On some estimates for the wave equation
in L? and H?

By Akihiko MIYACHI®

§1. Introduction

A recent work by S. Sjdstrand [9] gives interesting L*-estimates for the so-
lution of the Cauchy problem for the wave equation:

% N N L

Th=tu, £>0, zeR <A~j§ax?>,
{E) (0, x)=f(z) , xER®,

ou

3?(0’ x)=g(x), «ER™.
A typical example of the results contained in [9] reads as follows: suppose f(x)=0,
then the estimate

Hutt, <G, t) gl

holds if p,<p<pj and does not hold if p<p, or p>pi{. These results do not contain
the case of the critical index p, 7.e. the case p=p, or p{. In this paper, we shall
prove that the estimates hold for the critical index » as well.

" TFirst, we shall explain the results deduced from the analysis of S. Sjdstrand
[9] and the main results of the present paper. We write the solution u=u(t, z)
of (E) as

u=(UR)f)(x)+(V(t)g)(x)

and regard U{t) and V{t) as operators acting in some function spaces on R". If
n=1, U{#} and V{f) are bounded operators in L?(R), 1<p<oo, t.e., the following
inequalities hold for all pe (1, oo):

(1) HURA1L<C 5,
(2) Ve l.<Colfls .
where

*)  Partly supported by the Fiiju-kai Foundation.
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\|f|1p=<Slf(x) zm)"” .

The situation is quite different if #>>2; we have the inequality (1) only for p=2
and the inequality (2) only for some pe€(l, ). But, instead of the simple in-
equalities (1) and (2), we have the following estimates, for n>2 and p=2, if we
take k, s, and r sufficiently large:

(3) ||kt-kS:<t—s>k—1U(s>fds <C,1F1,,
(4) | sV as| <G00,
(5) U, <C, 10— 40271, ,
(6) VLT, <Cl A7, -

Indeed the analysis of S. Sjostrand [9] shows the following results:

estimate (3) holds if (n—1)[1/p—1/2|<k and does not hold if (n—1)|1/p—1/2|>k;
estimate (4) holds if (n—1)|1/p—1/2]<k+1 and does not hold if (n—1){1/p—1/2]>
k+1;

estimate (5) holds if (n—1)}{1/p—1/2|<s and does not hold if (n—1)]1/p—1/2{>s;
estimate (6) holds if (m—1)|1/p—1/2{<r+1 and does not hold if (n—1)}{1/p—1/2{>
r+1.

The principal aim of the present paper is to show that (i) estimates (83)~(6) hold
for the critical index p, i.e. (3), (4), (5) or (6) respectively holds even if (n—1){1/p—
1/2\=k, k+1, s or r+1, and (ii) these estimates are extended to the case 0<p<1
if we replace L?{R") by H?(R") the Hr-space given by Fefferman and Stein [3].

The contents of this paper are as follows. In §2, we shall reduce the problem
to the study of some Fourier multipliers. §3 is devoted to some preliminary
arguments. In §4, we give our main results.

Throughout this paper, the letter ¢ denotes a fixed smooth function on R
such that

0<¢gz)<l, ¢lx)=0 if <1, and ¢(x)=1 if 2>2

and the letter C will denote a positive constant which may be different in each
occasion.



On some estimates for the wave equation 333

§2. Reduction of the problem

Hr=Hr(R™), 0<p<1, is defined to be the set of all tempered distributions f
such that

JFHz)= sup |(f*p:)(zx)|€ L?(R"),
0<e<eo
where ¢ is some fixed element of S(R") with nonvanishing integral, i.e.

Sgo(x)dxﬂ;o ,
and
Pe(x)=c""p(e )
and fxp. is the convolution
(froe) (@) ={f, pelw—-)> .
The norm in HP, 0<p<1, is defined by
1A lae=1F",,  0<p<l.

Hr=H?(R™), 1<p<o, is defined to be equal to the space L?;

I Alz=lrl,, 1<p<oo.

For more details about H?, see Fefferman-Stein [3] and Latter [5].
For a bounded funetion m on R”, we consider the Fourier multiplier transfor-
mation T, defined by

T.f=F m&fE),

where f=¢f is the Fourier transform of f and &' denotes the inverse Fourier
transform;

F&)=(FF)(6) = 2m) j rp—

R’IL
G EO=EGN(-8) .

We shall study the Fourier multiplier transformations in H?, 0<p<co. If T,
{originally defined on LZN H?) can be extended to a bounded operator from H* to
O, then we say that m is a Fourier multiplier for Hr. Y (H?) denotes the set
of all the Fourier multipliers for H?. The norm |m|sgs is defined to be the
operator norm of T, in H?;
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) s = sup Mmd Nz
fE

g | fllas

Fx0
The operators U(t) and V{f) are Fourier multiplier transformations;
Ut)=T, with m(§)=cost|&],

Vit)=T, with m(g):_SiY‘l_;{f_l.

Also the operators

>kt 'r(t—s)""‘U(s)f ds
F—> k-t St(t—s)"‘lV(s)f ds ,
A-Aef—> TS,
and

A—Ari2f— VO f

are Fourier multiplier transformations T, with

t
m(g)=Fkt* j (t—s)1cos s|é|ds,
0
m&)=kt* St(t—s)"—ls——m S1€lgs |
0 1&l
m(§)=(1+[EF) 2 cos tl§],
and
m(g)=(1-+{gp)-nLEL
1&]
respectively. Thus our problems are to distinguish when these functions are
Fourier multipliers for H? and to obtain the estimates of the _Y(H?)-norms of
these multipliers which are functions of £. We shall slightly generalize the prob-
lems. Let ¢ be a positively homogeneous function of degree 1 which is positive
and smooth on R*\{0};

#(8)>0, £=0,
PpEg)=tg(8) , t>0, &x0.
Let t>0, k>0, s>0, r>—-1 and set

t

ml,k,z(s)=kt—kj (t—8)" cos sp(&)ds ,

¢
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Mapl§) = bt S :(t_sy-l%!;(_@ds ,

Mg, (€)= (1-+] & |7) /% cos £6(8)
and

= 2y—r/2 sin ¢6(£)
Myri(8) =1 +[EP) 50

We shall study the problems for these multipliers under certain conditions on ¢.
We have the following

LEMMA 1. ) M. € HEHD if and only if
G(P(E)$(E)7F cos (4(8) —nk/2) € U (HP) .

If my.. € NH?), then [Myp. ) smn does not depend on t.
() Mg, € FH?) if and only if

PPEN(E) 7+ sin ($(8) —xk/2) € TU(H?) .

If My € (H?), then t M.l 5 ey does not depend on t.
(i)  Ma,..: € H(H?) if and only if

P(B(&)I&1™ cos p(€) € TM(H?) .
If ma,.. € (H?), then
1703, 5.ell s1cam <CA+2)° .
(iv) Mg, € HMEH?) if and only if
P(PENIEI sin p(€) € TU(H?) .
If my,,..€ JM(H?) and r>0, then
1g,r,ell s cm <CELA-T) .
The proof of this lemma is based on the following results.
THEOREM A (Stein [10], p. 232; Miyachi [8]). Let 0<p<oco and
k=max {{n|1/p—1/2]]+1, [n/2]+1} .
Suppose that me C*HR™\{0}) and

[(j—&fm(s) {sl&l‘*“‘ . lal<k.

Then m e W{H?).
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PrOPOSITION A. (i) Let t>0. m(ts) e MH?) if and only if m(&) e M(H?
and
lm(E Mo ae = ml s an .

i) If m, and m,c F(H?), then m,m,c F(H?) and

s oy <Ny L com e iy

(i} of Proposition A can be easily shown by using the equality
IF & me@m =t™*| fllaram
(ii) is clear by the definition of S}{(H?).
PrROOF OF LEMMA 1. We shall give proofs of (i) and (iii). Other results can
be proved in a similar way.

Proof of (i). By the homogeneity of ¢, it holds that

Moy, t{E) =M 1,,1 (E6) .
Hence {m.4..ll a7y does not depend on ¢ by Proposition A, (i). Set
1

Fay=k S (1—s)*lei*sds

0

and
Fl2)=C @)z "¢+ Flx) ,
where
Ci=kl (ke ™12

Note that C, is the constant that satisfies the equality
1
ks (1—s)tgissds=C x>, >0,

where the left hand side shall be considered as the Fourier transform of a tempered
distribution on R (see Gel'fand-Shilov [4], Chap. IIl. It can be shown that F is
smooth and

dM

%ﬂ;ﬁ’(x) =0z ") as z—oo

for every integer M>0 (see Sjéstrand [9]). Hence, using Theorem A, we have
Re F($(8)) € M(H?) for all p>0. Thus we have the desired result by observing
that



On some estimates for the wave equation 337

My (8)=Re F(g(€))
=kI"(K)$($(8))$(&)~* cos (6(&) —k/2)+Re F(g(€)) .

Proof of (iii). We rewrite ms,..(¢) as follows:

ma,.,z(5)=ms.t($)ma(t§) ’
where
M, (&)= {14+ &) B L+ |tE )2
and
m,(t&) = (14|15 ) /% cos ¢(28) .

Using Theorem A, we can show that m,,,€ SH(H?), m;}ic H{H?), and
Mg, ell ey <C(L )

for every p>0. Also by Theorem A,

1—g(p(E))m, (&) € FMH?) ,
SBENA+IER el e MH?),
and

PENLHEB 2 &1 € TU(H?)

for all p>0. Combining these results and using Proposition A, we can complete
the proof.

Lemma 1 reduces the problems to the study of the Fourier multiplier of the
following form:

m(&)=¢((€)(a()e?® +b(§le™ ),

where o and b are smooth (on R"\[0}) homogeneous functions of degree —Fk, k=>0.
For our argument given below, it is important to know the singularity of the dis-
tribution K= 'm. In the next section we shall study the singularity of K in
detail.

§3. Singularity of the kernel

We shall use the notations of Fréchet differential caleculus. If X and Y are
Banach spaces and g:()— Y is a smooth map defined on an open subset () of X,
then the Fréchet derivative ¢’{a), a€ (), is a linear operator X—Y and the second
Fréchet derivative g”(a), a€ (), is a symmetric bilinear map XxX-Y. g¢"(a)z”
denotes the value (€Y) of g”(a) evaluated at (z, )€ XxX. In the following
caleulus, X and Y are finite dimensional Euclidean spaces R" or linear subspaces
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of R*. If X=R" and Y=R, ¢’(a) is given by grad g(a);
g {a)x=2-grad g(a) .
If X is the Euclidean space R" or a linear subspace of R* and Y=R, we define

det g”(a), rank g”(a), and signg”(a) as follows. detg”(a) is defined to be the
determinant of the matrix

(9" (@) (:, ) ,
where (x;) is an orthonormal basis of X. rankg”(a) and sign g”(a) are defined by

rank g”(¢)=rank of the matrix (¢”(a)(y;, ;)
and

sign g”(a)=p—q,

p=number of positive eigenvalues of the matrix (g”(a)(y;, Y;)),
g=number of negative eigenvalues of the matrix (g”(a)(y;, Y;))

where (y;) is a linear space basis of X. It is to be noted that the above defi-
nitions of det g”(a), rank g”(a) and sign g”(a) do not depend on the choices of the
orthonormal basis (x;) and (not necessarily orthonormal) basis (y:).

Throughout this section we assume that #>2. Let ¢ be a positively homo-
geneous function of degree 1 which is smooth and positive on R™\{0}. Consider
the compact hypersurface

J={zeR*; ¢(x)=1}
and the spherical map

grad é(p) € S

Y B
(7) Vi ad 6l)]

Set galx)=d{x)*, 1€ R, 21%0. Then ¢; is a positively homogeneous function of
degree 2 and the equation ¢;(%)=1 also defines the surface ¥. By the implicit
function theorem, the equation

$p+a+ho(p)=1, zeT,3, he R

determines a smooth function h=h,(z) in a neighborhood of =0 in T,2, where T,%
denotes the tangent space to 3 at the point ». We have

ry0)x=0, zeT, 3
and
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¢" (p)a®
hZ (02 = —
(8) O |grad 8(p)|
i 7 (p)a®
= —(sign A) __—Igrad Tk ze T2,
The map
Osz—— pt+at+h,@vip) e

is an embedding onto a neighborhood of p in X if () is a sufficiently small neigh-
borhood of 0 in 7,%. This parametrization of ¥ will simplify some calculations in
our arguments, which, however, we shall not give in detail. The Gaussian curva-
ture (p) of X at p with respect to the spherical map (7) is given by

{9) £(p)=(—1)""" det k7 (0)
(see Matsumura [7], p. 340) or, by (8),
£(p)=|grad ¢(p) [ det (¢”(p)|T,2)
=(sign 2)* 7 |grad ¢;(p)| " det (¢7(D)|T,,2) ,

where ¢4(p)|T,Z denotes the restriction of ¢4(p) to T,EXT,3. Differentiating
Euler’s equality
Ph{x)z=261(x)

in the direction of y, we have

@)y, x) +i(@)y=29(x)y .
Hence
&4 {x)(y, x)=0 whenever yc T, 2
and
¢4 (x)ar=4(2—1) for zc X .
This means that, if we take a basis (y,, ---, ¥.) of R* such that (y,, .-, ¥s—) is

an orthonormal basis of 7,3 and y,=p, then the corresponding matrix of ¢4(p)
is of the following form:

0

GO v hesa=| 2 |,

0..-0 2(2—1)
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A=({g7(p)| sz) (y;, yj))lsi.jsn—1
=—(sign 2)lgrad ¢:(p) (k7 (0) (¥, ¥s))1<iri<ns -
From this we see that

sign ¢4{p)= — (sign 2) sign AZ(0)+sign 1(1—1)

and

rank b5 (0)+1, 2%0, 1,

rank ¢%(p)= {

rank k2(0) , i=1,

To calculate det ¢7(p), we use the orthonormal basis
(yb ccty Ypas V(p)) .

The relation of this basis to the basis (y,, - -, Yu-1, ¥») 18 given by

('yly *y Yns yn)=(y1y *ty Yp—-1s ”(p))T s

1 &
7= . |,
1 En—l
0---0¢,
where '
=y () =D 813d6M) _ dp) 1
U= rad plp)| ~Tgrad 9l | ~grad glp)] -
Hence
det ¢7(p)=(det T)~2 det (¢4 (D) (¥, ¥;))1<.5<n
=|grad ¢(p) [P2(A—1)(—(sign 2)|grad ¢.(p)|)** det rZ0),
and thus
(10) det ¢4(p)=(—1)""2*(2—1)| grad ¢(p)|*** det hZ(0).

Combining (9) and (10), we have

det 4 (p) o1
2 (2—1)gradgp) i AT b

&{(p) =
We refer to the following

PROPOSITION 1. The following conditions are mutually equivalent:
(i) the spherical map v:Z—S* is @ smooth diffeomor phism;
(ii) the Gaussian curvature of 3 never vanishes on 3 ;
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(i) det ¢%(x)>x0 for zx0 and 2x0, 1;
iv) rank¢’(x)=n—1 for z=0;
(v) signé”’(@)=n—1 for xx=0.

As for this proposition, see Matsumura [7], pp. 339-341, and the references
given there. The equivalence of the econditions (ii)~(v) can be shown by the
calculations given above.

Now we go to the study of the distribution K mentioned at the end of the
previous section. Set

K*r="Y¢(g(&))al§)e?®)
and
K-="¢p(p(&)alge *®) .

The behaviors of K+ and K~ are described in the following

PROPOSITION 2. Suppose that a(f) is a positively homogeneous function of
degree 2, 1€ R, which is smooth on R*\{0} and that the Gaussian curvature of the
surface X={¢=1} never vanishes on X. Then K" and K~ have the Jollowing
behawvior.

(i) K* is a smooth function in R™\(—Z*), where

—I*={x e R"; |z|=|grad (£ (z")} |}
={-—grad ¢(&); |§|=1},
g (@) =v (—2/lz]) .
For every differential monomial (8/dx) and every M>0, we have

(%)“Kﬂw):oawrﬂf) as |30 .

In the neighborhood of —3*, K+ has the following singularity (we shall abbreviate
e (@) to &) if —i—|e|l—(n—1)/2—1<0, then
(11) <%>QK+(“7)=0(Klwl~lgrad¢($')Il“"“"““”’z‘l) as |zl->lgrad ¢(&7)1;

of —A—(m—1)/2—1<0, then

r L\ A= (D j2-1
440
lerad gE)| )

12 {Kﬂ‘(m’) = Akl 2 grad (&™) 7D ’Ha(s‘)(l
+ollr—lgrad (&) [T+ =012 qs r—{grad (7)1,

where A~ is a constant depending only on n and 2;
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A== (27)-1 exp [%?'(,H—n) ]P(H"Tl + 1)
The O- and o-estimates in (11) and (12) can be made uniform with respect to
x'e S*1,

(ii) K~ has the similar behavior as K*. We have only to replace & (x') by
gHa')=v a/|z]), —2* by '

X*={zxec R*; |z|=|grad ¢(e*(=")}}
={grad $#(&); |&]=1},
+40 by —i0 (in (12)) and A~ by

At =(2n)1re exp[—— (1+n) ]r<x+ »—+1>

Before going to the proof of this proposition, we prepare the following

LEMMA 2. Let 2€C. For >0, set
Ja, e(t)=(2x) 722 §w¢(s)sxem“"ds .
0

Then J1.(t) converges, as ¢ tends to zero, uniformly in [t|>6 for every 6>0, and
the resulting fumection Jy{t)= Hgl J1e(t) has the following estimates:

J (t):{AR(t+i0)—z—l+jR(t) ] 2#_17 _2y MY
g AR ATt og (E4490)+Ja(t) , A=—1, —2, -+,
where Ji(t) is smooth on R and A,, A}, and A} are constants depending only on
2 (esp.
A= (2n)" exp [1’21 (z+1)]r(z+1));
and

Jit)=0(tI™) as |t|->o0 for every M>0.

The existence of lifn J1.e(t) can be easily seen by rewriting J..(f) as
elo

13) Tt =52 ) e jj(—d%—>M(¢(s)s“)e"”“'ds

(integration by parts). The first estimate for J,(t) comes from the equality

F-1(sd)( {Az(t+10)““‘ Ax—1, -2, ...,
AR+ AZe*  og (84+40), a=-—1, =2, - --,
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{see Gel'fand-Shilov [4], Chap. II) and the fact that si—¢(s)s? is a distribution with
compact support. The second estimate for J;(t) is seen from (13).

PROOF OF PROPOSITION 2. We shall refine the calculus of Sj6strand [9].
Since the proofs of (i) and (ii) are almost the same, we shall give the proof of (i).
We give the estimates of K*(x) only; those of (8/6x)*K*(x), |a|>0, can be obtained
by replacing a{£) by &w(&).

Writing y ¢ R*\[0} as

y=s&, 0<s<eo, £cX,
we have

Kt {z)=tm Kf{x)

elo

=lim (2z)™/? j Plgly))emss WrmTiv-q(y)dy

£}0

—t1 -nf2 A+n—1,—¢gs+istisf .z G/(E)
A Ho<s<,w¢(s)s T erad g

where do is the (n—1)-dimensional surface element of 3. We shall show that the
above limit exists uniformly on every compact subset of R*\(—3*) and hence, in
R™\(—2%*), the resulting function is equal to the inverse Fourier transform of
d{P(&))a(&)e#® in the sense of tempered distribution.

First, integrate in the following way:

oo

K;"(x)=(27r)—1’25 ¢(s)sl+n—le—ss+is< (2z)~»—1) /zS a(aei”é.m,!da@))ds ,

s|grad ¢(8)

0

where r=|x| and 2'=x/|2|. We can obtain the asymptotic behavior as sr—co of
the inner integral by using the method of stationary phase. The phase function
&-o’ is stationary at £°¢ 3 if and only if the affine hyperplane {§€ R; &-0'=2% 27}
is tangent to 2, d.e.

v(&) =2 or —z’.
By Proposition 1, there are exactly two such points;
Et=y"Yg) and £ =yv—2a).

The main contribution to the integral on X comes from the immediate neighborhood
of these points. We have the following asymptotic expansions:
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a(s)eisraz'
rlgrad ¢(§)|

Frisr, o/)~ers" o (sr)~ D12 S (sr)~ipF  as sr—oo,

(zm“‘"‘”’zg do(&)=I*(sr, ')+ I (s7, &) ,

o
I (sr, o/)~e=r %' (sy)"» D2 (sr)~lp7  as sr—oo,
=0

uniformly with respect to ' € S*!, where pf and p;, 1=0, 1,2, ---, are given by
the values of a(£), ¢(&), and their derivatives at £=&* or &~ respectively, especially

i = 6550 1(62) (%) [ grad 9(6) |
= o0 (8%)] det g (6%) 1Y grad g(g%) |12

Note that pfF, 1=0, 1,2, -.., are functions of 2’ only (they do not depend on s
and 7). (For more details, see Matsumura [7], pp. 330-346.) Executing the inte-
gration with respect to s, we have

M
Kt(g)= 3 r~0-Diz=lpk(p!)(2r) 12 sw¢(s)sx+('n—l)/2—le—es+is(1+r§+-x’)ds
=0 0

M
+ X TRy () (2m) 7R r‘/’(s)s“("‘“ [2-lgmestis(tre = (g
=0 0

{3
4D 2(9r) 12 S P(s)si+ @D /2e—ss+is(1+rg+.x'>R3}(s,r, z)ds
0

o
+1.—(n—1) [2(27r)—1[2 S ¢(S)32+(n—1) /Ze—es+is(1+'r§_ ~z’)R1—k(s,r’ x/)ds s
¢

where

|Riz(sr, /) |<Clsr)™~1 and |Rylsr, 2"} |<Clsr)y1

with some constant C independent of s, r and 2/ € S*1. If we take M sufficiently
large, then, by Lebesgue’s convergence theorem, the integrals involving Rj and
Rj converge, as ¢ 0, uniformly in r=|x|>d, 6>>0, and the resulting functions are
Oz~ tvhiz—M-1) g3 |g|]->c0, The terms in the finite summations can be managed
by Lemma 2. Using Lemma 2 and observing that

&+.grad (&%) T
1 +og/ =1 =1 >1
T A e L Tgrad 6]
and
_ & -grad ¢(&7) T
1 =1 —1—
= rad gl lgrad )|’

we can conclude that lim K#(x) exists uniformly in
ele
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teR*; |z|>6, |1—— T }26},
{ lgrad ¢(&£ (")) |
for every >0, and K*()=lim K (x) has the singularity in the neighborhood of
—2* as described in the proposition.

Secondly, we shall show that K7 (v) converges uniformly in a neighborhood of
#=0. But this can be easily seen by rewriting K} (x) as

K;L(x) =(2r)~ (D2 Sz@%<(2ﬂ)—l/z S:ogb(s)s“”‘le_"““”’f'””ds>da(f)

and using Lemma 2. Thus we have completed the proof.

§4. Main results
The followings are our main results.

THEOREM 1. Let a(&) and b(£) be positively homogeneous functions of degree
—k, k>0, and $(8) be a positively homogeneous function of degree 1. Suppose
that a(&) and b(E) are smooth on R™0} and at least one of them does mot vanish
identically. Also suppose that (&) is smooth and positive on R™\{0} and that the
Gaussion curvature of the surface X={p=1} never vanishes on 3. Then the
Sunction

m{&) =¢(P(8)) (a(8)e?© +b(&)ei¢ @)
is @ Fourter multiplier for HP(R™) if and only if

(n—1) '%—%(sk.

CorOLLARY 1. (i) Estimate (3) holds if and only if (n—1)|1/p—1/2|<k. In this

case (3) holds with C,{t)=C,.

(ii) Estimate (4) holds if and only if (n—1)|1/p—1/2|<k-+1. In this case (4)
holds with C,{t)=C,t.

(iii) Estimate (5) holds if and only if (m—1)1/p—1/2|<s. In this case ()
holds with C,(t)=C,(1+¢t)» D12,

(iv) Estimate (6) holds if and only if (n—1)|1/p—1/2|<r+1. In this case (6)
holds with the following C,(t):
when r>0,

C,t)=C (1 +t)em» |
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when —1<r<0,

Cit, t>1

C"(t)z{c,,tl’r' . o<t<l.

(In (8)~1(6), we replace the norm | |, by | llar of 0<p<1.) The same estimates
kold if we replace U(t) and V(i) respectively by

Ust)=T,, with m{&)=costd(§)
and

“T. wi _ sintg(g)
Vet)=T, with m(&) 5@

where ¢(&) is as mentioned in Theorem 1.

REMARK. The constants C,(t)’s given in Corollary 1 cannot be improved. This
can be seen by using Theorem 2 below and the inequality

Imll =< Colimilams , 0<p<o0
(ef. Miyachi [8]).

COROLLARY 2. Let ¢(¢) be as mentioned in Theorem 1, k>0, n>2, and
I=max {{nk/n—1)1+1, (n/2]+1}. Suppose that fc CH{R™{0}) and

](g’g “f(s)]scxsrk—'a', la|<L.

Then the functions

D(B(E)f(E)exie®
are Fourier multipliers for H?(R") for (n—1)|1/p—1/2]<k.

THEOREM 2. Let a(&), b(8) and ¢(&) be as mentioned tn Theorem 1 and consider
the multiplier
m(§)=((8))(a(8)e?*?® +b(§)e™# D)) .
Then there exist positive constants C and C' such that
Ct=DP=U2 < [l || gy om gmyy S C/EE—D M~ | 1

Jor (n—1)|1/p—1/2i<k.

PROOF OF COROLLARY 1. Most parts of this corollary are direct consequences
of Theorem 1 and Lemma 1. The nontrivial deductions are those of estimates of
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C,{t) in (ili) and (iv). We shall prove the estimate of C,(t) in (iv); that in (iii) can
be proved by a similar but simpler argument. We shall divide the proof into three
cases.
Case (a): r=>0, (n—1)]1/p—1/2|>1. Write
Woges(§) = (LH1ER) 1120, 0,4(E)

where ry={n—1){1/p—1/2|—1 and ri=r—r,>0. (1+|&P)"v2¢ G (H?) by Theorem
A and my,,,.: € M(H?) by Theorem 1. Hence we obtain the desired estimate using
Lemma 1.

Case (b): r=0, (n—1)|1/p—1/2|<1l. Theorem A and Theorem 1 show that
(&) sin ¢(&) € HM(H?). Hence, by Proposition A,

sin ¢(t€)

$(t8) ”Mﬁ
Case (¢): —1<r<0, (n—D))1/p—1/2i<1+r. We decompose m,,,, as follows:
Mog,r.s(E) = (L= SUEN M, (8) -+ PUIE My, (8) .

Theorem A and Theorem 1 show that (1—¢(&))(1+1&B"2¢ FH(H?) and
B(&) L sin ¢(&) € FH(H?). Hence

L —oEN) mamill o cum)
SHA—oUED A HEE ™2} arcan
=Ct.

10, el st oy <ETAH1EB 2 51 army

sin ¢(t€)

P(t8) “fM(Hp)

On the other hand

MU &N M r el army S Cll U ENS(E) " sin ES(E) | cam)
=Ct* g1 p(t8) " sin (&) loucam
L Ctr||g(8)™ " sin S(E) | sucarm)
=Ct1+1‘

since ¢{&)"1sin ¢(€) € H(H?) by Theorem A and Theorem 1. Thus we have
Img,p.ell 0y <C max {2, $447} .
PROOF OF COROLLARY 2. Write
P(BENS1§)e™#E =my(E)m,(E) ,
m, (§)=(£)*f(E) ,
mo(§) =P (B(E))P(E) Fe*#® |
and apply Theorem A to m,(&) and Theorem 1 to m,(&).
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PROOF OF THEOREM 1. We shall prove Theorem 1 for ¢(&§)=|¢] since the proof
for general ¢(&) can be performed with a little modification. If n=1, Theorem 1
can be proved by Theorem A and the fact that e*¢ ¢ Y (H?(R)), 0<p<oo. Hence
we assume that n>2.

Proof of the “if” part. We show that
m=(&) =P (H(€))als)e*?© e Y (H?(R™))

under the assumption that
m—1)1/p—1/2)=k and 0<p<l,

from which, by using the interpolation theorem for the analytic family of operators
(Calderén-Torchinsky [1], pp. 151-152; Coifman-Weiss [2], p. 597; Maclas [6]) and the
duality argument, the whole statement of the “if” part is derived. If we use the
characterization of H?{R") by the atom decomposition (Latter [5]) and that by the
Riesz transforms, all we have to show is reduced to the following estimate:

(14) 1 Tn, flle<C, feA, 0<r<eo,
where (A, is the set of functions f such that

support fC{{z{<r}, Nl po L mie
and

Sf(x)x“dx:O, | <[n/p—n].

See Miyachi [8] for details. We shall give the proof of (14) for m.(§); that for
m_(&) is almost identical. We write T=T,, and K= "'m,.
First suppose that f¢ A, with »>1/3. By Holder’s inequality, we have

(S 1Tf(w>vdx>”"s0w<w—w>qunz
e <Crraivin £,
gCTn(llp—lﬂ),r—n/p—Fn/Z
=C.
If |#|>5r, then, by Proposition 2,
\Tf (@) |=| Kefla) 1< S | K(e—) || F) dy

lyl<r

< C/r—n/p+nl T l—M

for any M>0. We take M>n/p>n. Then
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<SI2|251' le(w) ]pdx>1/p£ Cr_n“ﬂ—n(S Iz} =567 lwl_Mpdx>1/p

=C,r—-n/p+n/r—-M+n[p
=Crv <,
Thus we have proved the estimate (14) for r>1/3.

Next suppose that f¢ 4, with r<1/3. We shall write N=[n/p—n]. Since K
is a smooth function on R™\S*!, Tf(x) is given by the integral

j[ _ Kla—y iy

in the region
{x ¢ R*; distance (x, 8" ) >7r}.

Since fe i, is orthogonal to all the polynomials of degree <N, the above integral
can be rewritten as follows:

S[ _ Ko—y)fwdy

_ S W(K(x—y) -z iDaK(x)(—y)a)f(y)dy

<N al

=y 5 ([ 0oy DKt~y sdidy
lal =Rr+1 <<t al

Hence
ITf(x) | < Cr¥+i—niztn gup | DeK(w—1y)]

tyl<r
jal=N+1

if distance (x, S 1>r. From this and Proposition 2, it follows the following

estimates:
C,rN-I—l—n/p-i-nl 1— ‘ 2 L lk—N—l—(n-—l) j2—1 s l lx i —1 ]22’7‘,
15) LTS A |2l>2,
where M can be taken arbitrarily large; we take M>n/p. Now decompose || T2
as follows
irg=| 1T 1Pdw+§ | Tf ) rde
jz| <127 1-2r< |z} <142r

+§ |\ Tf (@) pdo-+ S \Tf(e) Jrdee
1+2r<|2]<2

l2]=2

=+ B+ I+15.
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Using (15), we have

IISCTN+1—n/p+n<S (1 _ l T D (k—N—1—(n—1) [2~1) pdx>lll’

{z]<1=2¢
< CTN+1—n[p+n+k—N—1—- (n—1) j2—1+1]p

=C,
where we used the relations
(k—N—-1—(n—-1)2—-l)p=n/p—n—N—-1-1/pp<—1
and
N+l—-n/p+n+k—N—-1—(n—1)/2—1+1/p=0.

Similarly we have L<C and also

1/p
I4£CTN+1—n/p+n<§ || dac>

{122

S CTN+1—-n[p+n S C
since N+1—x/p+n>0 and 0<r<1/3. In order to estimate I, we use Holder's
inequality;

L<|{1—2r<|a|<1+2r) 72| T,
(16) { <Criie=ii2| Tf,.

Now f€ A, can be written as

f@y=rminfixlr),  fie s,

and hence

f&=rrmfirg),  fie i
Here note that f; €/, has the estimates

I£ill:<C and ]f1(§)l£C[§lN+l .

Using these estimates and Plancherel’s theorem, we have
I TAN3=lm(&)F(&)13
scj (11 hnimn| f(re) Dds
1g1=1

< Crz(—n/p+n) {S

1<

[l 2| gpatige +S 1617 f1(rg) lzde}

11217
SCrz {(—njp+n) {,’.2 (N+1) (,,.—1)-21:+2 (N+1) +1|+ (,,.—1)-—21:8‘ lﬂ(”'g) lst}
En

_é CTZ(—n/p+n)+2k—n s
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where we have used the relation
—2k+2(N+1)+n>—2(n—1){1/p—1/2)+2(n/p—n)+n=2/p—1>0 .
Thus
1Tl < Cre—ntiz=tiny |
Substituting this in (16), we have
L<Cptir-tiz+b=np=tin = |

Thus we have proved (14) for 0<+<1/3 and completed the proof of the “if” part.

Proof of the “only if” part. We shall refine the argument of Sjostrand {9l
By the duality equation (Y (H?)= M (HY), 1/p+1/g=1 (with equality of the norms),
it is sufficient to consider the case 0<p<2. Suppose that (n—1)(1/p—1/2)>k and
a({8) does not vanish identically. Take £°¢ S** such that a(£%=0. Let ¢>0 be a
sufficiently small number and take a smooth (on R”\{0}) positively homogeneous
funetion g(&) of degree m/p—n—e such that

g(&)=1 1in a neighborhood of &°
and
g(8)=0 in a neighborhood of —&°

Set G=F"¢($(&)g(€)). Then Proposition 2 shows that
T.Glx)~Aa(—z') (1 —r4i0)Fnirtertemtn=hjz-l a5 p—1
for ' in a neighborhood of —£°. Hence, if we take ¢>0 so small that
k—nlp+nte—(n—1)2-1<~1/p,
which is possible since
k—nlp+n—n—-1)2-1<n—-1)1/p-1/2)—n/p+n—(n—-1)/2—-1=~1/p,

then 7,G & H?(R"). On the other hand G ¢ H?(R") (see Lemma 3 below). Hence
m& HM(H?(R"). Thus the proof is complete.
In the proof of Theorem 2, we shall use the following two lemmas.

LEMMA 3. Let g(&) be a positively homogeneous function of degree 2 which is
smooth on R™{0}. If i<n/p—mn, then F{¢(E)g(&)) € HP(R™).

LEMMA 4. Let m,(¢&) be as described in Theorem 2. Suppose that a(£°=x0,
S=2"(xh) € 3. Let g(&) be a smooth (on R™\{0}) positively homogeneous function of
degree A which is equal to 1 in a meighborhood of £ and to 0 in a neighborhood
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of & (xi). Suppose that k—2i—(n~1)/2—-1<0. Then, there exist positive numbers
8, ¢ and M and a neighborhood CI) of x} such that

| Fma(£)p(8(8)g(€)) (@) |2 ot—bre] g S®L___FTEOmRET
‘ g = |grad ¢(& (@) |
Sor
/ =
2 eCly, |t ]gradg&(f“(x’))]léa and t>M .

We shall omit the proof of Lemma 4, which can be performed by a slight modi-
fication of that of Proposition 2. We give the

PROOF OF LEMMA 3. Write m{(&)=¢(|£])g(&). Take a function ¥ ¢ C¥(R™ such
that

support ¥ C{1/2< |g]< 2}, oi F(E/2)=1 (gx0),
el
and decompose m(£);

m(g)= 3 T(&/2)9(EDg(e)

=m'(§)+ 3, T(&/2)g(e)
=m'(§)+ 27U (E[2g(¢/2)
=m/(&)+ i 2 (£/29) .
Then
Foim=Fim'+ 3,200 (F ) (@)

Certainly ~'m’ and F~'m” € H?(R") since m’ and m” ¢ CP(R™\{0}). If 2<n/p—n,
then, using the equality

N2 M e @m =27%7)| flavzm

we have
35 1210 G ) @) am = 3, 29| F g <00
J= J=

for 0<p<1 and

SN F ) @) apiar = B | T g gy <0

=2
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for 1<p<co. Hence, by the completeness of H?(R"), Fime H(R") if 2<n/p—mn.
Now we go to the

PROOF OF THEOREM 2. The upper bound for [m,)sws@sy can be obtained by
the following decomposition:

my(€) =tFolmi () mi (¢8) +mi (&) mz (6} ,

where
ky=n—-1)|1/p—1/2],
mi (§)=¢((&))p(&) alé) ,
my (§)=¢(p(£))p(&) blg) ,
my (t€) =P (P(EE))P(E) Fo €78
and

my (t8) =g ($(£8))$(t8) o 6o

Applying Theorem A, Proposition A and Theorem 1, we obtain the upper bound.
We go to show the lower bound.

It is sufficient to consider the case 0<p<2; the case p=2 is clear and the
case 2<p<oo is reduced to the case 1<p<2 by the duality equation M(HP)=
TUHY, 1/p+1jg=1 (with equality of the norms). It is easy to show that the
norm |m.]sw» is bounded from below by a positive constant as ¢ varies on any
finite interval. Hence we have only to consider large ¢.

First assume that (n—1{(1/p—1/2)<k and k<—n/2+1/2+n/p. Take a number
4 such that

k—n/2-172<2<n/p—n .

Let g(£) be a positively homogeneous function of degree 2 as mentioned in Lemma 4.
Then, by Lemma 3, G= (¢ ($(&))g(8)) € H(R") and, by Lemma 4,

T, Ct— =112 _ [z
) 1T G, 2t Gt grad 6]

>t e=b A/r=1D for t>M,

pk~A~n[2—1/2) Uy
x)

where the integral is taken over

zeR*; ¢’ €Cl) and ‘ - m 1_ }
{ lgrad ¢(&~(x") 1
(17) gives the desired lower bound.
Next consider the general case; (n—1)(1/p—1/2)<k. Consider the following
family of multipliers:
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mtaz(s)zmt(5)¢($)kz ’ e Cy

which depend analytically on z. We have

iyl s <CA+Hy D™ [m,| seas , YER,

by Theorem A and also

”mz,1+iy“31(112) <C, Yy< R.

Hence, by the interpolation theorem for the analytic family of operators, we have

(18)

4,60 sty < Cllmy 5z,

where 0<6<1 and 1/¢—1/2=(1-6)1/p—1/2). If @ is sufficiently near 1, then, as
we have already shown,

(19)

tmy.ofl s gay = Ct D etz |

Combining (18) and (19), we have the desired inequality. This completes the proof.
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