

Consider the multiplication u’v’ and use the fact uv=a+1 and uw'v'=a~1,
so we get

(cv+du)a-tcda®=—2.

This shows that a divides 2, but it contradicts the assumption a=3.
Case 2. The case where w'=—u-ca and v'=—v-+da.
This case is also excluded by the same argument as Case 1.
Case 3. The case where u'=u-+ca and v'=—v+da.
Let us consider the multiplication wv’. Then, using the fact uwv=a+1, we
get
wv'=u(—v+da)

=—14ud+1a.

Since u and v’ are assumed to be positive integers, this equation means d=0.
Next consider the multiplication «’#’. Then, using the facts uv=a+1 and
uw'v'=a—1, we get
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dutcv’'=2,

Since u and v’ are assumed to be positive integers greater than 1 and d=0, the
solution of this equation is uniquely given by c¢=1, v'=2 and d=0. Hence, if
we note the relation u’v’=a—1, only the following case remains:

(5.11) u:%(a—kl), u’=%(a~—l), v=v'=2 (a: odd).
Assertion 5.7. 1f r=1, then the case (5.11) does not really happen.

PrOOF. Let us put pS(X)=Ay*+Bay+a®. Then, if we restrict it to F,
and F, respectively and use (5.10) and Corollary 3.10, we obtain

(5.12) C=20r+1¥a*+a+1)+u+vi—(a-+1)*—1

by the similar argument to Assertion 5.3.
Similarly, if we restrict p5%(X) to F, and F,, we obtain

(5.13) C=2(r+1)a*+a+1)+u"+v"*—(a—10—1.

Therefore, using the facts uv=a+1 and u’v'=a—1, a contradiction is induced
from (5.12) and (5.13). g.e.d.

Thus, let us assume r=0. In this case, since X is a cohomology CP® with
a non-trivial St-action, we have p,(X)=4x* by [31and [17]. On the other hand,
we can show p(X)=x? by calculating pfl(_X) similarly to Assertion 5.7 using
(5.10). Hence this case is also excluded.
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