Theory of logarithmic differential forms and
logarithmic wvector fields

By Kyoji SAITO

(Communicated by N. Iwahori)

This note was planned originally as a part of a forthcoming paper [7]. Since
the things we are treating here are relatively independent, we publish this part sep-
arately.

The main purpose of this note is to develop a general study of logarithmic forms
and logarithmic vector fields along a divisor D in a complex manifold S for the ap-
plication of the study of Gauss-Manin connection in [7]. (For the definition of them,
see (1.1), (1.2) and (1.4).) In the case when D is a union of smooth subvarieties,
which are normally crossing, there have already existed such notions. (For instance
see P. Deligne [2] or M. Katz [3].) But our interest and treatment is a bit different
from them, so that we are going to develop a general theory for a singular and non-
normal crossing divisor D.

Such logarithmic forms appear naturally as coeflicients of Gauss-Manin connee-
tions of certain family X—S. Also the modules of logarithmic vector fields Derg
(log D) will be identified with the modules of a certain relative de Rham cohomology
group H pp(Q x/s) of the family X—S, so that the Gauss-Manin connection becomes
an affine connection with a logarithmic pole (see [71). These facts are the motiva-
tions for the study in this note.

On the other hand the general theory which we develop in this note seems to
have some other applications for the study of reflexion groups (see [8]) and for the
study of arrangements of hyperplanes in R” (see H. Terao [9]). It might also be
interesting to see that some phenomena indicate that logarithmic forms and logarith-
raic vector fields reflect some topological properties of the complement S—D (see
(1.11), (2.12), (2.18)).

In §1, we give definitions for 2%(log D) and Derg (log D) and then give a simple
criterion for those modules to be (Js-free ((1.8)). In §2, we study the residues of
logarithmic forms. We give a criterion for the residues to be holomorphic on the
normalization D of D. In §3 we introduce the concepts of logarithmic stratification
of S and the logarithmic characteristic variety L{log D) in the cotangent bundle T*S



266 Kyoji Sarro

of S. Then we give a simple correspondence between holonomic strata of S and
holonomic components of L{log D) ((3.17)). In §4, we study the discriminant Dy of
a finite reflexion group W.

Some results of this note were already announced in [4] §1. Since some proofs
lacked there and the last theorem in §1 was incorrect (see §3), we repeat them
with complete proofs.

§1. Logarithmic forms and logarithmic vector fields

(1.1) Let U be a domain of C*, and Dc U be a hypersurface of U defined by an equa-
tion h(z)=0, where h is holomorphic on U. Let w be a meromorphic ¢g-form on U,
which may have poles only along D. Then the following four conditions for « are
equivalent:
i)  hw and hde are holomorphic on U.
ii) ho and dh Ae are holomorphic on U.
iii) There exists a holomorphic function g{z} and a holomorphic (g-1)-form & and a
holomorphic ¢-form » on U, such that:
a) dimgDnNi{zeU: g(2)=0i<n—2,

b) gw=%/\$+7z.

iv) There exists an (n—2)-dimensiona(,11 analytic set AC D such that the germ of
at any point p € D— A belongs to —hi/\!)‘{;; +2%,,, where Q% ,denotes the module
of germs of holomorphic ¢-forms on U at p.

PrRoOOF. The equivalence of i) and ii) is evident from the formula, hde+dh Aw=

d{ho).
- 2 ai(e)dz L L
ii)=iii). Let us present the form o by -’_h— where I=(3;, -+ ,%), 1<4;,,%,

<mn is a multi-index and dz,zdzil/\m/\dzifaf(z) is a holomorphic function on U
and {a;(2)} is skew symmetric with respect to the index I

Since dh/\Z;, ar(z)dz; is divisible by h(z), there exists a skew-symmetric system
{b;(2)}; of holomorphic functions on U with a multi-index J={(3;, -+ ,js+) such that
we have an equality

(7 _)ah a1 =h(2)bs )
y= 1) Gitseity

{931,008, 62,-

for any J. Here {J} means the set of numbers {J;,---,J,+} by forgetting the order
of them. Then we calculate
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oh dh 1
—67,(0:—]'7/\ A:_‘, a,ﬂ'dzlr-i—?}_; bdeZI,

where I’ is a multi-index {¢;,---,7,;). For a suitable 5, we put gzgg, $=;a,-,/dz,'
and 7=(g/)™ = by ’
ii)=iv). Put A=Dn{ze U: gz)=0l.
ivi=ii). Let w be a g-form with the condition iv). Then clearly heo and dhAw are
holomorphic on U— A. Since codimy(4)>2, by an extension theorem of Riemann, hwo
and dh Aw are holomorphic on U. q.e. d.
(1.2) DEFINITION. A meromorphic q-form on Uis called a q-form with logarithmic
pole along D or logarithmic q-form, if it satisfies the equivalent conditions of (1.1).
Let S be an n-dimensional complex manifold and D be a hypersurface of D. Let
h,=0 be a reduced equation for D, locally at pe D. A meromorphic ¢g-form is loga-
rithmie along D at p, if b0 and h,de are helomorphic. We denote

2% ,(log D) : ={germ of logarithmic ¢-form at p},
Q%(log D):= U £2%,,(og D).
peS

{1.3) By using the equivalence of (1.1), we easily conclude,
i  Q%log D), g=0.1,--- n, are coherent (9g-modules,

i) éﬁ Q%(log D) is an (Os-exterior algebra,

q

i) @ Q%log D) is closed under the exterior differentiation.
q=0

C ]

Note that, by definition, 2%, (log D)=2%,, and 2% ,(log D)=%-Q§,p.

il
Let w;,-- -, 0, be n elements of 2%,,(log D), then the edge product w, A+ Aw,

has a local presentation a(z)w for a certain holomorphic function a(2)

{0 i).

(1.4) DEFINITION. Let S and DcS be as (1.2). A holomorphic vector field 6 on S

is logarithmic if it satisfies the following equivalent conditions:

i)  For any smooth point p of D, the tangent vector §(p) of p is tangent to D,

ii} For any point p of D, the derivation 6k, of the local equation for D belongs to
the ideal (h,)Ds.p-

We denote

0

Derg.,{log D)={d: germ of a holomorphic vector field on
S at p such that é(h,) € (h,)},
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Derg{log D)= Us Derg,,(log D).
pE

(1.5) By definition we get:
i) Derg(log D) is a coherent (9s-submodule of Derg, where Derg is the sheaf of
holomorphic vector fields on S,
il) Ders(log D) is closed under the bracket product [-,-],
iii) Let 8',---,6™ be any n-elements of Derg,,(log D).
Put 'A--- Adm=2(z ) /\ /\“
0z,
Then v(2) belongs to the ideal (h,)Os., (= At any smooth point p €D, 6'(p),
-,0"(p) are tangent to the (n—1)-dimensional space D, and therefore they are

linearly dependent.)
(1.6) Let

Ders,, X 2%,,3 (3, o)—3-w€ 2%}, ¢=1,---,n,
and

Ders,, X 2%, (3, ®)—> Ls(0) € 2%,,, ¢=1,---,7,

be the notions for the inner product between forms and vector fields and for the
Lie derivative.

LEMMA. 1) The above notions of the inner product and the Lie derivatives are
extended to:

Ders,,(log D) X 2%, ,(log D) 3 (6, 0)—6-w € 2%;(log D),
Ders,,{log D) X 2%,,(log D) 3 (8, w)—>Ls(w) € 2%,,(log D).

il) By the inner product
Derg,,{log D) x 9% (log D)3 (3, o)—8-w€ s,
each is the dual Og,,-module of the other.

PrOOF. i) Take 6 € Derg,{log D) and we 2%, ,(log D). Let us present » in the
form of (1.1) iii): gw:—h—/\§+7;, where & and 7 are holomorphic forms and g is a

non-zero divisor on D. Then
h
g0 -0)=d-go= 5<—d ) 5——/\6 E+4-7,

where 6(%‘ —‘;—h d-& and -7 are holomorphic. A priori 6-» may have poles only
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along D, and -0 have the presentation as in (1.1) iii). Thus é.-» is logarithmie.
Since

Lslw)=d(6-w)—d-do,
Ls(w) is also logarithmic.
ii) Let us denote by &* the dual (Js,-module of an (Js,,-module .
By taking the dual of the following sequence of inclusions

Lo

2%, 9% ,(log D) i

we obtain:

Ders,, 2 (2%.,(log D))*>hDers,,.

By the above inclusion, we regard an element ¢ of Q% ,(log D)* as a holomorphic
vector field. Since 4-(dh/h)=(6h)/h is holomorphie, dh=h{3-(dh/h)) € (k) and thus é
belongs to Derg,,(log D).

Conversely, by taking the dual of the inclusions

hDers,,CDerg,,(log D) CDerg,,,

we obtain

% L.»D (Derg,,(log D))*D 0%, ,.
Thus we regard an element » of (Derg,(log D))* as a differential form of the type

<é ai(z)dzi>/h. Since §;;= A belongs to Derg,,(log D),

0z; 0z; 0z; 0z

oh oh
55;;'(0——(0/} 6z,~ — a; o2, >/h

must be holomorphice for 1<4,5<n. Then

dh/\a)z(Z( aj—%— ai%>dz;Adzj>/h
(3 J

]
is holomorphic and o € 2%, ,(log D). q.e. d.

(1.7) COROLLARY. %,,(log D) and Derg,(log D) are reflexive Os,,-modules. Espe-
cially when dimcS=2, then Q%(log D) and Ders(log D) are locally free (s-modules.

(1.8) In general 2%,,(log D) and Derg,, (log D) are not locally free module. We give
a simple criterion for them to be (Js-free.
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THEOREM. i) 9% ,(og D) is Os,,-free if and only if AQ%,,(log D)=0% (log D),
i.e., if there exist n-elements w,,- - ,w, € 2%,,(log D) such that

dz; N\ --- Adz,

@A+ Aw, =unit 3

Then the set of forms {wy, - -,w,} makes a system of Os.p-free basis for

Q%.,log D). Moreover, we have
Qspllog D)= % Ospon--- Aoy,
i1,
for g=1,--- n.
i) Ders,(log D) is Os,free if and only if there exist n elements ', ---,6" €
Deryg,,(log D) with ¢i= Ela’;(z)a—a, 1=1,---,m, such that the determinant
i= 25

det(@i(2)),;=1,....n 5 @ umit mult%ple of h,. Then the vector fields &,,---,0" is a
system of free basis for Derg {log D).

PROOF. i) Suppose that 2, ,(log D) is (Js,,-free. Since 24(log D) is (Ds-coherent
{(1.3) 1)), there is a small neighborhood U of p in S, such that Q%(log D)y is (Ds-free.
Let {w;,---,0,} be a system of free basis on U. Now let us put w,A--- Aw,=a(2)
X @—zl/\—/\—dz—” Then by (1.3), a(2) is a holomorphic function on U. Since dz,, -,
dz, is a free basis of Q% ,(log D) for p’ € S—D, w,A-+-Aw, is a unit multiple of
dzy/N\---Ndz, at p’€ S—D. Thus a(z) does not vanish on S—D. Let p’eD be a
smooth point of D. Suppose for instance %(p’)qﬁo. Then by (1.1) iii), we may

7
choose a system of free basis of Q% ,-(log D) by {% dzl,u-,d/z\,-,u-,dz,, . Thus

h
@ A\ Aw, must be a unit multiple of %/\dzl/\---/\tfz\j/\dznzg—h M,

Z.
hence a(2) does not vanish at a smooth point p’ of D. Thus the zero-locus of a(z)
has codimension 2, which implies that a(z) does not vanish on U.
Conversely suppose oy, -, o, € 2%,,(log D) such that

wl/\,.,/\wnz._th/\“z.

For any w € 2%,,(log D), let us put

deN- - Ndz,
.i”_q*h——-’
for 1<4;, -+, 5, <n

wAd);lA.../\ﬁ)in_qZQril‘ .

where a;,...; , are some holomorphie functions at p. Then the difference

n—
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=03 Sgn<%> S ] >a/i1"'in—qwj1/\ e /\a)jq

T 20 PR TP )

satisfies:
AN TR /\win_qzo for 1<d,, -+, T <.

Thus o' is a meromorphic ¢-form which is zero on S—D, hence «'=0.

i) Suppbse that Derg,llog D) is (Jg,,-free. Since Derg{log D) is coherent ({1.5) i}),
there exists a small neighborhood U of p so that Derg{log D)y is a free (Os-module.
Let {8',.--,6"} be a system of free basis of it. Put ai:jé a‘;(z)—a—z— and det(ai(z))=

3

g

v-h, where v is a holomorphic function on U ((1.5) iii)}. Since a—a- P is a free
. 21 n
base system for p’¢2U—D, v does not vanish on U—D. At a smooth point p’ of D,

we may choose a system of free basis { 9 0 }, where z,=0 is a local

Zla, 6?2@
equation for D. Thus » does not vanish on a smooth point of D, hence v does not

vanish anywhere on U. Conversely let 6'= 21 aﬁ-(z)a—a—, i=1,---,n, be logarithmic
i= 2;

vector fields at p such that det(a?); ;=1,...,,=h. For any o= flbja—Z—eDers,p(log D),
=z )
let us put (ef. (1.5) iii)) !

a{. . .a}m
A as-- .ai .
il =¢;h, =1, K
a,’ib. .o aZ
| by - by
Then one may check d= Z) (—1)"t¢;0;. q. e. d.

(1.9) The following gives an another criterion.
LEMMA. Let 6= i{a@(z) 52—, 4=1,---,n, be a system of holomorphic vector
b= i
fields at p such that
) [0 071€ X Ossd* for 1,5=1,---.m,

i) det(a) =R defines @ reduced hypersurface D.
Then for D={h{z)=0}, d*,-- -, 6" belong to Ders,{log D), and hence {6*,---,0" is a
system of free basis of Derg,,(log D).

PrOOF. Let (bi(2))ij=1,....» De the adjoint matrix of (ai(z))i,j=1,...,n. Put
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L .

E{ bidz;
h s

principal minor of (b%); ;-1,...,, is divisible by &, hw; /- -+ Aw;, is holomorphic for

1<41, -+, 5,<m. The fact that the system {6, - - -, 3"} is involutive implies

B

j=1, .-, Clearly ¢*-w;=6;; 1,j=1,---,mn. Since any rXxr

w;=

dwk= z @s,pwi/\a)j, k: 1, e T

1<i,ign
This implies especially that hdw, is holomorphic and therefore oy € 2% ,(log D), k=
1,--+-,n. By the definition of o, k=1, -+, n,

_detiidza A« .- Ndz, _dz N - Ndz,

@\ Aaw, b h ,

hence by (1. 8) i), {0, -+, w,} is a system of free basis of 2%.,{log D). Then {5%,---,
0"} is a dual system of free basis of Derg,,(log D). q.e. d.

(1.10) Suppose that Ders,,(log D) and 2% ,(og D) are Os.p-free and let {d*, ., 67}
and {wy, - - -, w,} be systems of dual basis of them. Then:
i) For a germ of holomorphic function f at p, the differential is given by

df= % (@fax
ii) For m germs fi, ---, f, of holomorphic functions at p,

a(fl’ .o ~,fn) =det(5ifj)i,j=l,---,n . (1)1/\ cee /\(Dn

Mz, -0y 2,) dz, N\ Ndz,

{1.11) EXAMPLE. Let ¢, i1€J be a finite system of real linear forms on a real
Euclidean space E of dimension #, and let H;, 7€ J be the associated system of real
hyperplanes in E.

Let S be the symmetric algebra of E with the natural grading d{% St (e S
may be considered as an R-algebra generated by the real dual space E* of E).

Put 4 = g"i €S, which is a polynomial defining a divisor iE;JJH" in E. Put

Derg:={0 ¢ Homg(S, S): 6(PQ)=(6P)Q+ P(6Q) for P, Qe S}
Dergllog 4):={0 € Derg: 6-4€ 48}.

Clearly Dery and Derg{log 4) are finite S-modules of rank n.
An element 6 € Der;, is called homogeneous of degree d if 6S*C S for k=01,
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THEOREM. i) Dergllog 4) is an S-free module if and only if there exist homo-
geneous elements o, - - -, 3" € Derg(log 4), such that
a) 8, ---,d" are S-linearly independent,

k3

b) 3 (deg di+1)=deg 4.

i=1

ii) In the above case, we have an inequality,
1 (deg 0+ 2)>H#{connected component of E— .UJHZ-}.
= i€

(3

PROOF. Since i) is a simple corollary of theorem (1.8), we prove only ii).

We may assume that o;, 1€J span the space E*; otherwise we reduce the
situation for a lower dimensional E.

Consider a derivation d'= jf_jlzj% and call it the Euler derivations. ¢’ is char-

2

acterized by the property
§'P=kP for PeS* k=0,1,2,.--,

and therefore &' does not depend on the coordinate by its definition. Note that the
Euler derivation lies in Derg{log 4).

Let us choose and fix a positive definite symmetric two-form I€ S? on E. Since
6’I=2I, the vector field ¢’ and the sphere defined by I —¢=const.=0 is transversal.
Thus one may decompose & € Dery into 6=46,+0d,, where 9, is tangent to I=¢ and &,
is parallel to 6*. Then §I=0,1+0,1=0d; I and hence 52:%5,‘ Thus “the spherical

component” of & is given by

oI
I51=15—‘2‘5’.
The sphere {I=c¢>0} minus H;, 1€, is decomposed into a union of open cells
U X, of dimension n—1. Now for any ¢ ¢ Derg(log 4), “the spherical component”

leM
Ia—%lal may be considered as a vector field on the sphere which preserves the cell

decomposition.

Now let {d%, - - -, 5"} be a system of homogeneous S-free basis of Derg{log 4) as
in Theorem i). Without loss of generality, we may assume that &t is the Euler
derivation. Then “the spherical components” of é%, - - -, 8%,

(1) g=bi-2la,  i=2,m,
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span the tangent space of each cell X, ¢ M.

LEMMA. In each chamber of E— U H;, the surface defined by d=c=constant

+0, is concave.

PROOF. Take a linear coordinate system 2y, -+, %, of E and present ¢;,= a%;,
i=1
1€ J for some aic R. Then

2 "
3 IOgA:_Z“J@_azt for § k=1,---,m
6z,-azk i€ o}
and hence
2
Z ]$]> -
ZEjEk Iogd——z <0 for £c R, £0,
ik ied 0-1

g.e. d.

Since a sphere I=c¢ is convex, the above lemma implies that the restriction 4y,
has just one critical point on X, for I e M.

By using the basis (1) of the tangent space of X, £§,4=0, ¢=2, ---, n has just
one common zero in X,, for l¢ M. Since &°4 is divisible by 4 (by the definition
of Derg(log 4)),

&4 I&’A deg 4

Q€ A5ir =2, . m,
4="4 2 ¢ "

are homogeneous polynomials of degree (deg 5i+2).
Thus we obtain an inequality

%#{connected component of E— U H;}< ﬁzdeg%
ied =

=1 (deg 5*+-2)
End of the proof of the theorem.

(1.12) In [9] H. Terao has studied some numerical criterion for Derg{log 4) to be
free.
All examples show that:
i) If Derg(log 4) is free, then one has the equality, zI:II (deg 6; +2) =#{connected
of E— U H},
i) If DerE(log 4) is free, then the complementary space E¢— U HY of the com-
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plexifications of E and H;, 1€ J, is a K{r, 1) space.
H. Terao gave also several counter examples for the converse of ii).

§2. Residue of logarithmic forms

(2.1) Let (S, D) be as in §1 (1.2), a pair of n-dimensional complex manifold and
its divisor. Let z: D-» D be the normalization of D. Denote by (9p and Mo
(resp. Op and Fs) the sheaf of germs of holomorphic or meromorphic functions
on D (resp. D). Denote by 2% (resp. Q%) the sheaf of germs of holomorphic g¢-
forms on D (resp. D). (. e. 2%,=2%,/h,2%,+dh, AN2% 5 and HpR2H=n4( MpR2%)).
(2.2) DEFINITION. The residue morphism res. is a sheaf homomorphism res.:
Q%(log D) - Mp g@) Srt=r. ( Mp § 2%, which is defined as follows:

D
For any o€ 24 ,(log D), let us tak% a presentation w as in §1. (1.1) iii) b)

gw:*dhﬁ/\éﬂ-

Then res. » is presented by 71]—5 in MpR25%.
To show the well-definedness of res. (), we need a lemma.
(2.8) LEMMA. Let h be a germ of holomorphic function at p, which is not a con-

stant. Then there exists an integer p such that for any € 2%, satisfying

I3
ondh=0, (Y wedhAE, =1, m, i=1, 0.

ProoF. This is a direct corollary of a lemma in [5].

(2.4) The well-definedness of res. ().
Let » has two different presentations:

giw:’%@/\&'}‘m 7:21, 2.

d
Then —h/\(92§1_91§2):(91772_92772) and hence (g,9:—¢:7:) Adh=0. By the use of

3
Lemma (2.3), ( gf >p(g1772—g27/1)=dh/\c for some € Q%1 i.e.

oh
0z;

dh/\((9251—91§z)< )"—hc>=0.

Again by the Lemma (2.3), there exists ¢ € 242 so that



276 Kyoji Sarto

2o e
(9251_9152)(::2 ”—‘hC(gz) +dhAe.

2
(In case g=1, ¢=0). Thus the class of (g2§1—g1$2)<%> ’ in 9%, is zero. For a

2
) : is non-zero divisor of (95,,. Thus glgl and gigg define the same
1 2

suitable 7, <gh

class in Mp,, @ 92%,.
=D,p
(2.5) For an w¢ Q% ,(log D), res. =0 if and only if w is holomorphic. (- res.w

=0=g0 € 2%, ,c=w € 2%,,).
Thus we get an exact sequence

0—> 24— Q4(log D)—ra ( HpQ2%7).

{2.6) The following diagram is commutative:

res,
2§(log D)—>me (M Q2%
¢« a
Q8 log D)—> 74 (M sR2%).
(2.7) res. 2(log D) defines a (Jp-coherent submodule of  H;®0%™.

PrROOF. Let h(z)==0 be a local equation for DNU in an open set UcS. Then

2% res. 3(log Dl 25 pn.

Together with the fact that Q4(log D) is an (Ds-coherent module and that res. is

a homomorphism Os——()pc(p, we obtain that res. 2%log D)|y is () p-coherent.
q.e. d.

(2.8) Note that in general res. 24(log D) does not consists of holomorphie forms
on D but of meromorphic forms. This fact makes a rather big difference in con-
trast with the theory due to Deligne [1]. Now let us show:

LEMMA. res. Q%(log D) contains mu()5.

Proor. Let a€x,,Op. Since —a% is an universal denominator, %a belongs
Z; i
. oh 4 oh oh
to Op.,. Let a; €(Ds,, be a representative of P {Then a——a,-~£—a,-=b,~,-k €Yp.,

T zJ
for some b;; €(g,,. Now let us define
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Z a; dz1
T
oh
Then —a-;w @; ——+Z b“dz@, and hence
a; i
w€ 2%,,(log D) and res. o= oh | =a. q.e. d.
0z; |

(2.9) THEOREM. Let S,Dbe as (2.1). Let (D, p)=(Dy,p)U---U(D,, p) be the local
irreducible decomposition of D at a point p€ D, and let h=hy- - -h, be the corres-
ponding decomposition of the equation. Then the following conditions are equiva-
lent:

iy Qs,llog D)= E@s 1“1'AQS Py

ii) b.(log D) is generated by closed forms,

iii) res. Q% ,(log D)= EB(?D, 2

iv) a) D, is normal (i e. dim¢ Sing D,<n—38) for i=1,---,m,
b) D;MD; (i. e. outside of an (n—38)-dimensional subset of D, D; and D; is
normal crossing) for i#j, 1, j=1,---,m,
¢) dime D;ND;ND,<n—38 for i#j+k#1, 1,5, k=1, m

d}f‘j‘ —0. Let we @, (log D), such as

do=0. Then because of the commutativity of (2.6), the residue of » on each
branch D; is constant ¢; €C Thus by the exactness of (2.5), there exists some

&€ Qiny, such that w= f‘":c h’—i-& Hence wGZ@s,, ‘—}—.Q‘ o Thus ii) implies

i). The equivalence of 1) and iii) is a direct corollary of {2.5). Suppose iii). Then
together with the lemma (2.8), we get ,-6-_91 @D‘.,pgres. Q%,,(log D)2 i}l@ Bipr Especially
@Diyp:@f)i,p 4=1, ---,m, which implies D, 1=1, ---, m is normal. Thus D; is smooth
outside of an (n—3)-dimensional set. Suppose that two components D; and D; are not
transversal. This meansthat D; and D, are tangent along an (n—2)-dimensional set V'
through p. Since D; and D; are smooth at a general point of V, we may choose a
local coordinate (yy, -+, ¥,) of S at ¢ of a general point of V so that (D;, ¢)={y,=0}

Yoy — My belongs to 2% ,{log D)
i +vE)

Proor. Obviously i} implies ii),

(D;, ¢)={y, +y#=0} for some m>2. Then o=-"*—"—
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and res. | Di’q:yé"" which is meromorphic and has a pole along D;nD;. Since
res. 25(log D) is coherent, the condition iii) implies that res. 25(log D):iéé@l?; in
a neighborhood of p. On the other hand we ean choose the point ¢ cloge to p,
which is a contradiction. Hence D, and D, are transversal. Suppose that there
exist three irreducible components D;, D, D, so that dimc;D;NnD;ND,=n—2. At
a general point of D;ND;ND,, D;, D; and D, are smooth and any two of them are
normal crossing. Hence we can find a local coordinate (y;,---,%,) of S at a
general point ¢ of D;ND;N D, such that (D, q)={y,=0}, D;={5,=0}, D,={y,—1,=

0}. Then wzicly—‘—%) belongs to Q%,{log D) and res. w|p,, =—L which
Y=Y\ Y Ve Y
has a pole along D;ND;ND,. Since we may choose ¢ close enough to p, this con-

tradicts the assumption iii). Thus for any three different components D, D;, D,
dimcDi ﬂ Dj n Dké’n_S. q. e. d.

{2.10) Note. Let B be a small ball in S centered at p. Then the fundamental
group =,(B—D) does not depend on B for sufficiently small ball B. We shall call
it the local fundamental group of the complement of D at p and denote it by
Tloe,o(S— D). In the case of (2.9) iv), one can show that mee.(S—D) is free abelian
group of rank m, and hence the local homology group is a free abelian group of

rank m. Then one may regard that d}? { 4=1,---,m, are dual basis of it.
{2.11) Before going to a general problem when res. Qi(log D) is holomorphie, let
us study the case when dim S=n=2.

THEOREM. Let hix, y) € Octo is @ reduced function and let C={h(z,y)=0} be
a germ of a reduced plane curve at 0€ C%  Then res. 252, (log C) is holomorphic
on the normalization C, if and only if C is a smooth curve or a normal CTossing
of two smooth curves.

PrROOF. Since dimS=2, Q%,log C) is (Ogzo-free (. (1.7)), let w, and o, be
free generators of QLs.(log C). Let us present % € 242 (log C) by %ﬁi:awﬁ—bwz

res. wp. Since res. w;, IeS. w,€
D

res. w,+b
D

for some a,b6¢(c2,. Then l=a

is a unit. Thus one of a(0) or 5(0) is non-zero and there-
D

orb
D

fore we may choose %mwl +bw, as a part of a free base system of 2%, ,(log D).

7+ (Oc), either a

Since Derez,o(log C) is the dual module of QLz,logD) (' (1.6)) there exists a
logarithmic vector field X ¢ Der¢z,(log D) such [that [X .ih’ﬁ:l’ i.e., Xh=h. Since
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h is reduced, C may have only an isolated singularity at 0 e C?. Thus if Cis not
smooth at 0, h defines a quasi-homogeneous isolated singularity at 0. Then due to
a theorem ([4]), one can find a holomorphic local coordinate transformation at 0 ¢ C?,
so that after the change of the coordinate h becomes a polynomial of the follow-

ing type: There exist rational numbers »,scQ such that 0<1'£%, 0<s£%
and mZ—Z-{-syZ—Z—:h. Then one may check that % and syﬂ—}-b_md_y are a free
base system of QieyllogC) (- sydx;rxdy /\%: dm;z\dy and (1.8) i)).

_ sy | —rei
The residue of SXEE=720 ;o equal to 9k i = oh |.

h o |, Oy |p

Now let d be a common denominator of » and s and put d-r=p, d-s=q. For a
point (2, %0)#(0,0) in C, C3t—>(t?x,, t%y,) € C is a parametric presentation of a
branch C, of C containing (,, ;). (We don’t care if the presentation is a branched
covering of the normalization of C,.) Suppose g—Z(xo, %0)#0. Then over the branch

sydz—rady

i al to
P’ is equ

C,, the residue of

Stqyo — Syo tp+q—d.

oh
{tPz,, t4y,) -530—(900, Yo)

£
o
Since the residue must be holomorphic on €, the degree p+q¢—d>0 i.e. r+s—1

>0. This is possible only when ”r=s=-;—. This means that % is a homogeneous

polynomial of degree 2. Then after a linear change of the coordinates, & becomes
zy or xz% Since h is reduced, we have the only possibility h=ny. q.e.d.

(2.12) Note. For a local plane curve C at 0¢C% let us take a small ball neigh-
borhood B of 62 Then the fundamental group = (B—C) does not depend on
the radius of B for small B. The local fundamental group =,(B—C) is abelian if
and only if (C,0) is smooth or normal crossing. Hence z,(B—C) is abelian if and
only if res. 2% ,(log C)=7r4,:0z.

(2.13) LEMMA. Let S and D are as in (2.1). At a point p € D the following con-

dition i) implies the condition i) and the condition ii) implies the condition iii).

i)y The local fundamental group m.oS—D) for q in a neighborhood of p is
abelian.

i) There exists an (n—3)-dimensional analytic set A so that D—A has only
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normal crossing singularity in a wneighborhood of p.
iil) res. 2% ,(log D)=74(O5),.

PrOOF. i)—=ii). Suppose that there exists an {n—2)-dimensional branch V
of Sing D, along which the singularity of D is not normal crossing. We may con-
sider D to be a family of germs of plane curves along V. Along the general point
q of V, the family is topologically trivial. Hence the local fundamental group
T1oe,¢(S — D) is isomorphic to the local fundamental group of the complement of a plane
curve, which is isomorphic to the generic member, which is singular with non-
normal crossing singularity. Thus 7ie,((S—D) is not abelian and the condition i)
is not satisfied.

ii})=—=iii). Suppose D—A has only normal crossing singularities. Then any
point q € D— A satisfies the condition (2.9) iv). For w € 2%,,(log D), res. » is holomorphic
on D—A. Since codimp(D— D—A)=2, res. » is holomorphic on the normal space D.

(2.14) Note. All known examples show that the converse of (2.13) is true. It
is quite interesting to ask whether the conditions 1), ii), iii) of (2.13) are equivalent.
We can reduce the question to the three dimensional case.

Question. Let D be a hypersurface in C® near the origin and suppose 0¢ D,
If D—{0} has at most normal crossing singularities, then is the local funda-
mental group mie,o(C*— D) abelian ?

§3. Logarithmic stratification and logarithmic variety

In this paragraph we introduce logarithmic stratification of S and study the
characteristic variety Lg(log D) associated with Derg(log D).

(8.1) Let S and D be as in (1.2) and (2.1), an n-dimensional complex manifold and
a divisor of it. Ders(log D) is the module of logarithmic vector fields associated
with (S, D) (1.4). For any point p, let us denote by Ders{log D) {p), the linear sub-
space of the tangent space Ty, of S at p which consists of the vectors &(p) of the
values of the vector field § of Derg,,(log D) at p.

(3.2) LEMMA. I Let S and D be as (3.1). There exists uniquely a stratification

{Dy, €I} of S with the following properties:

1)  Stratum D, a€lis a smooth connected immersed submanifold of S. S is a
disjoint union aLeJI D. of the strata.

il) Let pe S belong to a stratum D,. Then the tangent space TD”,,, of D,at p
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cotncides with the subspace Derg(log D) (p)cCTy,,.

II. The stratification above satisfies automatically the following “frontier con-
dition”.

ili) If DanNDs=Q for some a, BE€I and aB, then D.CdDs.

PrOOF. 1. Since Derg(log D) is coherent, there exist a neighborhood U of p
so that Derg(log D)ly has finite generators 8%, - - -, 6™ as (Jg-module. Since Derg(log D)
is closed under the bracket product, {¢?, - - -, 6™} consists an involutive system of vector-
fields on U (i. e. [§%, 67] elﬁ)lF(U, Os)d*, 1,5=1,---,m,). Then U can be decomposed
to maximal integral submavnifolds. Since this decomposition has the property stated
n (3.2) ii), it does not depend on the choise of the generators ¢, ---,6™ Let U’
be an open neighborhood of p’ ¢S with the decomposition as above. By the u-
niqueness of the integral submanifold, the decompositions coinecide in UNTU’ The
collection of global -connected components of such integral submanifold satisfies the
desired property of I.

II. Suppose D.NDs#@. Since D.nDs is a closed subset of D, with the induced
topology from S, it is also closed with the manifold topology of D.. Let us show
that D.NDg is an open subset of D, with the manifold topology of it. For a point
p € DN Ds, choose logarithmic vectorfields 4, - -, §* near p in S, such that §'(p),
-, 6*(p) span the tangent space Tp,, of D. at p. Let us consider the integral

exp <Z ¢;0° >, which is a local homeomorphism of S into S near p. For small ¢>0,

exp (;L:l cia")(p), ley P+ +ler[P<e, fills a manifold neighborhood of D, at p. Let
{Dulu=1,2.--. be a sequence of points of Ds, which converges to p. For any (¢, -+ -, ¢),
there exists Nc N such that {p,},>y lies in the defining domain of exp(> ;0 ), )
that the sequence {exp(Z c.0 >( )}PN converges to exp (;1 ¢; 6‘)(1)). Since Z‘, c;0°

is logarithmie, exp Z,l cﬁ")(pn) lies in Ds. This proves that D,nD, contains a
manifold neighborhood of p in D.. Sinece D, is connected, D.cDs;. If a#0, then
D,NDp= and therefore D,CDs— Dp=06D;. g.e.d.

(3.3) DEFINITION. The stratification {D,, @ €I} of (3.2) will be called the logari-
thmic stratification of S. A stratum D, is called a logarithmic stratum.

Note that the manifold topology of D, does not coincide with the topology in-
duced from S in general (ef. (8.12) ii)).
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(8.4) By definition, the following lemma is almost trivial.

LEMMA.

i) Let & be any logarithmic vector field defined on a certain open set S. Then
the integral exp(td) which is a local homeomorphism on a certain set, brings
a point of a stratum to a point in the same stratum.

if) Suppose S is paracompact. Any two points of one stratum can be conbined
by a finite number of transformation of type exp(td) succesively.

iii) Connected components of S—D and D—Sing D are logarithmic strata.

8.5) The following lemma is simple but useful.

LEMMA. Let hizy, -+, 2, %, ", Ym) be a holomorphic function defined in a
neighborhood of 0 in C*XC™. The following condition A) (resp. (A')) is equivalent
to the condition B) (resp. B')).

A) a«’i_h, oee, aih— are contained in an ideal of (en+m,0 generated by
yl ym
{Lh ... O }
ox,” oz, )
. ( oh oh ( oh oh )
?. €., e R v L e R .
ayl ay'm awl axn
oh oh oh oh
A, Tttty T hr U 2R T Y
) <ay1 m C< oz, axm>

B) There exists a local biholomorphic map
¢! (C"XC™, 00— {(C"XC™, 0),
such that i) o, y)=(e:@,y), -, 0@, Y) Y)
and o, 0)=(z, 0),
i) hlol, y)=hiz, 0).
B’) There exists a local bikolomorphic map
¢: (C*XC™, 00— (C"XC™, 0)
and o holomorphic function vix,y) defined near 0,
such that 1) o y)=(p(®, ¥), -+, ¢alz, ¥), ¥)
and ¢{x,0)=(x,0), viz,0)=1,
ii) hlelx, y))=v(z, yihiz, 0).
PrROOF. B) (resp. B))—=A) (resp. A’)):

Take the partial derivative by y; of the equation ii) of B) (resp. B’)). Together
with i), we obtain
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" . 0
5 o, )25t o, y>>={
J=1axj 61/, ayl < o

y;

/ v)h(sa(x, Y- B)

Since ¢z, y) is locally a biholomorphic map, we may substitute (&, ¥) by ¢ (x, 9),
and we obtain A) (resp. A’)).

A) (resp. A"))==B) (resp. B')):

Let us construet inductively a sequence of local biholomorphic mappings

e®: (CrXCm, 0)—>(C*xC™, 0), k=0,1,---,m,

(resp., and a sequence of holomorphic funetion v® (x, ) with +®(z, 0)=1, k=0,1,
-+, m) with the following properties:
) o®@ Y=y, oL@y, v " Un
such that
oP @, Y1, s Yt 0=, 1=1, -+, 10
i) Rle® (@, y)=hx, vy, Yn—t> 0)
(resp. hip® (x, y)=v® (@, y) - h{x, Y1, - s Ym-ss 0)).
For k=0, we take ¢® to be identity and v® to be a constant 1.
Suppose the construction of ¢® and v*® is done for k<m. From the condition
A) (resp. A’)), there is a relation:

0 A)
w(x, y)hiw, ). A)

n 9k

aym-km’ ¥+ f; oz, {(x, y)g;lz, y)= {

%)

Let us consider the integral & of the vector field

? " 0
AT, Yty * s Ymeis 0,...,0_’
s + ]_Y; 19 T, Yy Ym—i ) o,

which is a local biholomorphic map with a parameter ¢

& (C*XC™+C, 00— (C*x C™,0)
E(x, Y, t)=($1(9€, Y sy Ynm—ir t), ttty Sn(xy Y5 ° s Ymtos t)’

Yis * s Ym—i—10 ym_k+t, Ym—tt1r ** s ym)
with 5"'(%" Yo s Yn—is O)qu 'i:]_y R (N
From %) we obtain

k) h(E(wly Yy s Ym—ter 0, t))
__{h'(xv Yis " s Ym—ps 0) A)
exp (tu(xy Yis * s Ym—ios O))h(x’ Y s Ym—rtos 0)' A)/



284 Kyoji SAiTo

Substitute y,-,=0 and t=%,_, in *%J, and denote

D&, Y15 05 Ymes)
= (&1 (x, Y00 Um—i—15 O: ym—k), MR gn(ms Yis * s Ym——1s Oa ym—k))-

Then ) becomes:

h(’](x’ Y1y * "y ym-—k)’ Y s Ym—pos 0)

{h(xy Y15 s Ym—t—1s 0) A.)
exp (ym—-ku(w’ Y15 ° s Y1y 0))"&(&7, Yo s Ym—t—1s 0)' Al)
Put
o® (@, y)=0® (9(®, Y1, 5 Ym—s)s ¥)
= (?{k) (”(xr Y1t s ym—k)r y)y
t Ty ¢7(zk) (77(% Yo 00y ?/m—k), y)y 1/)-
Then

) e @y, s Ymr1s 0)

=0 0@, Y1, * s Ynt-150)s Y1 ** *» Ym—ii=1, 0)

=0, Y1+ Ym—t—1s 0)

=&(@ Y1, ** s Yn—i—1, 0, 0) =25, 2=1,---,m.
i)  hle®V(z,y)

=h®0@, Y1, s Ym—tds Y15 ** s Ym—ss 0) ,

=h(@, Y1, - * 5 Ym—i—1, 0) A)
or

=v® (y(@, ¥), YhE@, ¥), Y1, -+ Ym—sr 0)

=v® (7, ¥) exXP WYn—s{%, Y1, ** *s Ymet—v, R(@, Yy, * 5 Yms1, 0) A%

g.e.d.

(8.6) Let D, be a logarithmic stratum of (S, D) of dimension m, dimg D,=m. At
each point pe€ D, there exist a neighborhood U of p, a local coordinate system
2y, %, and an equation k=0 of DNU such that

h’(z):h(zlr *tt Rp—ms Oy Tty 0),
and
Da N U:{zlz e :zn_mzo}_

Proor. Since dimeD.=m, we can find logarithmie vector fields ai:‘ilgi-(z)azij,
=
4=1, .-+, m, which are defined in a neighborhood of p, and é*»), -- -, 6™(p) are C-

linearly independent. By suitable change of indices of the coordinate 2z, we may
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assume G=(gH2)}i=1,...,n, j=n—m+1,..,» 18 an invertible matrix in a neighborhood of
p. By multiplying the inverse matrix of G, we may assume that: '

. n_mo 0 .
i + Hoy)—, 1=1,---,m.
b S, El g; (z)a 2
Thus € il @cn,péaz—h+@caz,ph, ¢=1,---,m for a generator k of Jp. Apply-
n—m-ti 7= i

ing Lemmasa (8.5), one can find a local coordinate transformation ¢ at p such that
for h*=hep, we obtain

h¥(z,, -+, 2,)=unit-h¥(2y, -+, 24, 0, - -+, 0).
Thus ”*(z, «++, Zgpomr 0, - -, 0)=0 is the desired equation for D at p. q.e.d.

(8.7) Let D, be a logarithmic stratum of (S, D). Since D is analytically trivial
along D,, the multiplicity of D is constant along D., which we shall denote
mult.p, D.

Suppose Derg(log D) is Os-free. Then for any logarithmic stratum D., there
is an inequality,

dim S<dim D,+mult.p_D.

ProoF. For any point p¢ D., take a local coordinate system 2, --,2, as in
(3.6). Then we may choose (Jg.,-free basis &%, ---,d" of Derg,(log D) of the form,

R L 0 .
= ) — =1, -+, n—m,
g Elg’(z)az,-
. 0 .
ot= i=n—m+1,.--,m,
02;
where gi(z) is a holomorphic function such that g}lp =0 for 4,5=1,---, n—m.

Then det{gi)i j=1,.....—m 18 & defining equation of D ((1.8) ii)) and the multi-
plicity of det(g}) is at least n—m along D.. q.e.d.

(3.8) DEFINITION. i) A point a€S is called holonomic, if there exists an open
neighborhood U of p such that U intersects with only a finite number of loga-
rithemic strata.

i) A logarithmic stratum D, is called holomomie, if there exists an open neigh-
borhood U of D., such that U intersects with only a finite number of logarithmic
strata.

(8.9) Let us denote I,={8cI: Ds>p} for a point p€ S and L={8eI: DsoD,} for
a stratum D..
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PROPOSITION. A point pe S (resp. a stratum D.) is holonomic, if and only
if I, (resp. L) is a finite set and U D,e (resp. U Dyg) contains an open meighbor-
hood of p (resp. D.). &

PROOF. Let U be an open neighborhood of p (resp. D.) such that I,={8: D;
NU+J} is finite. Since I, (resp. L) is a subset of I, it is a finite set. Then
U Ds2U~ U Dp 2U-— U Ds (resp. U D> U*ﬁ U ID;;) contains an open

Berp-I, Belyg-1
nelghborhood of p (resp. Ds). The converse of the propos1t10n is trivial by defini-

tion. g.e. d.
Note that only the finiteness of I, or I does not imply the holonomicity.

(8.10) PROPOSITION. i) A stratum D. is holonomic if it contains a holomomic
point. Every point of a holonomic stratum is holonomic.

ii} Let D, be holonomic. Then any stratum D; with D,cDs is holonomic.

ii) ﬁgzaDﬂ is an open neighborhood of D. if D. is holonomic.

Proor. i) Let peD. Because of the frontier condition ({3.2) iii)), L=1I,.
Let us consider the set U Dg. Since LejI D; is invariant by the local transfor-
mation of type exp(td) of S (ef. (3.4)), it contains an open neighborhood of a point
p€D., if and only if it contains an open neighborhood of D..

ii) Let D. be holonomic. Then by definition there exists a neighborhood U of
D, which consists of holonomie points. If Ds>D. then D:n U+, and hence Dg
contains a holonomic point. Then by (3.10.i)) D; is holonomie.

iii) For any fel, (i.e. Ds>Ds), I is contained in I,. Since D; is holonomic,
U D, contains an open neighborhood of Ds, thus BU Dy contains a neighborhood

(l

of D,s for any B¢ l,. . g.e.d.

3.11) Let S®,...,S® are manifolds and D®cS8%, {=1,.--,k, are divisors of
them. Let D), acI®, i=1,.--,k, be the logarithmic stratification of (S®, DW),
Now let us put S=S®x... xS® D= U SH .. X DH X .- X S®, Then the loga-
rithmic stratification for the pair (S, D) is given by D)X -- - X D#®, Dé:; X .- ~><D‘<}I’c,
(ay, -+, a) €IV X+ XI®, A stratum D@ X-- - X D{¥ is holonomic if and only if
ngi’, =1, ---, k, are holonomie.

(3.12) DEFINITION. For an integer r>0, let us put
A,={peS: rank, Ders(log D){p)<r}.

From the definition we know directly the following properties:
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i) A, is a closed analytic subset of S. (.- Dergs(log D) is coherent.)
i) A,= U D,
dim DaST
iiiy For any point pc A,—A,—;, dim,(A,—A,_)=7.
iv) Let {Pplm=1,.-. be a sequence of S which converges to a point po=lim p, €S.

Suppose Dy € De,, for m=0,1,2,---. Then for almost all m, dim D,_>dim Ds,.

(3.13) LEMMA. i) Let p be a point of a stratum D.. Then p is holonomic if
and only if

dim, 4,<r for dim Du<r<n.

i) If D. is holonomic, the manifold topology of D. coincides with the induced
topology from S.
iii) The property “holomomic’ s a local property in the following sense:

Let S’ be an open set of S and put D'=DNS’. Then a point peS’ is holo-
nomic with respect to the logarithmic stratification of D', if and only if p€S is
holonomic with respect to the logarithmic stratification of D.

Proor. Let pc D, be holonomie, and U :=ﬂUI Ds be an open neighborhood of
€ xQ
D, ((8.10) iii)). Then A,NU is a closed subvariety of U. For any smooth point
ge A,NU and a small neighborhood U7 U of g, we have a presentation,

ANnU= U (Dsnl).

B€I

dim D/gg'r
Since I, is a finite set, the right hand side of the presentation is at most countable
union of immersed submanifolds of dimension <r. By a property of the dimen-
sion, such union cannot be a manifold of dimension >r, and therefore the presen-

tation becomes a closed variety of dimension <.

Conversely, suppose that there exists a neighborhood U of p, so that

dim{A,. N <r for dim D.<r<n. We assume also Agimp,.NU=.
Put
L.={Becl. DsnU=, dim Ds=r}.
Then we have a presentation
(4,—4,.)N U:ﬂgr UN Ds.

The left hand side of the presentation is either a void set or a closed r-dimensional
subvariety of U—A,_,, whose closure in U is A,NU. Thus (4,—A,)NnU is a
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finite union A®U--- UA™ of irreducible components in U—A,_, (by shrinking U
if needed). Let D, be a component of DN U for fel,. Since D, is an r-dimen-
sional manifold in (4,—A4,_)NU, it is contained in an irreducible component A%,
1<i<m. If A9%D,, any point g€ AP NaD,# @ should be contained in a certain
D;nU for yel,, y+B. Thus D,N8D:>q and hence D,CaD; {{3.2) iii)). But this
is impossible since D,NU and D;NU are r-dimensional subvarieties contained in
A,. Thus D;=A®, This implies especially I <m<co. q.e.d.

(8.14) EXAMPLE. Let H,, 7¢I be a system of hyperplanes in a complex Euclidean
space E. Suppose that the system is locally finite in a domain SCE. Put D=
U H;NnS.

1€l

Then
i) For any finite subset I’CI, a connected component of (N H;— U H)nS

. . . el jel-r
is a logarithmic stratum of (S, D).

ii) Any stratum of (S, D) is holonomie.
For the proof we have only to show the following lemma.

LEMMA. Let the notations be as above. Let F={( H,— IUIHj)ﬂS be a k-
eron

te1” i

dimensional face. At any point p € F, the logarithmic tangent space Derg(log D)(p)
C Ts,, is identified with the k-dimensional tangent space TF“’(:-Q H).
tex

ProOF. By a translation, we assume that p is the origin Oc E. Let H,, ic
I'cI be the system of all hyperplanes of I which pass through the origin, and o,
1€l’, be a linear form defining the hyperplane H;. For any &€ Derg.o(log D),
a(ga) is divisible by II o;. Then do, is divisible by o, and hence 6(0) is tangent
to H;, iel.

Conversely, let x,,-.-,2, be a linear coordinate system of E, such that
N H;={#y,="--=w,=0}. Then anye;, 1€ I, is a linear combination of 2, - - -, Ly
iel’
and therefore i, ---,ieDers,o(log D). Clearly {—a~, ,-—a—} spans the tan-
o1, oy, o, 0%y,
gent space of N H,. g.e.d.
el

(3.18) Now we define logarithmic characteristic subvariety of the cotangent bundle
T% of S and study the relationship with the logarithmic stratification.

DEFINITION. A logarithmic characteristic subvariety Lg(log D) is a closed
subvariety TF defined as follows.
Let U be an open set of S, where Derg{log D)}, is generated by a finite number
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of vector fields &%, - - -, 8% ¢ I'(U, Derg(log D)}. Then

*) Lg(log D) T ly={(x, & € T¥ly: o(6")(x, &)=0,9=1, -+, &}

where ¢(6%) is a linear form on T¥ associated with the vector fields &%, ¢=1, .-, k.
The variety Lg(log D) is well-defined if we have shown that the right hand

side of *) is independent of the choice of the generator system 4, ..., 0% which

is almost trivial.

(8.16) For a stratum D., denote by N*D, the conormal bundle of D, which is an
n-dimensional submanifold of T%S. Then

Lg{log D)= Uz N*D,.
ag

PROOF. For a point p€ D., the eo-vector &¢ T§, belongs to Lgs(log D)
== (3(p), =0 for all § € Derg,,(log D).
&= ¢ is orthogonal to Derg,,(log D){p)=Tp,.,-
& £€(N*Da),.

(8.17) Note that the decomposition of (3.16) is not an irreducible decomposition.
Let us take an irreducible decomposition of Lg(log Dj:
Lg(log D)= U Lg.
Bed
Because of (3.16), dim Lg>n for all geJ.
DEFINITION. An irreducible component Ls of Lg{log D) is holonomic if
dim Ls=n.

(3.18) PROPOSITION. Consider a correspondence D.—>N*Da (the closure of the
conormal bundle of D. in T*S). Then this induces a one-to-one correspondence
{holonomic stratum of (S, D)}—— {holonomic component of Lg(log D)}.

PROOF. Firstly let us show that the correspondence is well defined. Let D,
be a holonomic stratum, then UzﬁUI D, is an open neighborhood of D, which is
€

dense in S. Then

a

Lg{log Din Té‘lgzﬁg N*Da.

Since I, is a finite set and D, 8¢ I, is locally closed submanifold of U ((3.13) ii)),
the Lg(log D)NT#]y is an n-dimensional variety. Hence especially N*D, is an
irreducible component of Lg({log D)NTE|y,.

Now let us show the correspondence is injective. Suppose N*D,=N*Dj for
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two holonomic strata D, and Ds. Since N*D, and N*D; are dense and open in
their closures, N*D,N\N*Ds+. Then D.NDs# and a=4.

(3.19) EXAMPLES. Let us give some examples, which illustrate the meaning of

the logarithmie stratifications.

1. Let (X, 0)—(S,0) be a universal unfolding of a germ f of a holomorphic fune-

tion which has an isolated critical point at the origin. Let DcS be the diserimi-

nant locus of the mapping X—S, which is a hypersurface of S.

Then we have the following statements (7h:

i) Ders(log D) and Q(log D) are locally free (Os-modules.

i) Let Do be a logarithmic stratum of (S, D). For any point ty € D,, there exists
a neighborhood U of ¢, in S and holomorphic mappings ¢;: D.NU—X, =1,
-+, k, for a non-negative integer k such that
a) ¢, t=1,- .-,k are sections of X—8S.

b) For any t€ D.NU, the set {,(t), -+, §,(t)} is just the singularities of the
Jiber X, of X—8S at t.
c) Families (X, ¢;(t):e oo ©=1, -, k, are analytically trivial,

The subvariety D.NU is characterized by the mazimal subvariety of U over which

there exist sectioms with the above properties.
As corollaries to ii),

il) A poimt te S is holonomic if and only if the fiber X, over t has only simple
singularities.

iv) For any logarithmic stratum D, of (S, D), there is an equality,

k
dim Da-i—mult.DaD— dim S= Z,l {(ti—17,),
. 0, 0,
where p,=dim @x,¢i<t>/<3§1, ey, a;;)
and z;=dim Ox.,0 /(f—t, oY ) i=1, -k, for t D,
¢ 0x; ox,

2. Let E be a complexification of a real vector space on which a finite group W
generated by reflexions is acting. The quotient variety Q:=E/W is smooth. More-
over one may regard £ as a complex vector space. Let DCQ be the ramification
divisor of E—Q.
Then we have the following statements ([8]):
i} Derg(log D) and Qi{log D) are (g-free modules.
i) Let E., a €l be the facet decomposition of E as in the example (3.14), where H,,
1€2X 18 the set of complexified reflexion hyperplanes. Then any E, is in-
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variant under the action of W so that EJWcCQ acl is the logarithmic
stratification of (2, D).

As corollaries to i) and ii),

Any logarithmic stratum of (2, D) is holonomic.

iv) For any logarithmic stratum D. of {2, D), there is an equality
dim D.+mult.p, D=dim Q.

Addendum
Recently H. Terao has succeeded in proving the equality of (i) of (1.12) (See

{91, 1101).
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