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R. Bowen and J. Franks [BF] gave lower bounds for the topological entropy
and the number of periodic points of a continuous map of the interval with a
periodic point of period divisible by an odd integer =3. The aim of this paper
is to prove similar results for maps of the circle.

For the definition and properties of the topological entropy A(f) of a map f,
see [AKM], [DGS], [W].

For a map f, x is said to be a periodic point of f of period n if f™x=x and
flx#x for 1=0, 1, ---, n—1. In the sequel p,(f) denotes the number of periodic
points of f of period k.

For a positive integer n, let ¢, denote the unique positive root of the equa-
tion ®—¢"'—1=0.

THEOREM 1. Let f be a continuous map of the circle into itself with mapping
degree d.

(1) In the case that d=0 or —1, assume that [ has a periodic point of period
n, an odd integer =3, then we have

(@) M(f)zlog g,, and

(b) 1imkinf%10g palH)=log o

(2) In the case that d=1, assume that f has both a fixed point and a periodic
point of period n, an odd prime integer, then we have the same inequalities as
n (1.

(3) In the case that |d| =2, we have

() h(f)zlogld|, and

) lim}jnf%logh(f)ilog dl.
REMARKS.

(1) Note that ¢,> ¥ 2 >1. In particular log ¢,>0.
(2) In (2) of Theorem 1, the existence of a fixed point is essential. For

instance, the g-rotatlon of the circle has periodic points of period 3, but its
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topological entropy is zero and it has no periodic points of period n+3.
(3) (@) of (3) is the simplest case of a theorem of A. Manning [M]. But
our proof is different from that in [M].

Making use of the formula A(f™)=m- M f) (m=0) and Theorem 1, we obtain

COROLLARY 2. If a continuous map f of the circle has a fixed point and
W f)=0, then the period of any periodic point of f is a power of 2.

Although the method of the proof of Theorem 1 is similar to that in [BF],

we need more precise considerations.
The author is very grateful to Professors I. Tamura, S. Matsumoto, K. Yano,
and T. Tsuboi for their advice and encouragement during the preparation of this

paper.

§1. Matrix representation of a periodie orbit.

Throughout this section we assume that a continuous map f of the circle”
has a periodic point of period n, an odd integer =3. In this section, we repre-
sent the orbit by a matrix and estimate the topological entropy and the number
of periodic points.

Let T={x,, x5, -, x»} be the periodic orbit, ordered counter-clockwise on the
circle as in Figure 1. Let Ii=[x,, x.], L=[xy, 2.1, -+, [n=[xn-1, 2,1, and give
the counter-clockwise orientation on each [I;,. Then the set of intervals {/i, I,
---, I} can be viewed as a base for H(S', T; Ry=R". Let A=(a:;)i j=1,5-n DE
the representation matrix of the induced map f«: H(SY, T; R)—H,(S, T; R}
with respect to the base {I,. I,, .-, I} ; that is,

f*([t): i‘, (l,;j[j (l:l’ 2’ wer, n) .
j=1
LemMA 1. det(A—tD=(d—H(1—t™/1—1)
=(d—t{1+t+12+ - F170,

Proor. We have the following commutative diagram:

0—>Hy(S*; Ry~ H\(S", T; Ry— HT; R) Hy(S*; R—0
lD:f . lAzf* lef* 1C=f>:<

0—>H(S*; R)y—H\(S*, T; R)— Hy(T ; R)—= H(S"; B)—>0

I’ I i iR .
R R~ R" R
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where each row is a part of the homology exact sequence of the pair (S, ),
and D, A, B, and C are the representation matrices of the maps between the
homology groups induced by f. By the exactness, we have

det(A—tI)=det(D—tI)-det(B—tI)/det{(C—tI).

Since D, B, and C are the 1x1-matrix (d), a cyclic permutation matrix, and the
1xi-matrix (1) respectively, we have det(D—il)=d—1, det(B—tI)=1—¢", and
det(C—tI)=1—t. This completes the proof. 1

LEMMA 2. 2 ay=d for each j=1,2, -, n.

ProoF. Immediate from fo(l,+L+ - +1)=d-([;+1+ - +1). 3

We say that a finite sequence I=(i, iy, -, ip) (1=5,=0) is admissible if
Gipiys,#0 for each 7, and we call k the length of /. We say that [ is periodic
if iy=1lg.

For an admissible sequence [=(i, i1, =, 1), we define a family of closed
subintervals

F(_I; Ay, Qlgy 0"y ak)

(a,=1, 2, -+, las_yi,| ; =1, 2, -+, k) by induction on the length of the sequences.
For any sequence (i) of length 0 (1=i=n), define F(()=I;. Consider an admis-
sible sequence (i, 7) of length 1 (a;;#0). Then FU) covers I; at least |aq;| times
in one direction. So we choose |a;;| closed subintervals F((i, j); o) (1=2aslal)
of F((3) so that each f@=flrcu.p;a satisfles fi3>nt F(G, 7); a))=int F(j) and
f$@ has local degree +1 (resp. —1) if a:;>0 (resp. a;;<0). Inductively, for an
admissible sequence (i, iy, =+, i) Of length k, we choose closed subintervals
F(o, s, =5 58) 3 s s @) ASap=las,_yi, 1) of Fl(o, iy, 0, Th-1); @, o @aen)
so that
flertnt F((to, G, 5 Te); @1y 0y @8))

Tty
=int F((is, 25, ==+, 12)} ®s =", ay)
for each ag.

For admissible sequences I="(i, iy, -, iz) and J=(jo ji, =+, Jx) of length k&,
FU: ai, &, —, @0FF(J; By, Ba o, Be) implies int F(J; ai, a, -+, &) and
int F(J; Bi, Bar = B:) are disjoint. Especially for a sequence [=(i, i1, =, 1)
F(l;ay, -, ay) and F(; B, -, B are disjoint if (&, @z, -, ap)# (B, B =5 Ba)-

For an admissible and periodic sequence /=i, i1, =, ix), [ *|rctiagomay 18 @
surjective map from the subinterval F(/; ay, -, o) of I, onto [;,=I;. Thus
there exists a point p(J ; ay, -+, @) in FI; ay, -+, az) fixed by /% Note that
2 ey, o, a)EDL; By oy Be) I (o o, a)F By s Be)
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Now we apply the analogous argument to that in [BF], and we obtain the
following lemma.

LEMMA 3. For any positive integer N,

. 1 1
~. L Ne_ _*
h(f)_hmksup N7 log Tr|A| N log 3,

where [Al=({a;;}).

We use some properties of non-negative matrices without proof. For further
details and proofs, see Chapter XIII of [G].

A non-negative matrix B is called irreducible if for any 1, j there exists
>0 such that the (i, j)-component of the #* power of B is positive; (B7);;>0.
In this case » can be chosen as follows:

r<m—1 if i#j
r<m if i=j,

where m is the degree of the minimal polynomial of B.
Consider the matrix A obtained from the periodic orbit. By reordering the
base {[,, I, ---, I}, we put A into the form

Ay 00 0
x A, 0 0
)
0
N

where each [A,] is irreducible. We call each |4,| an irreducible factor of | Al.
Now we apply the analogous argument to that in [BF7J, and we obtain the
following lemma.

LEMMA 4. For any irreducible factor | A, of [A], we have

D(H=Trl A\ *—2n— %Tr]Aq}”‘.

m<k

§2. Proof of Theorem 1 (1).

In this section, we assume the mapping degree d of fis 0 or —1, and f has
a periodic point of period n, an odd integer =3. Let A be the matrix obtained
as in §1 from the periodic orbit of period n. Using the form (x) of A, we have
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det(A—1I)= g pi1),

where pi(t)=det(4;~—1I).

LEMMA 5. There exists a factor p,(f) (¢=1, 2, ---, s) of det(A—¢]) such that
the degree 7 of p,(t) is not less than two, and the coefficient of #~! in D(t) 1s
non-zero; i.e. Tr A,#0.

ProoF. This follows from the fact that the coefficient of ¢! in det(A—tI)
is non-zero, and the polynomial 141424 --- +¢*! has no linear divisors over R
when #n is odd. !

In terms of p,(f) and A, corresponding to it as in Lemma 5, we have

LEMMA 6. lim}?up\/k TrlA*z0,.

Proor. We define the graph G, of |A4,] as follows: G, is a l-complex

which consists of » vertices 1, 2, -, 7 and |(Ay):;] directed edges i—>j from i

]

t0 7 (G, j=1,2, =, r; a=1, 2, -, |[(Ay,]). For a path iy—>ii—2> - —>i, in

a2

G4 we call & its length. A path io—fi>i1——> —a—k»ik is said to be a circuit if
To=1p.

Since Tr A,#0, some (A);; (1=5i=7) is not zero. We may assume (A4,);;#0
by reordering the base. Let C, be the circuit in G, consisting of only one edge

1-2>1. We choose a circuit C, in G, through the vertex 1, different from C,,
with length ¢=<». Such a circuit C, exists. In fact, since [A4,] is irreducible,
there exists i1#1 such that (A4,).,;#0; that is, 1 and 7 are joined by an edge. On
the other hand, there exists a path from 7 to 1 of length =r—1. By joining the
edge and the path just chosen, we obtain a desired circuit C,.

Then the path C;Cj, - C;, (;=1 or 2) which is a combination of Cy’s and
C,’s is a path from 1 to 1. Let S; be the number of distinct paths of the form
CyCy, -+ C;, of length ¢. Then S; satisfies

3T S tt= 3T (4 gy
1=1 k=1

=(t-H1)/1—t—1%).

Let g(t)=1—1—t* Then g(0)=1>0 and g(1/6,)=0. Hence the radius of con-
vergence of 3 S;:t? is at most 1/6,; that is, limsup{/S_izan. On the other hand,

it is obvious that Tr|A4,[*=S,;. This completes the proof. 1
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LEMMA 7. (Perron-Frobenius Theorem). An irreducible non-negative matrix
B=(b:)i,j=1,2,.n. always has a positive characteristic value p(B), called the Frobenius
root of B, which is a simple voot of the characteristic equation, and the absolute
values of all the other characteristic values of B do not exceed p(B).

If B has h characteristic values 2,=p{(B), 25, -+, An with absolute value p(B),
then all of them ave simple and they are the roots of the equation;

At —p(B)*=0.

Moreover, if h>1, by reordering a base, we can put B into the following

cvclic form;

0 B1 0 * M O

0 0 B - - 0

0 0 0 - 0 By,
B, 0 0 - 0 O ,

where the blocks along the main diagonal are square matrices.

For the proof, see p. 53 of [G].

We call an irreducible non-negative matrix primitive if A=1 in Lemma 7.
Note that, for an irreducible matrix B, Tr B>0 implies that B is primitive.
In fact, if B is not primitive, B can be put into the cyclic form as in Lemma 7

and then Tr B=0.
Now we consider |A4,| with Tr|A4,/>0. Since such |A4,| is primitive, we

have
—é—lk<Tr1Aq]k§r-2k, (%)
for any large k, where 1=p(]44!). Thus, by Lemma 6, we have for any N,

limksupr/Trl A 7E :lim}fup\/k Trid, [ *=iZ0,.

By Lemma 3, we have
1 1
>1i - NEk__ _—_
h(f)_hn';sup N7 log TrlAj N log 3

— - l Nek__ _—
__hmksup NI Iog r l Aq] N IOg 3

g 3.

=log 2—%10
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Since N is arbitrary,
h(f)zlog A=log 0, .

On the other hand, by Lemma 4 and (+x), we have

1

PNz —2n—r 2 A"
2 iz,
1
=>—AF-2n—r > A"
2 mECk/2]
= %ztzn—r(ztk/ﬂ*fl)/(z-D :

Thus we obtain

lirr]iinf-lglog pu(H=log i=log o, .

This completes the proof of Theorem 1 (1).

§3. Proof of Theorem 1 (2).

For the case d+0, —1, we need the following lemma.

LEMMA 8. Assume that f is with mapping degree d, and for an odd prime
integer n, f has a periodic point of period n. Then the matrix | A|, obtained
from this periodic orbit as in §1, has at most two irreducible factors.

PrOOF. Recall that every A; (i=1, 2, ---, s) in the form (x) is a matrix with
integer coefficients. Thus every p;(f)=det(A;—tI) is a polynomial with integer
coefficients. Since 7 is an odd prime integer, the polynomial 1442+ .- -1
is irreducible over @. Hence, if | A} is not irreducible, det(A—¢tI)=(d—H)(1+t+¢*
4+ ... 4¢7"1 has only two divisors corresponding to (*). This completes the
proof. O

We prove Theorem 1 (2). We assume d=1 and f has both a fixed point and
a periodic point of period n, an odd prime integer. Let A be the matrix obtained
from this periodic orbit.

If | A] is not irreducible, applying the same argument as in §2 to the primi-
tive irreducible factor of | A| corresponding te 14i¢+#*+ - "%, we obtain the
desired results.

If |A] is irreducible and a;;#0 for some i (1={=<n), then | A] itself is primi-
tive, and we obtain the desired results as in §2.

Now we assume that |A| is irreducible and ay;=0 for every i=l, 2, -+, n.
Let T={x,, x4, ==, x5} be the periodic orbit, ordered counter-clockwise on the
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circle. We may assume the fixed point, say x, lies between x, and x;. Let
Jo=Lx,, xo3, Ji=Lx0, 2.3, and Jy=1,=[x;1, 2] (1=2, 3, -, n), and give the counter-
clockwise orientation to each J;. Note that [,\JJi=I,=[x,, x1].

We can choose a universal covering =: R—S'=R/Z, a lift f:R—R of f
and the points 0<z, <z, < -+ <z,<1 such that

7(0)=x,,
71'(21)23(7; (221: 2} ) 71) » and
0<z<f(z)<1.

Since 0= R corresponds to the fixed point of f, f(0)=F is an integer.

We consider the graph of the map y=F(x). Since f(z;) is one of zy, zs, -, Zn,
the point (z;, f(z,)) is one of the points indicated by starts in Figure 2. Since
a;;==0 for all 7, the segment joining two points (zi, F(z)) and (z,, f(z,) does not
cut across the area B, where

B={(x, yeR?; z;+r=y=z+r, reZ}.

Thus the point (z, f(z.)) is one of the points indicated by stars on the line x=z,
in Figure 3; that is, f(Zg) is one of zs, z, -+, z;+1. Inductively it is proved that
each point (z;, f(z:) is one of the points indicated by stars on the line x=z; in
Figure 4 (i=1, 2, ---, n). In particular f(z,) is one of z+1, z-+1, -, zp_-+1.

Let T={x, %1, -, xa}. With respect to the base {J, /Ji, -, .} of
H,(S*, T; R)=R""*, the induced map fx: H,(S', T; R)—H(S' T ;R) is repre-
sented as an {n+1)X{n-+1)-matrix A=(a:;)1,j=0,1,n *

A= aul;  G=0,1 -, m).

Assume F(0)=F=0. Then f(J,) covers each of J; and J,. Thus in the graph
G of A, there exist edges 1—>1 and 1252 Let C, be a circuit consisting of

only one edge 1->1. Since |A| is irreducible, there exists an admissible
sequence (i,, iy, -+, ;) of length =n—1 such that 7,=2 and ¢,=1. This implies
that, in G, there exists a path from 2 to 1 of length =<n—1. (Recall that J,+ /=1,

in H(S%, T; R).) Joining the edge 1—‘8—>2 and the path from 2 to 1, we have a
circuit C, through 1 in G, different from C,, and of length =un. Let |A’] be the
irreducible factor of |A|, whose graph contains both C; and C,. Note that | A’}
is primitive, since Tr{A’[=la;;1 >0. By the same argument as in §2, we have
the desired results.

Assume f(O):kZl, then f(J,) covers each of J, and J,. Considering these
intervals, we obtain the desired results just as above.
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The proof of Theorem 1 (2) is completed.

§4. Proof of Theorem 1 (3).

For the proof of Theorem 1 (3), we first state a proposition on the existence
of periodic points.

PROPOSITION 9. Assume that |d|=2. Then for any odd prime integer n, f
has at least |d(d" *—1)| periodic points of period n.

ProoF. Since |d|=2, f has a fixed point. Hence we can choose a lift
7:R—R of f such that f(0)=0.

Since the mapping degree of f is 4, Fx+1)=F(x)+d for any x€R. Thus, if
a<€ R satisfies f{a)=a-k for some k= Z, then we have inductively

fM@=a+kd"—D/(d—1)  (n=D). (%)

Consider the case d=2. For each i=1, 2, ---, d—1, let a; be a point in [0, 1)
such that fa)=a;+(G—1) and fx)>x+(G—1) for any x&(a;, 1), and let §; be a
point in (as, 17 such that f(B)=pfs+i and fla)<x+i for any x&(as fa). (See
Figure 5) Then f has no fixed points in each (&, Ba- By (x#x) we have

FH(B)—F Y a)=(Bi—an)-+d*—1/(d—D>d"—1)/d~D).

Thus for each j=1, 2, -+, (d*—1)/(d—1)—1, there exists a point 7;; in (as, Bo)
such that 7™(7:)=74,;+GE—1d"*—1)/(d—1)+]. (See Figure 6.) That is, there exist
at least (d"—1)/(d—1)—1 points in (a; B which are fixed by /™ Since n is
prime and the points 7;; are not fixed by f, these are periodic of period n. Thus
we have at least (d"—1)/(d—1)—1)Xd—1)=d(d"*—1) periodic points of period 7.

In the case that d<—2, a similar argument leads us to the desired result. [}

Now we prove Theorem 1 (3). Since there is a periodic point of period n,
an odd prime integer =3, by Proposition 9, we have a matrix A defined in §1
from this periodic orbit.

If |A| is irreducible, Tr A=+(d—1)#0 implies that |A] is primitive. More-
over we have p(JAl)z|d|. This inequality is proved as follows: For any non-
negative irreducible matrix B=(b:;):,j=1,2.n, W€ have

p(B)z min( 3 byy) -

1sisn\ j=

(See p. 65 of [G].) Thus by Lemma 2, we obtain
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ol AD=p(1A])
zmin( % la,1)
=min| 3 o
—|d|.

If | Al is not irreducible, by Lemma 8, A can be put into the forr.

[ Al 0 }
* A, ’
where each |A;| is irreducible. Then either det(4,—t] Y or det(A,—tI) is d—:.

that is, either |A;| or |A,] is the 1x1-matrix (|d|), which is, of course, primi-
tive and whose Frobenius root is equal to |d].

Now, using [A] (if |A] is irreducible) or |A;l=(}d]) (otherwise), we com-
plete the proof of Theorem 1 (3) just in the same manner as in §2.

We have completed the proof of Theorem 1.
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