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§1. Introduction.

Recently Niiro, Sawashima and Miyajima have obtained elegant results about
the reduction theory of a positive, uniformly ergodic operator in an arbitrary
Banach lattice [9, 117, unifying their former individual results [6, 7, 8, 10]. In
this paper, we shall investigate the reduction of a positive operator in a simplex
space. A simplex space is the predual of a Banach lattice of type L [3]. An
AM space is a special case of a simplex space.

The author has obtained the decomposition of a positive, strongly ergodic
operator in a simplex space £ with an order unit into its irreducible components
{T:} 14, which are in one-to-one correspondence with the set 4 of extreme
points of the set {p=E'; ¢=0, [gl=1, T'¢=¢} [13]. In §2, we show that the
similar decomposition is obtained even if a simplex space E doesn’t contain an
order unit. In §3, we are concerned with the following problem. Let £ be the
set of extreme points of the set {z€E”; z=0, ||zll=1, T"z=z} and [ is the unit
circle in €. Then we have a(T)/\F:a(T”)mF:(Upa(T”w))‘mF by the result of

wEH

(107 since the second dual of a simplex space is an AM space. There is an

injective map ¢: A— satisfying o(T)N=6(T".c5)NI" and (4) is a proper

subset of £, so it is clear that a(T)mFg(UAa(Tl))‘mF. Thus our problem is:
e

whether the equality ¢(TONI=(\U o(T))"nI holds. In case of a separable
e

simplex space, we solve the problem affirmatively by using the results [14] about
the absolute value of an element of a simplex space over the complex field.

The author would like to express her hearty thanks to Professor S. It6 for
careful reading through the manuscript and making valuable suggestions for its
improvement.
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§2. Decomposition.

Let F be a simplex space, i.e. an ordered Banach space whose dual is a
Banach lattice of type L and T€X(E) be a positive, strongly ergodic operator
with the spectral radius »(T)=1. We denote by P the limit operator of
M= I+7T+ n o
7(P)=1 and the range space PE is the eigenspace of T for the eigenvalue 1.

Let X be the set {x€FE’; x=0, ||x]|£1} endowed with the weak*-topology.
Since X is a simplex [3], there exists a unique maximal probability measure g,
on X with resultant x for each x€ X. Let 0,X be the set of extreme points of
X and 9.X be the weak*-closure of 8,X. Then by the well known theorem [3, 4],
a simplex space is isometrically isomorphic to A«X); the ordered Banach space
of continuous affine functions on X vanishing at 0. Moreover it is isometrically
jsomorphic to the space {f=C®,X); Jx)=p(f) for all x€0.X and f(0)=0}.

A linear subspace [ of E is said to be an ideal if it has the properties;

(i) 0=x=ye<] implies x=1.

(i) If x<1, then there is some y=] with y=x, —x.

A convex subset F of X is said to be a face if x, ye X and ax+(l—a)yeF
imply x, y€F whenever 0<a<1.

Let I be a closed ideal of E. Put F={x=X; f(x)=0 for any f=I}. Then
F is a closed face of X and I={feE; f/=0 on F}. Moreover, the quotient
space E/I is isometrically isomorphic to A (F) and also to the space {f=C(F);
f=g|F for some g=E}, where g|F is the restriction of g to F.

Following the method of Miyajima [7], put

px)=sup{Pf(x); fE5,},

where S, is the positive portion of the unit ball in E. Then p is a positive
lower semi-continuous function satisfying p(x)=|P| for any x=X. Moreover p
has the following property.

as n—oo, Then P is a nonzero, positive projection with

LEMMA 1. If feE and f<p, then PFf<p.

ProOF. Let ¢ be an arbitrary positive number. Then for every x€ X there
exists a function f,€S, for which f<Pf.+¢ holds in a neighborhood U, of x.

n
Since X is compact, it is covered by a finite union of such U,’s, say X==U Uz,
§=1
Put g(x):lnél_agx {fz;(x)}. Then g is a convex, continuous function on X with
=N

g(0)=0 and |g(x)| =<1 with any x=X. Let A(x) be equal to 1 for any nonzero
x€X and A(0)=0. Then & is a lower semi-continuous, concave function on X,
satisfying h=g. By [2, Theorem 28.6], there exists ¢= Ay(X) such that g=g=h.
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Since f;, and ¢ are elements of E satisfying f,,<¢ and P is positive, we have
Pf.,.<P$. So f=Pgp-e holds on X. In the same way, put

g'(x)y=max{f(x)—P¢(x), 0} and ~r'(x)=e

for nonzero x= X and A'(0)=0. Then g’(x) is a continuous, convex function on
X with g(0)=0 and »’ is a lower semi-continuous concave function on X such
that g’<A’. Then there exists ¢’'€A(X) such that g’'=¢'=h ie [¢[=e.
Since f and ¢’ are elements of E and ¢ is an element of S,, we have

f<Pp+g <Pp+¢ and
Pf<Pg+Py' <p+||P| <.

By the arbitrariness of ¢, this proves the lemma. //

A new norm on PE is defined through the function p as follows. If we
denote inf{c; —c-p=<j=c-p} by |flle, it is easy to see that |fll; really defines a
norm on PE which is equivalent to the original norm induced from that on E.
Hereafter, whenever the space PE is concerned, the norm on PE should be con-
sidered to be || [, The following proposition is easily proved.

PROPOSITION 1. Equipped with the norm | |, and the order induced from
that in E, PE is a simplex space.

We get the following proposition in a similar way to [7, Proposition 41.
ProroSITION 2. (PEY is isometrically isomorphic to P'E’ as a Banach lattice.

By using the function p(x), we obtain the similar results to those of [13]
where we have treated simplex spaces with an order unit. We outline these
results with some notations.

Let Y be the set {x€E'; x=0, T"x=x, |x|=1}, and A be the set of all
nonzero extreme points of Y. Then Y is identified with the positive portion of
the unit ball in (PE)" by Proposition 2.

PROPOSITION 3. An element x&€V belongs to A if and only if |x|=1 and for
any f, g€ PE, there exists he PE such that h= f, g and h(x)=fx)V g(x).

For 1€ 4, let

Iy={f€E; h=f, —f and A(R)=0 for some heE},
X;={x=X; flx)=0 for any fel;},

S;={x€0,X; f(x)=0 for any f&l;},

Zy={xeX; Pe,=px) 2}
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and N={xeX; p(x)=0}.
Then we have the following propositions.

PROPOSITION 4. X;CZ; i.e.
Ple,=p(x)-2 holds for any A€ A and x€X;,.

PROPOSITION 5. [; is a T-invariant closed ideal of E. X; is ¢ T'-invariant
closed face of X.
Li={feE; =0 on X3} ={f€E; =0 on S;}.
SRZXZ mm and anz’:Xx man.
Moreover,
E/I, is isometrically isomorphic to Al(Xy).

By the above proposition, T and P naturally induce operators U; and @; in
E/I;, respectively. Namely U, [resp. @,]1 is defined as follows; U;(z:(f)=
7 TF) [resp. Qi(ma(f))=n,(Pf)] for f€E, where =, is the natural mapping of
E onto E/I;. Then U, is a positive operator in E/[; and is also strongly ergodic
with the limit operator @,.

PROPOSITION 6. Let K ,={fcAJXy); /=0 on X)N\N}. Then K, is the
smallest nonzevo Uj-invariant closed ideal in E/I;.

We denote the restriction of U, [resp. @;1 to K; by T; [resp. P;]. Then
we have

THEOREM 1. T; is an irreducible (i.e. having no nonzero proper T-invariant
closed ideal), positive, strongly evgodic operator with the limit operator P;.

§ 3. Spectral properties on the unit cirele.

In this section, we consider the relation between the spectrum of 7 and
those of {7} e or {U;},c4 obtained in §2.

Hereafter, let T be a positive operator in a simplex space E with »(T)=1,
and assume that 1 be a pole of R(a, T) of order 1 and r be a positive number
such that {a; 0<|a—1]<7}Cp(T). Then the residual operator P of R(x, T) at
1 is also positive, since }zifxll(a—l)R(a, T)=P and R(w«, T) is positive for any a>1.

Moreover T is uniformly ergodic, i.e. M, converges uniformly to the residual
operator P [5, Theorem 6]. Then we can apply the results in §2 for 7. We
shall use the same notations defined in the various stages of decomposition, such
as A, U, and T}.

Let p. denote the unbounded connected component of the resolvent set of 7.
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Then we have the following proposition by [10, Lemma 27.

PROPOSITION 7. For any A€ A, we have
poe<T]):)poo<Ul)Dpoo<T)
and, if a€ pT), then |Rla, THI =R, T)ll.

The above proposition implies the following

PRrROPOSITION 8. Let I’ denote the unit civcle, i.e. I'={a; la{=1}. Then

G(T)K\FD(ZKEJAG(UD)T\FD(lgI a(T) NI

In case of an AM space, if P is strictly positive (i.e. P|f}=0 implies f=0
for f in the AM space), we have

§1€1§HR(a, Tol=|R(a, D, (%)

which plays an important role in proving the inverse inclusion in Proposition 8.

The above relation (*) is obtained from 0,.X=1\U S; in case of an AM space with
4

an order unit and from Be—X:ZUA(Z 1M\0.X) in case of a general AM space.
=

But as for a simplex space E, 9.X is not always compact even if E has an
order unit and the weak*-closure of the face \U X, is not necessarily a face. So
ied

the relation (x) is not evident even if we suppose P is strictly positive (i.e.
Phr=0 implies ~=0 for £2=0 in E). The following example shows a case where
T is positive, Markov and uniformly ergodic and P is strictly positive, but
US: € 0.X.
ied
EXAMPLE. Let E and TeX(E) be as follows;
1
f(l):Z} Ox-f(x)dx
E=3 feC(0, 3D; \ \
FO={ =1 foodt [ 8= fix

1/2){fA+x)+f3—x)} 0=x=1
TAn=1 (x—1)-fx)+2—x) flx+1) 1=x=2
(x—2)- fla—D+B—x)- fx) 2=x=3.

Then E is a simplex space with an order unit and T is positive, Markov and
uniformly ergodic. And we have
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D=/ fA+D+fG—0} 0=x<1
PE=] feC{0, 30); fl)=Ffx+1) 0=<x=2
V=2 5 fn)dx={ fx)dx

= {fC(L, 205 f)={ fwdz=12)}

and
U S;=[1, 3]&[0, 3]=0.X .
ied

Next, we shall show the inverse inclusion in Proposition 8 in case of a
separable simplex space. Hereafter we assume in addition E is separable. We
shall show some propositions by using the results of [14]. Let E be the com-
plexification of E and |f| be the absolute value in E” of fe E defined in [14].
By Theorem 4 in [14], we have

I71(x)=inf {h(x); hEE, h=|f| in E"}
as a function on X. Using this fact, we have
PROPOSITION 9. P”|f| is an upper semi-continuous function on Y endowed
with o((PEY, PE)-topology and satisfies the barycentric calculus (i.e. if yEY and
v is a probability measure on Y with resultant v, then w(P"|f1)=P"|f|(»)).
ProoF. For yeY, we have
PIF1()=IF1(»=int {,(3); hEE, hZ|f| in E’}
=inf{Ph(y); h&E, h=|f| in E"}.

Therefore, being considered as a function on Y, P”|f| is an upper semi-continu-
ous function on Y with ¢((PE), PE)-topology and so satisfies the barycentric
calculus by [1, Theorem 1.2.6]. //

ProprosITION 10. i) ]ffEE~ and | Fx)| <M for all xe ZUAS;, then | P11 =M.
iy If fujgliR(a, UM =M, then |P"|R(a, T[S M, for any f€ E with | fII=1.

PrOOF. i) A=/ can be considered as an element of X by Proposition 2.
Then there exists a maximal probability measure p; on X with resultant 2 sup-
ported by 3,XNS;=0.S;. By Corollary 2 to Theorem 2 in the author’s preceding
paper [14], |#(x)|=17](x) holds for x=d,X. Since |f| satisfies the barycentric
calculus by Theorem 3 in [14],
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FlQ=m iD=\, 1Fldm=M|  dp=M.

Therefore we have |P”|f[(A)| <M for any 1€ A. Considering P7{f] as a func-
tion on Y, we see that P”|f| satisfies the barycentric calculus by Proposition 9.
So, for any yeYv,

PIAG= P ITD=]  PrIfIdn, =M,

where v, is the maximal probability measure on ¥ with resultant y supported by
AU {0}. Therefore,

1P 17| =sup| P"IF 1N =M.
YyEY

if) Suppose that quHR(a, UDI=M,. Then for any x€S; we have by Prop-
osition 5, ©
[R(a, T)f(x)| = |7 a(Re, TYNHI=IR(e, Uyma(l

=R, UL
where 7; is defined in §2. Therefore, for f€E with ||fi=1, it follows that
R(a, T)feﬁ and |R{a, T)f(x)| =M, for all xexUASZ' By applying the preceding
€.
result, we have |P"|R(a, T)fI1=M,. //

THEOREM 2. Let T be a uniformly ergodic positive operator with »(T)=1
in a separable simplex space E, A be the set of all nonzevo extreme poinis of the
set {x€E’; =0, T'x=x, |x| =1} and I; be the set {f€E; h=f, —f and X(h)=0
for some hEE} for any A€ A. Then theve exists M=0 such that

1 R{a, T)H§2§u/LI>HR(a, U+M for eny a, lal>1,
S
where Uj is the induced opevator in E/I; from T.

Proor. For «, |a|>1 and f€E, we have

i-1

R, Tf+ 3, L f for neN

a’l»

Tn

aTL

Rla, T)f=

by the relation («a—T)-R(a, T)=I. Since R(a, T)f is an element of the com-
plexification £ of E, we consider the absolute value in E”. Then we have

\T"FIST"If] for JeE
as T is positive. Since E” has an order unit 1, we have

{R(ar, TIfI S| T"R(et, TYf | +nK 111
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=T R(a, T)f | +nK,lfl-1,

where Kn— _sup IT4. Therefore

£isn-1

[R(a, THfI=M7

”. #n-1 ~
where Mi—=1TT"+ i T Using the relation |&j=}|3]] for g< . we

have

IR(er, TYAISI M5 R(er, THf ||+~ K .
. Since M7 converges uniformly to P”, there exists j= N such that

1
|My =P <5
By Proposition 10, we have

[R(a, DI S| P" | Rle, TS H+~IIR( a, T)fll+ A A

<SupllR(a Upl- Hfll+——HR(a, DI llf!!+ Klifll
By putting M=(j—1)K;, we have the desired result. //

PROPOSITION 11. Let aoel satisfy the following condition; a,< olUy) for
any A€ A and iuBIiR(ao, Upl<oo. Then ays po(T).
(=3

ProoF. By the assumption and Lemma 3 in [10], there exists a positive
number d such that sjuBIIR(a, Ul is bounded in the set {&; @—a,| <d}. By
[

Theorem 2, [[R(a, T)[ is bounded in the set {a;|la—a,]<d, la|>1}. Hence
a€o(T). [/

Let {1} be an arbitrary chosen sequence of elements of 4. Denote U 10
Wi, and E/I;, simply by U, Q, and E, respectively. Let m={{fs}; foS Fn,
supl frll <oo}. With linear structure and order defined coordinatewise and norm

defined by | {fa}ll=supl/.ll, m is a simplex space. Operators U and § are defined

by U{fa}={Unfs} and Q{fa} ={Q.fa}. Let Il be an arbitrary fixed ultrafilter
on N containing no finite set. Put

Ju={{fa}; haZfn, —fn and U—1im||Q, k.| =0 for some {h,}<m},

where U—lim is the ultrafilter limit with respect to I. Let E be the factor space



Reduction of a positive operator 517

m/Jy. Since Jy is easily seen to be U-invariant, the operators U and § induce
operators in E which are denoted by U and Q respectively. Then we get the
following proposition in the similar way to Lemma 4 in [6].

PROPOSITION 12. U is a uniformly ergodic positive operator in E and Q is
the residual operator of Rla, U) at 1. If J is a closed U-invariant ideal contain-
ing QF, the operator U\, has the same spectral properties on the sef {a; |a]|>1—r}
as those U has.

Lemma 5 in [10] plays an essential role in proving the reduction theory in
case of a Banach lattice, but it can’t be applied to the case of a simplex space
E, since the absolute value doesn’t exist in £. So we prepare the following
lemma instead of Lemma 5 in [10].

LEMMA 2. Let {U,} be defined above and b be a positive number such that

suplR(a, U)U—QulI=b.

(The existence of such b is guaranteed by the assumption that 1 is a pole of
R(a, T) of ovder 1 and U, is induced from T.) Then the relations

fal=L fa€En, laol=1 and 1Usfa=aofal <gr (6

imply {fa} € Su.

ProoF. The absolute value of an element of E, does not exist in E, but in
the second dual Ej [14]. So we consider the second dual operator U% in E,
which is an AM space. Then UZ is a positive operator with »(U)=|Up}=1
and 1 is a pole of R(a, U}) with the residual operator @}, where Qilz,=Qn.
Moreover su>pllR(a, UNJ—QM=<b holds. So by virtue of the assumption (),

a>1

we can apply Lemma 5 in [10], and get Q%] /x| ng% since |[f,| exists in FE%.

Consider I={{¢,}; U-1im|Q%|¢,||=0}. Then Inm>DJ;. For if {g,} <]y, there
exists {4,} such that

hnZgn, —ga W—lim|Q4h,]=0.
Since Qylg.| =Qhh,, we have U—1im||Q%|g,]1=0, which implies {g,} =/~ \m. By
the definition of 7, IIQ;{(anlgé implies {f,}€l/nm. Therefore, {f,} & /u. //
The following lemma may be shown along the same line as the proof of
{12, Theorem 11.

LEMMA 3. Let E be a simplex space, T< I{E) be a positive irreducible oper-
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ator such that v(T)=1 and 1 be a pole of Rla, T). Let r be a positive number
such that
{a; O<fa—1l<r}Cp(T)

and o, be in o(T)NI. Then
{a; O<ja—a,| <r}Cp(T).

We are now prepared to give the main result, which can be proved by using
above lemmas and propositions along the same line as the proof of [6, Theorem 8&].
We will sketch the proof for completeness.

ProrosiTION 13. Let T be a uniformly ergodic positive operator with »(T)
=1 in a separable simplex space E and A be the set of all nonzero extreme points
of the set {x€E'; x20, x| =1, T'x=x} and I; be the set {f€E; h=f, —f and
A)=0 for some heE} for any 2= A. Then

o(TINT'=(\J o(U) N,
ied
where U, is the induced operator in E/I; from T.

Proor. Since the inclusion

a(T)mFD(lgI os(U) NI’

is proved in Proposition &, it suffices to show the inverse inclusion which is

equivalent to
p(T)D(lﬂAp(Ux))V\F-

Let a, be in (N p(U))*NI". By Proposition 11, it is sufficient to show that the
yI=v

assumption of unboundedness of the set {|R(a,, U)|; A€ A} vields a contradic-
tion.
The first step; Let » and b be positive numbers satisfying

{a; la—al <r}CxQI olUD

{a; 0<ja—1|<rCp(T)
and
Sau>£1>HR(a, TYXI-P)j=b.

.. 1 .
Let s be a positive number less than » and 55" Then by the same way as in

the first step of the proof of [10, Theorem 6], there exists an «; and a sequence
{2} of elements of A such that [a;—aol<s and {R(a,, Uli>n, |Rlas, Un)l>n
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hold for any =.

The second step; From the sequence {U,} obtained in the first step, we
construct a new simplex space E and a positive operator T in E following the
method described above. Let J denote the closed ideal in E generated by the
eigenspace of T for the eigenvalue 1. Then J is the minimal T-invariant closed
ideal, hence the restriction of T to j, which is denoted by ’f‘[j, is an irreducible
positive operator having the following properties; R(«, T{ ;) has a simple pole at
a=1, and {a; 0<]a—1|<r}Cp(T] ;).

The third step; We can show that «, and a; belong to o(T) by the same
way as in the third step of the proof of [10, Theorem 6] by using Lemma 2
instead of Lemma 5 in [10].

The fourth step; Applying Proposition 12 to the results of the third step,
we have a,, a;=0(T'|;). This contradicts Lemma 3 since o(7'|;)D{a; 0<|a—1|
<r} and s<r. //

The operator UU; in the above proposition is not always irreducible, but the
operator T, defined before Theorem 1 is irreducible by Theorem 1. Since T; is
the restriction of U; to the closed U;-invariant ideal generated by the eigen-
space of U, for the eigenvalue 1 (this is clear from the definition of K, in
Proposition 6), we get o(T:)NI=a(U;)N\I in the same way as the proof of [10,
Lemma 8]. Using this fact and Proposition 13, we get the following theorem.

THEOREM 3. Let T be a uniformly ergodic positive operator with v(T)=1 in a
separable simplex space E and A be the set of all nonzero extreme points of the
set {x€E"; x=0, |xI£1, T'x=x}. Then

U(T)mrz<z\ej/1 a(To) NI
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