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This article is a continuation of our earlier works [7],18] on the estimation of
the singular spectrum (S.S. for short) of boundary values of solutions of linear
partial differential equations. In [7] we have examined the S.8. of boundary
values of real analytic solutions for the equation with constant coefficients employ-
ing a Fourier transformation technigue adapted to the non-convex analysis. In
[8] we have extended the results of [7] to the case of equations with real analytic
coefficients and also examined general hyperfunction solutions by a different method
employing the Cauchy-Kowaleveky theorem, the method of sweeping out and
Green’s formula. Here we give a sharper result mainly in the case of constant
coefficients. We introduce here two new tools: The first is a theorem on micro-
local analyticity given in [10] which enables us to reduce the S.S. of the boundary
data exactly to one directions. The second is the use of “a local version of
Bochner’s tube theorem” with some of the real and the imaginary coordinates
interchanged. Our examples contain “the glancing region” for the partial Lapla-
cian or for the Lewy-Mizohata operator. We remark that P. Schapira has already
considered in [26] a fairly wide case containing also these two examples. We think
that our method gives an elementary explication fo these examples.

We also give some results on the propagation of singularities along the bound-
ary bicharacteristics. It would be better to notice the relation of our standpoint
with that of Melrose-Sjéstrand [23], Ivrii [4] or Wakabayashi [27] ete., to say
nothing of the difference of the categories, C~ or analytic. They have considered
the general solution with (elliptic) boundary condition, hence the S.S. (i.e. the
wave front set) of the boundary values was first of all limited in the hyperbolic
and the glancing region. On the other hand we have considered mainly the real

* The main part of this work was done while the author was staying at the University
of Grenoble under the scholarship of the French government.
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analytic solution with no boundary condition, because we have started from the
problem of continuation of regular solutions. Thus the S. 8. of the boundary values
was first of all limited in the elliptic and the glancing region. Nevertheless our
method gives a result of a kind of reflection of 8. 8. for the hyperfunction solu-
tion in the hyperbolic region with no boundary condition. We suppose thus that
we will finally be able to unify the two approaches apart from the “microglobal”
boundary condition in a way purely microlocal along the boundary.

The preparation of elementary lemmas has made this article thicker than we
expected. We think, however, that it will serve to reveal the matters usually
hidden behind the cohomological expression.
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§1. Reduction of the singalar spectrum to one direction.

1. The following lemma is a faithful copy of Corollary 2.3 in [10] and is one
of our main tool.

LEMMA 1.1. Let u(x) be a hyperfunction with compact support. Let W(z, o),
@ €S™ ! be the components of a curved wave decomposition of 6(x). Let ve S
be a direction. Consider the local operators J(D.) in the variables w< R™ with
comstant coefficients, where w are considered as some fized local coordinates on S*1
on a mneighborhood of v. Assume that for every such J(D.), J(D.,)W(z, ®) oms*u(X)
is real analytic on a neighborhood of the origin. Then S.8. u(x) does not contain
(0, o/ —1udxeo).

The local operator is a kind of differential operator of infinite order appearing
in the theory of hyperfunctions. In the sequel we only need the fact that
J(Du) W (2, ®)|o=» is holomorphic in z where W{(z,») is. Therefore we omit the detailed
definition and refer to the references given in [10].

As a curved wave decomposition we mainly employ the most familiar one:

3(x) =S Wiz, o)do,
sn—l
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(1.1 do= Y, (—1)j_1$jd§1/\ Tt /\(/igj/\ cee Adfnllél:h w=§/lg|,
— {n-1)! (1—/—1xe)* 1= (1—+/ —120)" 22— (20)?)
Wiz, 0)= (—2r4/—1)» (@w+ 4/ — 12— (2w)?) + 4/ —10)" .

For the sake of simplicity assume that v=(0, ---,0,1). Then Wi{z,») is a hyper-
function obtained as the boundary value of the function Wi(z,») which is holomor-
phic on

1.2)  0<Imiz,++/ —1(@+ -+ +2 )} =Y— Wi+ -+ +¥h0)+ (&4 -+ +2is).

Thus S. 8. Wiz, ») contains only one direction 1/ —Ivdxco. Since we have on the
other hand

Re {z,++/—1(23+ -+ +22 )t =2, — 2@+ +Zus¥us),

Wiz, ») can be continued holomorphically up to the real axis outside the origin.
Thus, as is well known we have S.8. Wix,»)={(0, v/ —Ivd2¥o)}. As remarked
above these regularity properties are valid also for J(D.)W(z, 0)]o=s for every J(D.).

As a matter of fact the condition that the wave decomposition is really curved
is not at all necessary for the validity of Lemma 11. We can employ any de-
composition of the delta function, in particular the classical plane wave decomposi-
tion:

(1)1 1

(—2zy/—1)" (xo++/—10)" "

dx)= g Wz, w)do, Wolz, 0)=
Sn—l

This component has the emission of singularity out of the origin along the hyper-
plane zw=0. Since in general we attempt to employ Lemma 1.1 to u(z) whose
support is made compact by cutting off, the ambiguity of the cutting near the
boundary will cause the ambiguity of the singular spectrum of the result of con-
volution inside the domain, and one may think that there will be little use for
such a decomposition. But there are some cases where one can avail a standard
cutting off. (The most trivial one is the case where u(x) is real analytic near
the boundary. Then we can use the cutting off by the characteristic function of
an approximating domain bounded by a real analytic hypersurface.) In such cases
the fact that W,(z, ) can be continued with respect to z exactly to the half space
yo>0 will play an important role.

2. Next we recall the definition of the boundary value given by Komatsu-
Kawai [19]. To shorten the description we employ the following notation. For
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an open subset UCR" we denote by PB(U) the space of hyperfunctions on U. For
an open subset U’ of the coordinate subspace R*! with the coordinates 2’ = (., - - -, ,),
we denote the space of hyperfunections on U’ by ' B(U’) to distinguish the number
of the independent variables. For a compact subset KCR* (resp. K'CR*™), we
denote by PBIK] (resp. 'PBIK’]) the subspace of F(R™ (resp. 'RB(R*1)) consisting
of the elements whose support is contained in K (resp. K’). Now let p(x, D) be
a linear partial differential operator of order m with real analytic coefficients.
Assume that x,=0 is non-characteristic with respect to p(z, D). Let u be a real
analytic solution of p(x, D)u=0 defined on {0<z,<8}}U’. Then there exists a
unique extension {u] of % as a hyperfunction on {z,<é}x U’ satisfying supp[u]cC
{x;>0} and an identity of the form

(1.3) pla, Dul="%, b (w)o =19z,

with some coefficients bf(u) €/ B(U’). [u] is called the canonical extension of u.

The coefficients are also determined uniquely and correspond to the boundary values

of % with respect to a normal system of boundary operators: bf(u)=>b;(D)ul,,-+o.

In the sequel we need not know the explicit form of these boundary conditions.

On the other hand the results in this article are obviously valid for any normal

system of boundary operators. Therefore we do not discuss them here in detail.
Now we give the microlocalization principle for our problem.

PROPOSITION 1.2. Under the above situation, assume that the operator has
constant coefficients and that U’ is relatively compact. Let v’ € S™ 2 be a direction
and let J(D.) be a local operator with constant coefficients by a system of local
coordinates o’ on S$™7% in a neighborhood of v'. Then for every open subset V'c U’
there exist ¢'>0 and a real analytic solution v of pD)v=0 on <z, <XV
such that its boundary values agree with

0 ) I (Do) W', o) lors}lyr,  §=0, -, m—1,
where [b} ()] is an (arbitrary) extension of bi(u) as a hyperfunction with support
in U,
Proor. Choose a compact piece of non-characteristic real analytic hyper-
surface of the form =z,=#(2'), »,<4d,, satisfying |dt(z’)|#0 on U'\V’ and

{@' €R* Y ta) = UV’ for 0<e<d,.

This is possible if we choose #{z’) with a sufficiently small modulus of gradient
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Idt(z’)| and accordingly a small ;. As a system of coordinates on this hyper-
surface we can employ 2’. Put

Ts::{xl—':t(x,)}n{o<xl<5}y
Wi={a' e B" Y t)<e), W'=W,,
W5={x1>t(wl)} 0 o <el.

Then for each ¢ we have V' eW.cU’, for & <e, we have W, W/, and for each
e>0 W. is a neighborhood of {0}x W’ in R* (that is, W. contains {g}X W’ as a
closed subset). Consider the product Y{xz, —t(x"))[u], where Y denotes the Heaviside
function of one variable. This is a well-defined hyperfunction on {x,<<8,}\({0} XaW’).
It is real analytic on 2;>0 except on T where it contains the singular spectrum
only at the conormal bundle of the hypersurface z,=t(z’). On W;, it agrees with
the original canonical extension [#]. Thus on W, U{z,>0} we have

-1

p(D){Y(wl—t(x’))[u]}=gb;?(u)a“”‘l“” () + ¥ tHu)a ™=z, —t(z'),

where the coefficients of the two terms in the right hand side represent the
boundary values to x,=0 and to x;,= <

t(z’) respectively. Now choose f;{z’) €
' BIW’] such that f;(a’)=b}(u) in W". 7.
Let [[Y{x,—t(2"))[ulll be an exten-
sion of Y(x,—t(X"))[u] as a hyper-

-
function on {x;<d;} such that its
support is contained in Wi, N {z,>0}.
Then the difference W Wy W.

(L4 pDII¥iw— )l
= F Fiaon )

X1

is a hyperfunction on {x;<{d;} such

that its support is contained in the A

part {x,>0} of the hypersurface z;=
t{z’} and that it agrees with

m—1
tHu)o 1= (x, — (2’
T, t5ws =z —t(a’) Pig. 1.

on z; >0. Due to the theorem on division by Komatsu-Kawai (Theorem 2 in [19]) we
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can modify [[Y{x;—¢@')){u]]] on the non-characteristic hypersurface x,=t(z’) so
m—1

that the result of (1.4) can be written in the form Y, a;(s’)d™ =9 (x,—¢(x)). Since
=0

this modification is locally unique along this hypersurface, the coefficients «; satisfy

supp a;C Wi\ W’
a,“—“tj(u) on ng\W—/.

Especially a;(x’) are real analytic outside aW’. Thus we have obtained
1.5)  p(DMI Y{z,—t{e)ulll= Z i) ™9 (ay) Z a;(x')o ™) (o, — ta')),

where in the left hand side we have employed the same notation for the modified
extension.

Now we make the convolution of both sides of (1.5) with J(D.) W%/, ®")lores.
It will cause no confusion if in the sequel we write simply Wi(x’, ') instead of this
terrible factor. Then we obtain

m—1
p(D)v="3, 0,(a’)o ™D (z:) +B(a),
where we have put

vi@)=[[ Yo~ ¢ ullls W', »"),

(L6 Gl = W), =0, me,
se=5 (o) el )olm—t )@, ).

First of all, »(®) is a hyperfunction on {x,<d,} satisfying suppvC{z,>0}. We
claim that it is real analytic in W; N{x,>0}. In fact, recall the law that the S.S.
of the product of two hyperfunctions can be estimated by taking the fiberwise
convex combination by the great circle (or equivalently, the fiberwise vector sum
of the conical representatives) of the S.8. of the factors (see Corollary 2.4.2 of
Chapter I in [24]). We have then on z,>0

1.7 8.8 Yz —tly)ulz, v) iz, v'; 4/ —1dx, —dt(y')oo); z,=t{y")},
S.8. W' —y',v)c{le', y'; «/—1v(da’ —dy')eo); o' =v},
hence

1.8)  S.S. Yz, —tlyule, v) W' —y', )
ey, o,y v/ —Lx(1- )(daa di(y’))+ ' (da’ —dy")) o) ;
2, =tly"), 2'=7y’, 0<21<1}
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Ulle, 2/, 9'; 4/ —1{dw —dt(y))oo0); z,=t(y’)}
Ufley, 2, 9" &/ —1'(de’—dy')eo); o' =y'}.

Recall next the law of estimation of the S.S. concerning the integration (see
Theorem 2.8.1 of Chapter I in [24]; its expression being very abstract, Theorem
3.2.8 in [12] will help the understanding). It reads as follows: On the integra-
tion by y’, it remains in the S.8. of the result only those points (x,+/—1&dzco)
for which there exists a point y’ verifying with the x, & all the enumerated con-
ditions and reducing the coefficients of dy’ to zero. Thus when we integrate with
respect to %/, the first component of the right hand side of (1.8) does not concern
the 8. 8. of the result outside »,=%(x). The second component does not eause the
S.8., for we have assumed that dt(y’)0, hence dx;—dt(y’) has no situation in
which the coefficients of dy’ vanish. Similarly the third component is also indif-
ferent to the S.S. of the result of the integral.

The same argument applies to the term p(x) on z,>0. Let us examine it
more in detail on x,=0. We have

(1.9)  S.8. ;g )o@ —ty)) W' —y, )
oy, 2,95 v/ —1(1—2—pjo'dy’ £ 2{dw; —dty) + ' (do’ —dy’))oo);
Y €W, m=ty), ¥’ =y', 0’ € B* 1, 2>0, p1>0,0< 2+ p <1}
Uil 2, 95 &/ —1(£(1—2)(de,—dtly") + 2’ (da’ —dy’)) o) ;
7 =Hy’), 2’ =y, 0<2<}
Ulley, 2/, 45 &/ —1{(1—o'dy’ =2(dz, —dt(y’)))oo);
y €OW', &, =t{y’), o’ € R*1,0< <1}
U cee,

where we have abbreviated the more tame terms. When we integrate with re-
spect to ¥/, the first and the second components do not affect the singular spectrum
of the result on W,. The third component provides the direction +4/—1dz,c0
on x;,=0, because the equation

(1—-2)o'dy’ Fdt{y’} =0
may be satisfied by some o' € R*%. Thus we have proved that
1.10) S. 8. ﬁ(w)lwalc{xI:O}x{ivjdxlw}.

Here we employ the following lemma. The following proof is due to K. Kataoka
[16]. For self-containedness we will give in Appendix A a direct elementary proof
with an accessory refinement which will be useful in §4.



408 Akira KANEKO

LEMMA 1.3. Let plx, D) be a linear partial differential operator with real
analytic coefficients. Assume that x,=0 is mon-characteristic with respect to p.
Let f(z) be @ hyperfunction defined on {x,<<o} XU’ such that

(1.11) supp fC {©, >0},
S.S. FCim =0} X {+4/—1da,c0}  (resp. S. S. fCiw, >0} x {4/ —1dw;00}).

Then, for any V'cU’ there exist a positive constant 6'<d and a solution u of
plz, Dyu=f on {&, <&} X V' with the same property (1.11).

PROOF. On account of the Holmgren uniqueness theorem, it suffices to solve
the equation locally on a neighborhood of each point on #;=0. We employ the
boundary value theory of Kataocka [14],[15] and for the details of the notation
used below we refer to his original article. We put M,={x,>0} and X=C".
Cu.ix denotes the sheaf of relative microfunctions H§h+X(“—’1+’ zOx), where S§ X
is the conormal sphere bundle of M, in X and my . x: S, X—X is the canonical
projection. The pseudo-differential operator (or the micro-differential operator in
new terminology) operates on (. x as a sheaf homomorphism and we have an
isomorphism

PM—*—@[Zl:O: (ﬂM+lx)*CM+lxlx1=o

which is compatible with this operation. By the assumption the support of f,
considered as a section of (y,/x, is contained in

{(z; (Gdzy++/ —1y/da)oo) €85, X; @=0,7"=0}

(For the case in the parentheses z;=0 is to be replaced by 2,>0.) Since dz, is a
non-characteristic direction of p along z,=0, p? exists as a pseudo-differential
operator on a neighborhood of this set. Thus we can define a section of Cuyix
by p~if there and by zero otherwise. Let u be the section of 1"y, Blay=o correspond-
ing to it by the above isomorphism. This is the desired solution. g.e.d.

END OF PROOF OF PROPOSITION 1.2. We apply the first case of this lemma

to Blz) and obtain a solution w(z) of p(D)w=4 on {x;<é'}X V' satisfying (1.11).
Then we have on {x,<d'} XV’

m—1
p(D)(v—w)= ,-go g;{a)o ™19 (zy).
In view of (1.6) this mostly proves our proposition. The remaining detail is the

following: We have g;(2’)=f;(®")xW(z’,v'), where f;(z') €’ BIW] is an extension
of bf{u)|p but not an element of / PIU] extending bi{u) itself. But the difference
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is a real analytic function on a neighborhood of V7, because we are now employing
the curved wave decomposition (1.1). Thus by the Cauchy-Kowalevsky theorem
we can once more adjust v perhaps for a smaller ¢’ in order to obtain the very
assertion of our proposition. This argument shows in the same time that we can
employ an arbitrarily fixed extension [bf(u)1€’BIU'] of bi(u). g.e.d.

REMARK 1.4. In the statement of Proposition 1.2 we have assumed the
analyticity of the solution % on ,>0. But we can obtain the same conclusion
assuming only that

S. 8. uNf{w >0t X {0/ —1{=(1—0)dw; +6v'dz ) oo; 0<O<1}=05.

In fact the proof is then modified as follows: First remark that on account of
Sato’s fundamental theorem we can then estimate S.S.u by

(1.12) {0<m, <X U X i/ =L ([1—8)de, +b0'ds)oo; o 1, 0, <01},

where 6, is a positive constant depending only on p and satisfying [dt(x’) |<8,/(1—8,).
Thus the produet Y{x, —t{x"))ulw;, #') is well defined on x,>0 and instead of (1.7)
we have

S. 8. Y(w, —tly ) ulz, ¥')
C(L12) gy U{(y, ¥ 54/ — L d; + @0'dy’)o0); B, =t{y), (o, ) € S},

where (1.12),..,» denotes the set obtained from (1.12) replacing 2’ by . Thus
we can reproduce the above calculation on 8.S. with a little more delicacy and
conclude this time that

m—1

pDyv= j;o g;()8 ™D (g,) 4 B(w).

Here g,(x’) are as above and v, 8 satisfy the estimates of the type
(1.13) supp vC{x, >0}, S. 8. vliey <o xw Sy >0 X { 4/ —1da;00).

In view of the second case of Lemma 1.8 we can find a solution w of p(D)w=4
satisfying itself (1.13). Thus we conclude finally

m—1

p(DYw—w)= X g;(&")d™17 ().

=0

Since v—w satisfies (1.13) also, it becomes in fact real analytic on 2, >0 because
of Sato’s fundamental theorem. Thus v'=v—w is a required solution. This way
of argument shows in the same time that we could have employed instead of
Y{@,—t(z'))u(x) any modification of u to cut off the support. In fact we did not
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use here any regularity of the modification along the edge.

REMARK 1.5. In the proof of Proposition 1.2 we have employed the assump-
tion that the coefficients of p be constant only in order to guarantee

(DY (@, —te))ull]) * W', ») =p(DIL Y (2 — ") [u]l] x Wz, ).

Thus the above proof goes without modification if only p has coefficients independent
of /. Thus Proposition 1.2 {and Remark 1.4) is valid e.g. for the generalized
Lewy-Mizohata operator D,++/—1x'D, on R*. In the case where p(z, D) has
essentially variable coefficients, the above method does not work, nor is the asser-
tion of Proposition 1.2 any longer valid in general. See Remark 4.3.

3. Now we consider a special case where the plane wave decomposition is
available. For the sake of simplicity we fix v* to be (0,---,0,1).

PROPOSITION 1.6. Let U'=U"x{|z,|<a}, where U"€R"? is open and convex.
In the situation of Proposition 1.2, assume further that the boundary values bi{u)
are real analytic near the part oU” X{z,|<a} of the boundary of U’. Then for
every open subset V?cU” and a’'<a there exist ¢’ >0 and a real analytic solution
v of p(DYo=0 on {0<2,<d'}X V' (where V'=V"x{x,|<a'}) such that its boundary
values agree with

Fie I (Do) Wola!, o' oo My, §=0, -+, m—1
where fiz') is a fived element of ' PIU'1 independent of J(Dw) and satisfying
Fi{&) [y =bf(u) .

PROOF. We repeat the proof of Proposition 1.2 adding the condition that the
hypersurface x,=%(z’) is strictly convex and that bj(u) is real analytic on a neigh-
borhood of 8W'N{|z,.|<a’}. In view of the Cauchy-Kowalevsky theorem and the
Holmgren uniqueness theorem, the solution u itself can be continued real analyt-
ically onto a neighborhood of {0} (8W'n{|x,|<a’}). Then by the local uniqueness
of the canonical extension, we can assume that [u]=Y(x,)u there. Thus in this
neighborhood the product Y(x,—t{x))[ul=Y(x;,—t&")) Yix,)u is meaningful in the
usual sense, and this gives an explicit expression of [[ Yz, —¢(x"))[]]] there. Cal-
culating p(D)[[ Y{x,—t{z’))[w]]l by this expression, we find that we can assume the
following regularity for the coefficients «;(z’) of (1.5):

(1.14) 8. 8. a;(z") N{lz,. 1<a’ici@’; =4/ —1dt(x")o); t(a)=0}.
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Reeall that aW’={t(x’)=0}. Now we convolute to both sides of (1.5) the com-
ponent of the plane wave decompositions Wz, v’) (or, more precisely J(D,)Wy{x’,
®)e=»). Then in the estimation of the S.S. starting from (1.7) we have to replace
the condition x’=y’ everywhere by (2’ —y’)v'=0 because of the emission of singu-
larity for W,(x’,v’). Nevertheless we claim first that

v(x)= S Yo, —ty"))ula,, y') Wole' —y/, v")dy’

is real analytic in W, n{z;>0}. In fact, consider the estimate (1.8) with the above
midification. Setting the coefficients of dy’ to be equal to zero in the first com-
ponent, we obtain

£(1—Adt(y)co='dy’'c0, = =t{y’}, (@' —y)»'=0.

This implies that the hyperplane (x'—y")»’=0 in R*™* passing through z’ reaches
the convex hypersurface ¢{(y')=x, in R™* at the point %’ where they are tangent.
This is impossible if 2’ is in the region x,>¢{x’). Thus on the integration by ¥’
the first component does not produce the S.S. inside Wi N{z,>0}. There is no
new problem for the second and the third components. The regularity of A{x) on
Wi, N{x, >0} can be treated similarly.

We now examine the regularity of B{x) on x,=0. Consider therefore (1.9)
with the same modification as above. In view of the regularity condition (1.14)
the first component can be replaced by

(1.15) {95 &/ —1{(1—2—po'dy’ i(de,—dtly") +p’ (dx’' —dy’))o);
y €W N{lz,|>a'), m=t{y), @' —y' W' =0,0’ € R*™, 20, £>0,0< 1+ p<1}
Ui, 2,95 &/ —1(=(L—2—p)dily’) = 2(de, —dily’)) + p' (da’ —dy'))o0);
y eaW’ n{lz,|<a’}, m=tly’), (@' —y' ) =0, 2>0, p>0,0< 2+ p<1}.

Obviously the first component of (1.15) does not affect the S. S. of the integral by
y’ in |x,]<a’. As for the second component let the coefficients of dy’ be equal
to zero. Then we will again have the situation that the hyperplane (x'—y’)y’=0
is tangent to t(y’)=w,. This is impossible for 2’ in W/ n{{z,|<a’}. Thus this com-
ponent also does not produce the S. S.

As for the second and the third components of (1.9) the situation is unchanged
and thus we obtain the estimate (1.10). From now on the proof goes unchanged.

Remark that the ambiguity of the above extension f;(@’) on aW’ N{z,|>a’}
does not affect the regularity of f;(z")xWy(a’,v") on W’/ N{x,|<a’}. q.e.d.
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4, Let us strengthen Proposition 1.6 as Remark 1.4 in replacing the analyti-
city by the micro-analyticity to the direction »’. First we prepare

LEMMA 1.7 (ef. Schapira [25)). Let plz, D) be as in Lemma 1.3. Let u be a
hyperfunction solution of plx, D)u=0 defined locally on x,>0 on a meighborhood
of the origin. Assume that the boundary values bf(u), j=0, - .-, m—1 do not contain
0, v/ —1v/dax’ o) in their singular spectrum. Then there exists a neighborhood Q'
of v in 8§ and a neighborhood U of 0¢€ R* such that

(1.16) S.S.[wlc(Uniz=0) X{v/ -1 1—0)dz, +0o’'dzx’)oo; o €S AR, 0<0<1],
where [u] denotes the canonical extension of .

PrROOF. In fact we can prove the following equivalence:

(1.17) S. 8. bf(u) 3 (0, 4/ —1v/da’co).
—
{1.18) S. 8. [#]N{{0, o/ —1{£(1—0)dz,+6v'da’)o0); 0<I<1}=).

Let o be the projection from 4/ —1SE"\{+4/ —1dz,o0} to the equator w,=0 along
the longitudes, that is, p{v/ —ladroo)=+/—1w'dz’co for w=(w,, »'), o’ #0. Then the
fiber in the braces of (1.18) is just equal to p {4/ —Iv'dad’co). Now put u;z’)=
bf(u), 7=0, -+, m—1 and recall the identity

(119 plo, D)l="%, uw)s= (2.

The implication (1.18)=3(1.17) then follows easily from a series of elementary caleulus
for S.8. Conversely assume (1.17). Then we will have

{1.20) S. S. m‘;: u;(3)8 ™19 () N {0} X oM/ — 1/ di’0) = 5.

Because p(z, D) is invertible as a pseudo-differential operator on a neighborhood
Ux 2 of the non-characteristic points Ux{++/—1dx,o0}, we can obtain from (1.19)-
(1.20) the estimate

{1.21) S. S. [wIN{0} X (7 +/ —1v'da' o) N Q)= ).

Owing to the theorem on watermelon slicing, the singular spectrum of the hyper-
function [u] satisfying supp [#]C{x,>0} has a fiber on each point of the boundary
2,=0 of the form p Y G)U{x+/—1dx,oc}, with a suitable closed subset G of the
equator. (See Corollary 4.2.8 in [15bis] (=Theorem 4.3.8 in [15]). See also Chapter
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VI, §2 of [121.) Thus (1.21) implies (1.18). In view of the closedness of the set
S. S. [u], this proves also (1.16). g.e.d.

For the sake of self-containedness we will give in Appendix A an alfernative
elementary proof of this lemma in the case of constant coefficients.

On account of this lemma we see that in the case of analytic wave front set
it suffices to observe simply the WF4 of the boundary values in order to examine
the regularity of a solution at the boundary. It seems to me that similar asser-
tion is not obvious in the case of C~ wave front set.

Remark that because [u] satisfies the equation p(z, D)[u]=0 on z,>0, we can
remove from (1.16) much more points by Sato’s fundamental theorem, e.g. a
neighborhood of the direction #4/—1dxz;c0 on 2, >0.

We now return to the situation of Proposition 1.6 and put once more »'=
©,---,0,1).

PROPOSITION 1.8. Let U’ be as in Proposition 1.6. We have the same conclu-
sion as Proposition 1.6 only by assuming the following:

1) For every V'cU’ there exist 8'>0 and o meighborhood 2’ of v/ in S$™72
such that

(1.22) S. 8. ulfo<ay<or xy THO<H <X V! X {v/ =1 (1—0)dw, +0w'dz")co;
o’ € SR, 0<0<1).

2) S.8.bF(w),j=0,---,m—1 do not contain the direction +/ —1v/dx’co near the
part dU” X{ =z, |<a} of the boundary of U’.

PROOF. We inherit the notation of the proof of Proposition 1.6. Assume that
(1.23) S. 8. bFw) N{WA\V n{lz,|<a’ ) X{v —1lo'dt’ew; o' € 2}=0,

where £’ is a neighborhood of v’ verifying in the same time (1.22) with V' there
replaced by a neighborhood of W’ here. On account of Lemma 1.7 we can assume
without loss of generality that the canonical extension [u] satisfies the estimate
(1.16) on {0<z, <5t X WAV n{|x,|<a’}. Employing the cutting off by the hyper-
surface x,=#x’), we obtain the equality (1.5) as well. Let 4'c®’ be another
neighborhood of 1/ cS*2 Take the convolution of both sides of (1.5) with
Wix', 4’), where
Wi, &)= X Wi, o')do.
Then we have “

p(DJola) =, g,(e10 =7 () + Bla),
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where v, g;, 8 are defined by the obvious manner (ef. (1.6)). The same calculation
as before shows that S(x) satisfies (1.10) and that v is real analytic on z,>0.
Employing Lemma 1.3 we can modify v to remove the term S{z). Thus we obtain

PID)r="F, g,{e/)0>15 ).

Here g;(2")=fi{a W', 4') and fi{z’) €/ BIW’] is an extension of bf(m)|z. Thus
we have obtained a real analytic solution » which, with the boundary values {g;(z")},
satisfies the assumption of Proposition 1.6. Taking W’ newly as U’ we can thus
manage this solution ». Consider next the convolution of (1.5) with Wz, S*~3\4').
With the obvious notation we have

(1.24) p(D)w= Zh( om0 (@) +7.

Here w and 7 satisfy the following estimate
S. 8. w(resp. 8. 8. y)Cla, >0} X {4/ —1(£ (1—0)dz, +00'da’)oo; o € S* 24, 0<0<1].
Moreover, an elementary calculation of S. 8. similar to (1.9) shows that their S. 8.
contains only the direction +.+/—1dx,c0 outside Wo. As for
2"y =Fi{a" = Win’, S*~A\4),

they are real analytic outside W’. Choose a convex open subset X’ of R*~! bounded
by a real analytic hypersurface such that WeX’clU’. Let x(z’) be its charae-
teristic function. We can cut off the support of w, h;,7 by this function without
ambiguity (the product rule: see Corollary 2.4.2 of Chapter I in [24]). We obtain

m—1

(1.25) pD)w)= X x(@h;(@) " (@) +ar +77,

where yw and 7’ =p{(D){xw)—yp(D)w satisfy the following estimate (which we write
only for 7/ for the sake of simplicity):

S. 8. 7/ cllw, v/ —1(£(1—8)dw, +00'da’)oo) ;
2,20, c X, 0’ €S™0\L) or (¢'coX, o 13X at z'),0<0<1}.

If we make the convolution of W,(x’,v’) with (1.25), we obtain, again with the
obvious notation,

m—1
pDyw'= T (1 hxWala!, v} ™19 () 477,
P2

where w’ and 7”7 satisfy the estimates of the type
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(1.26) supp w’' C{m, =0}, 8. 8. W'l by <on xx Clay 20} X {4/ —1day00}.

In fact, these can be verified by a calculation similar to (1.9) based on the above
estimates for yw,y’. We use in particular the fact that the S.S. of yw,r’ does
not contain the direction 4/ —1v/dx’co at the point of 86X’ where the hyperplane
x'v'=const. is tangent to it.

Thus employing Lemma 1.3 we can replace w’ by w” in order to remove 7”.
We have finally

m—1
pDw"= 2 {xhxWol@’, )8 "7 (@) on {e<o"IX W,

where w” satisfies the estimates (1.26). In view of Sato’s fundamental theorem,
w” becomes in fact real analytic on {0<x,<d”}X W’. Since we have clearly

9@ +yh; (@)= W', )+ Wi, S™ANL ) =F;()
=bj{u) on W,

the sum of yh;(z’) and of the modification of g;(»’) given by the first part of the
proof {employing Proposition 1.6) is a required modification of b}{u). g.e.d.

REMARK 1.9. The assumption 1) is stronger than what is in fact necessary:
It suffices to assume that S.S. u does not contain the directions

v == (1—0)dx,+6v'dz’) oo, 0<oLl.

For, the uniform estimate of the type (1.22) follows from the assumption 2) in
view of Lemma 1.7 at least near {0} X W\V'N{|x,|<a’}. Therefore we can practice
the first part of the proof as well. The only difference is that v may not be real
analytic inside Wy, but S.S.v is still free from the directions mentioned above.
Thus when we make the convolution with W,(z’, v*), the result becomes real analytic
in Ws. This is in fact all that is necessary.

5. In this paragraph we will sum up the results hitherto obtained to a theorem.
We will employ the partition of variables x’={(x%, 2'7), where a'=(w;, -+, %), 2/1=
Bz, =0 Za).  We will write correspondingly o’ = (0!, ®'). Consider

{n—2)! (1—+/ —18'0)*?— (1 —+/ —15le!)*3((z)?— (z'e")?)

L2 Wl o= e /0 e+ L0l @)/ — 10

Since this is a special case of Example 1.2.5 in Chapter III of [24], we have always
S ZWI(x’, o’ )dw' =d(x'). For this component W;(x’,w’), the singularity flows out
"

of the origin along the linear subvariety =0, x'’w’!=0. That is, there is no prop-
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agation of singularity with respect to the variables 27. Now choose v'=(0, - --,0,1).

THEOREM 1.10. Let U'=U'XU", where U’ resp. Ul is a convex open set in
the x'-space resp. x'’-space, and U is a cylinder with the generator —a<z,<a
parallel to the v,-axis. Let u be a hyperfunction solution of p(D)yu=0 defined on
{0<w, <o} xU’. Assume that S.S. u does not contain the directions

V=1 ={1—-0)dz,+6'da )0,  0<H<1,

and that S.8.bf(u) do not contain the direction / —1v'da'co near the part U'X
aU" N{lz.[<a} of aU’. Then for every open subset V'cU’ of the same type as
U’, there exist 0'>0 and a real analytic solution v of p(D)v=0 on {0<x, <8} XV’
such that its boundary values agree with

fj(xl)*{J(D(D') Wl(w,’ wl)‘/ﬂ'=”'}]V'! jzoa R m_]-y
where f;(a') is a fixed element of ' PIU'] independent of J(D.) and satisfying
fj(x,) IV'"—‘b}P(qu'-

The proof can be carried on imitating those of Proposition 1.2, Proposition 1.8
and Remark 1.9, so we omit it. Remark that in fact Proposition 1.2 resp. Prop-
osition 1.8 corresponds to the case II=¢) (k=u) resp. I=2 (k=1) of Theorem 1.10.

§2. Extension of solutions in the complex domain.

1. Let p(D) be an m-th order linear partial differential operator with constant
coefficients. Let p,(D) be its principal part. Assume that x,=0 is non-charac-
teristic with respect to p. We employ the following notation for the separation
of the independent variables: = (x,, #')= (x,, ", x,) with " ={2,, - - -, #,_,) and similar
one for the complexification z=x++/—1y or for the dual variables {=£&+./—17.
In this paragraph we consider those p(D) satisfying the following conditions:
There exist positive constants b, ¢ such that for Re(,<0, '€ C*! the roots =
t3{{’), =1, ---,m of the homogeneous characteristic equation p.(&, ¢ )=0 satisfy

2.1 —Im 3 <BIm g, |+ "]

REMARK 2.1. This is equivalent to the following inequality for the roots ;L)
of the inhomogeneous characteristic equation p(¢,, ¢’)=0:

2.2) —Im7,;{{")<a|Re &, 17+l Im &, [+¢]¢” |+ C,

where a,b,¢,C and ¢<1 are some positive constants. In fact, by an elementary



Estimation of singular spectrum 417

consideration for the roots of a polynomial (see e.g. [22], Chapter IV, Lemma 2.4},
we see that the inequality (2.2) for p{¢) imply a same type of inequality for any
polynomial with the same principal part. Conversely, from the inequality (2.2)
for a homogeneous polynomial p,(l), we can drop the terms a|Ref,)* and C by
introducing a positive real factor t—-+oo and employing the homogeneity of the
roots.

For the sake of simplicity we will call in the sequel 7%({’) resp. z;{¢’) the
homogeneous resp. the inhomogeneous characteristic roots of p.

PROPOSITION 2.2. Under the above assumption consider the holomorphic
Cauchy problem

(2.3) {p(D JF=0

b.’i(D)Fizl=0:Fj(zl), j:O’ ...’m_l.

Here {b;(D)} is a normal system of boundary operators with constant cogfficients.
The holomorphic data F;(z') are given on o domain of the form

2.4) (o'=2'++/—1y e C* Y |2/ |<A4, olly" )<y, <B},

where ¢(t) is a convex continuous function of t=0 satisfying ¢(t)>0, ¢(0)=0 and
o(t)/t—0 if t—0. Then the solution can be continued onto the domain

(2.5) [z=x++/ —1ycCr; —6<u,<0, |2'|< A4,
Ay [+olda ) +o@y" ) <y < B},

where A’, B', 2, are suitably chosen positive constants.

Proor. First note that by a refined form of the Cauchy-Kowalevsky theorem
the solution exists on a domain of the form

a={lz|<kly,—oly" ), 12" |[<AI2, y.<Bi2}

where k& is a positive constant (see e.g. Leray [20]). Starting from this open set
we try the sweeping out employing the device of Bony-Schapira [1]. Choose a
point (—t++/—1s,0,--+,0,4/—1e), where t>0, ¢>0. If every real characteristic
hyperplane passing through this point intersects &, then the solution u(z) can be
continued up to the interior of ch[{(—t-++/—1s,0,---,0,4/—1e)}U&], where ch
denotes the convex hull. We consider C* as a real Euclidean space of dimension
2n by the inner product —Re {z, 4/ —1{>=xn+y¢ between the two points z=x+
+/—1y and {=&+4+/—1n. This way of identification enjoys the compatibility with
the notation of the Fourier transformation. Thus the calculation below becomes
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very similar to that of {7} although they have apparently very different origins.
Now a characteristic hyperplane passing through (—t++/—1s,0, -+, 0, 4/ —1¢) is ex-
pressed by the following equation

2.6) —Re{z—(—t+4/—15,0,---,0,4/—1¢), v/ —10O
=xn+yE+tn,—s&;—e,=0,

where {=¢-+4/—17 satisfies
(2.7) PulG)=0.

The equation (2.7) and the non-characteristic assumption imply that there exists
M>0 such that
IGI<Mg .

First consider the case |&/|<|7’|. This case can always be disposed by the
assumption that 2,=0 is non-characteristic. In fact the point

—1 S
h"% Sy, g=y=0, y,=

=0, 2'=
satisfies (2.6). Since we have
l&ISICllSMlC’IS«/fMIO’I,

and similarly |7, [<4/2 M|7’], this point is contained in & provided that

2.8) [x'lgm“];—',s]”i'gvfM(t+[s[)<A/z.

Next consider the case |&'|>]7/]. For the sake of simplicity we choose for
the moment £=0, y,=0. Then the equation (2.6) becomes

(2.6) ’ ?/”5” +yngn = t’?l + SEI + es'n-

If |£,1<[£"] we have
<M</ TMIE|<2M| "),

and similarly |7, |<2M |¢”|. Then we consider the point

—tp +s&—(t+]s))&, &

4 Yn=c+(t+]s))

=0, %,=0, y"=

which satisfies (2.6)” and lies in & if

(2.9) ‘P(ly”l)é(P( t|771!+|8H51[+(t+|81)|§nl>

ISI/]
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<p(@M+1)(E+[s) <e+(t+]s) <BJ2.

Tt remains to check the most delicate case |£,{>[&”]. This time we have |&|<
2M [g,| and |5, ]<2M|¢,]. Without loss of generality we can assume that —in,+
s&,>0. (If this is not the case we can replace { by —{.) We further separate
the cases. If &,>1£”| the point

=0, 9=y"=0, y,=ec+ “tﬂé"‘sgl
satisfies (2.6)’ and lies in & provided that
(2.10) yn=e+j%ﬁige+2M(t+[sl)<B/2.

Finally, if &,<—]&”| we can employ the assumption (2.1). We go back to the
original equation (2.6) of the characteristic hyperplane. If %, >0 we have 0<
—t7, +8&,<s&;, hence we put

—ty,+ 8§,
& ’

Because |y, ]<|s| this solution of (2.6) is contained in & if

x:()’ h= y”—':or Y =¢.

(2.11) |2, <] s]<ke.
If 9, <0 we have, in view of (2.1), a decomposition of the form

771=a+13+7',
where
lal<bln, ], |BI<cle”], lrien”].
Therefore we put

—1 —1 —1
T1= Oy x”:méﬁ”, Tpn= vna y Y1=8, ’.1/” :‘E—”/IS;—S”’ Yn=¢.

{Here we understand z”=0 if 7”=0 ete.) This solution is contained in & if

2.12) 2 [<tb+e)< Al2, |2, <[ sl<ke—olet)).
Now (2.8)-(2.12) are satisfied if we choose
(2.18) e<Bl4, t+|sl<K, |s|<k(e—¢lct)),

where

K=min {E%ﬁ’ -g— 1 [go(t)
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[¢(t)/t]™ denoting the inverse function of ¢(f)/f. Summing up we conclude that
the solution F(z) can be continued up to eh [{{(—t4++/—15,0,---,0,4/ —1glua] for
every ¢>0, ¢>0 and s satisfying (2.13). When we let them vary under these
conditions and make the union of these convex domains, we clearly obtain a domain
of the form (2.5). g.e.d.

We can give the following variant of the above proposition.

PROPOSITION 2.3. Instead of (2.1) assume the following: There exist positive
constants b, ¢ and a constant q verifying 0<q<l such that for every positive
e<1 we have
(2.14) —Im (") <e[Re L, |4+be7y Im &' |+ce™?[Rel”|, if ¢ eC*', Re,<0.
Then given the Cauchy data Fiz’) holomorphic on

{Z/=0'+v/ =1y eC™; |2/ |[<A, |y"|'<y,<B),
where 1>1, we can find the solution F(z) of (2.8) defined on
2.5) {e=2+y/—lyeCr; —6<a,<0, 2 |<A!, Ay |+, 1D £y ) <y, < B

PrOOF. In the proof of Proposition 2.2 we put ¢(t)=t'. It suffices to reexamine
the case [§'|=[7'], §,<—[¢"| and 7,<0. In view of (2.14) we have the following
decomposition

n=a+p+y,
where

le|<e &l 18I<be7’, I7i<ee™g”].

Hence we choose the point

_ —_ —'tlB — —_ —tT / —_— ta
(2.15) =0, 2'= (72 7', th=s, y”—]S”P & Yp=e— z,

on (2.6). It is contained in & if

2.12) [ |<the "< A2, |z|<|s|<Kle(l—t)—(tee™9)Y).
If we pose the conditions

(2.16) [£]<1/2, e>tUiD

then the second inequality of (2.12)" will be satisfied if

Is !<k<—;——c‘t‘“q’+”>,

Now (2.8)-(2.11), (2.12)’ and (2.16) are satisfied if we choose



Estimation of singular spectrum 421

(2.13) e<min{l, B4}, t+[s|<K, [s|<.l2i(e_#tz/<qz+1>)y
where
p=max {(2})1”, 2¢t, 1},
K=min{ A 1 /7 1 >1/<z—1> B B l}
2vZM’ 2M+1\2M+1 8 4 2

The union of e¢h[{{—t++/—1s,0, -+, 0,4/ —1e)}Ua] for every t>0, ¢>0, s satisfying
(2.13)' obviously contains a domain of the form (2.5)’. g.e.d.

Remark that if we make [ larger, then the exponent I/(¢gl+1) increases and
approaches 1/g, hence finally exceeds 1. This fact will be used in the next section.

2. Now we generalize the condition (2.1) in an intrinsic form.

DEFINITION 2.4. Let p(D) be an m-th order linear partial differential operator
with constant coefficients. Let p,(D) be its principal part. Suppose that z;=0
is non-characteristic with respect to p. Let v ¢ R*! be a unit vector. We say
that p(D) is 4/ —1v'dz’co-semihyperbolic to x,>0 if there exist positive constants
b, ¢ such that the homogeneous characteristic roots <%(¢’), =1, ..., m satisfy

{2.17) Im 23 <bIm ' |+ev/(Re {)2—(Re V)2 if {'eC™?, RelV<0.

The +/ —1v'dx’co-semihyperbolicity to x,<0 is defined by the inequality which is
obtained from (2.17) by replacing Im z%{¢’) by —Im z%(¢’).

This definition is compatible with the coordinate transformation x;p—>—2;,.
Moreover, the substitution {—~—¢ in the equation shows that the following are
equivalent.

1) p(D) is 4/ —1v'dx’co-semihyperbolic to z,>0.

2) p(D) is —+/—1v'dx’co-semihyperbolic to z,<0.

The significance of the semihyperbolicity is clarified by the following theorem.

THECREM 2.5. Assume that p(D) is +/ —Lv'da’co-semihyperbolic to z,>0.
Assume that the hyperfunction data u;(x’), j=0, -+, m—1 can be expressed as the

boundary values of functions F;(z') holomorphic in {»' Im2'>0iN{2'|<38}. Then
on @ neighborhood of the origin we can solve the following boundary value problem:

{p(D)u=0 on x>0,
bj(D)u]zl—)+0:uj(w/)v j=0, "'7m_1'

For the operator +/ —Ly'dz’co-semikyperbolic to z,<0, similar solvability holds for
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the boundary value problem to x,<0.

ProoF. To utilize the caleculus of Proposition 2.2 choose v'={0,---,0,1) and
consider the case x,<0. With the initial data F;(z’) we are going to solve the
holomorphie Cauchy problem (2.8). Put A=B=¢/4/2. Then owing to a refined
form of the Cauchy-Kowalevsky theorem the solution exists on a domain of the
form

(2.18) d={z=2++/—1yeC"; |2|<ky,, ¥.<B/2, l&'|<A/2, |y"|<B/2}.

Choosing a point {—t+4/—1s,0,---,0,4/—1c) we proceed as in the proof of Prop-
osition 2.2. The caleulation corresponding to (2.8) is valid without modification.
For the case corresponding to (2.9) we can employ the same solution of the linear
equation (2.6)’ and the new condition

(2.9) 2M~+1){t+]s)<B/2, e+ (t+]|s))<Bj2.

The cases corresponding to (2.10) and (2.11) are also valid without modification.
Finally in the case corresponding to (2.12) we can also employ the same solution
of {2.6) but the condition will be simply '

(2.12)" HOb+o) < A2, |s|<he, (b+c)t<%.

Summing up the conditions (2.8), (2.9, (2.10), (2.11), (2.12)” we obtain

(2.18)” e<Bl4, t+[s|<K, |s|<ke,
where
K:min{ B A B 4 ﬁ}
42M+1) 7 2(2b+c)’ 20b+c) 2v2M 4

Since ¢ varies now freely of ¢, the union of ch[{(—t+4/—1s,0,---,0, 4/ —1e)} U]
now contains a domain of the form

(2.5)" fe=2+y/—TyeCm; —A'<2,<0, [0/ |<A/, |y |<ky.<B', |y |<B',

which is a wedge with its edge tangent to the real axis. Thus the holomorphic
solution F'(z) continued there defines a hyperfunction solution u(z) of p{D)u=0 on
"~ %, <0 locally on a neighborhood of the origin. It remains to show that the bound-
ary values of 4 agree with the given data ;. Though this is intuitively eclear
we will give the proof in the following lemma.

LEMMA 2.6. Let I'' be a conver open cone in the coordinate subspace R
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containing the positive y,-axis and contained properly in y,>0. Let F(z) be a
holomorphic function defined on a neighborhood of the following set

{z:x—i—«/:yeC"; 0£x1<6’ {x/[<A7 y1:0’ yleply yn<B}~

Assume that Fl(z) satisfies there an m-th order linear partial differential equation
p(z, D)F(2)=0 whose coefficients are holomorphic on a neighborhood of the closure of
the above domain. Assume that z,=0 s non-characteristic with respect to p on
this meighborhood. Then F(z) defines a hyperfunction solution u(x) of p(x, D)u=0
on {0<z, <o} x{la’'|<A} such that its boundary values b}(u)=b;(x, D)ulgyto, J=
0,---,m—1 are just the hyperfunctions defined by the holomorphic Fumctions
b;(z, D)F(@)l,y=0, §=0,---,m—1 on {|a’|<A}++/—1{y' €I, y,<B}.

Proor. TFirst note that owing to a local version of Bochner’s tube theorem
we can extend F(z) to a local wedge with its edge tangent to the real axis on a
neighborhood of each point of {0<x,<d}x{|z’|< A} so that we have a well defined
hyperfunction w(x) there. For the sake of simplicity we assume that the boundary
system is the one which gives as the boundary values the coefficients of

(L3)bis ple, Diful= "% bu)a == z).

Thus on account of the uniqueness of this expression it suffices to give a hyper-
function v which agrees with » on {0<#,<8}x{|2’|< A} and satisfies supp vCiz, >0}
and the above identity with bj(u) replaced by F;(z’++/—1I"0), where Fi (/)=
b;(z, D)F(2)|,,. Consider Flx,, @' +4/—1y') Y(x;), where Y is the Heaviside fune-
tion. It is a well defined hyperfunction of z,,2’,%’ on

{m<atx{la’|<A}++/—Ly eI, y,<B}.

It contains holomorphic parameters x;++/—1y;, 7=2,---,% in the sense of [24],
Chapter I, §3.2. Thus as is explained there it defines a hyperfunction v{xy, 27)
on {z; <8} x{{#'|<A} as the boundary value. Since this correspondence is a sheaf
homomorphism along {x;<é}Xx{j2’'|<A} we conclude that supp vC{w; >0} and v=u
on %;>0. From the functorial definition of the boundary value the hyperfunetion
p{w, D)v evidently agrees with the one defined as the bhoundary value of another
hyperfunction with holomorphic parameters:
pl@y, @' ++/ =1y, DNF (@, ' ++/—1y’) Y(x,)}

m—1

=X bi(@y, o' ++/ — 1y, D) F(@y, o'+ 4/ = 1Y) ]oymed ™9 (xy).



424 Akira KANEKO

But the latter obviously agrees with 3 F;(a’++/—1170)8™ 179 (z,). g.e.d.
Now we combine the two semihyperbolic directions.

DEFINITION 2.7. We say that p(D) is 4/ —Lv'da/co-hyperbolic with respect to
2,=0 if p(D) is 4/ —1v'dz'co-semihyperbolic to both sides +z,>0.

By what was remarked after Definition 2.4, p(D) then becomes also
—+/—Ty'da’co-hyperbolic. In the case »'=(0, ---,0,1) the 4/ —1dz,c0-hyperholicity
is expressed by definition by the following inequality for the homogeneous charac-
teristic roots <%(¢'):

(2.19) Im 2%(¢) 1< Im &, 1 4clc” .

In view of Remark 2.1, it is also expressed by the following inequality for the
inhomogeneous characteristic roots ¢;({’):

(2.20) [Im 7;(¢') [<a|Re L, [+ Im C, [+ f¢” [+ C.

With this definition we have the following

COROLLARY 2.8. Assume that p(D) is +/—1v'da’co-hyperbolic with respect to
z,=0. Assume that the hyperfunction Cauchy data f;(z'}, j=0,---,m—1 contain
the coordinates supplementary to v's’ in some linear coordinate system as complex

holomorphic parameters (in the sense that we can complexify them to usual com-
plex holomorphic parameters). Then the Cauchy problem

{p(D)u: 0,
bj(D)ulzl'—:O:fj(x,)v ijy "'sm—l
admits a hyper function solution (which contains the same holomorphic parameters).

In fact, choose a system of coordinates such that »'=(0,---,0,1) and that f;(«’)
contain z” as complex holomorphic parameters. By the definition of the complex
holomorphic parameter, there exists locally a pair of functions F5(2’) holomorphic,
say, on |2/ |<A, |¥"|<B, 0<y,<B {resp. —B<y,<0) such that

fia)=F@, z,++/—10)—F7 (@', &, —+/ —10).
In view of the proof of Theorem 2.5, the holomorphic Cauchy problem for the

data F#(z’) admits a solution F*(z) holomorphic on a domain of the form

fe=z++/ =1y e C*; |2,1<5, |2/ [<A, % |<Hy.l, 1y |<B,
0<y,<B' (resp. —B' <y,<0)}.
Owing to the Holmgren uniqueness theorem, these local solutions may be glued
together along the initial hyperplane x,=0. Note that we cannot claim a fixed
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domain of existence in the real, because the constant § in the above set depends
on the constant B limiting |y”].

3. For later use we give the following variant of the preceding paragraph.
We continue to assume that ;=0 is non-characteristic with respect to our operator.

DEFINITION 2.9. We say that p(D) is partially +/—1v'da’co-semshyperbolic to
>0 (resp. to x,<0) if the roots <}(»’), j=1,---,m of the equation p,(&, v)=0
satisfy
(2.21) Im 230" ) >0
(resp. Imc}(v')<0). We say that p(D) is partially +/—1v'dz’co-hyperbolic with
respect to z,=0 if
(2.22) Im 2%()=0.

LEMMA 2.10. Assume that v'=(0,---,0,1). Then p(D) is partially 1/ —1v'ds’ co-
semihyperbolic to x,>0 if and only if the inhomogeneous characteristic roots ;&0
J=1,---,m of p satisfy for any >0,

(2.23) Im ;)< Re Ll +0Im &, |+ Crre  if Re(,<0.

Similarly p(D) is partially +/—1v'da’co-hyperbolic with respect to =0 if and
only if

(2.24) [Imz;({") |<e|Re & [+BIm L, [+ Cre if Re,<0.

The same assertion holds if we replace =;({’) in these inequalities by the homo-
geneous characteristic roots <%{{').

PrROOF. First note that assuming (2.23) for 7;({’) is equivalent to assuming
the same inequality for the homogeneous characteristic roots HZ). In faet, this
inequality is invariant by the lower order perturbation. Therefore assume (2.23)
for 75{{'). Let 2{C.), j=1,---,m be the homogeneous characteristic roots of the
two dimensional operator p(¢;,0,¢,) (that is, 2%(¢,)=7%(0,2,). Then (2.23) implies

(2.25) Im 2(¢,)<elRe , |+ Im e, |+Ce if Re,<O.

Employing the homogeneity of the roots as in the argument of Remark 2.1, we
can deduce from this inequality the following new one
(2.26) Im 24L)<bIme,] if Reg,<0.

On the other hand the two dimensional homogeneous polynomial p,.(Z, 0,¢,) admits
the decomposition into linear factors of the form G—a;f,, where a;=2%(1)=7%").
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Then (2.26) obviously implies (2.21).

Conversely assume (2.21), that is, (2.26). For each fixed {”, p{{) has the same
principal part as p(&;, 0,¢,) as a polynomial of &, {,. The coefficients of {79 of these
two polynomials are j-th order polynomials of ¢’ and their difference is of order
less than j with respect to £,, hence majorated by

- N at<d N a/di A\
C“C' \c’> 1z

Then by an elementary consideration to the roots of a polynomial (see e.g. [22],
Chapter IV, Lemma 2.4), we see that

\r‘}(i’)—z‘}(c’)lgczlc/\{"g <Lé_]l>m< lé_: k}l/m

e E (5 )"

Im () <a S, 1€ | =D imRe g, 1= +HIm L, .

hence that

Thus noting the Holder inequality

|7 M Re g, [P Im< e Re L, |+ Cele”|,  Ce= m—k <i>(k1m) <(m—k>/m)€_(klm> ——
m m

we obtain (2.23). g.e.d.
In correspondence with Theorem 2.5 we have the following

PROPOSITION 2.11. Let p(D) be an operator partially +/ —1v'dx’co-semihyper-
bolic to ;>0 (resp. to 2,<<0). Let F;(z’) be functions holomorphic on {|a'|<A}+
~ —1{y'y’>0}. Then the holomorphic Cauchy problem (2.8) admits a solution Fi(z)
holomorphic on a domain of the form

e=g++/—1ycCr; 0<n, <0 (resp. —6<u,<0), [/ |<A’ W [<A’, |y, [<ky"'}.

The statement can be rewritten in an obvious way as a solvability theorem for
the corresponding hyperfunction boundary value problem.

ProoOF. Choose a linear change of coordinates such that »'=(0,-.-,0,1). To
utilize the proof of Theorem 2.5 consider the case #,<0. It suffices to reexamine
the proof for the last case correspondingly with the replacement B+—>+co. There-
fore assume |&'[>]7], £,<—|&"] and 7,<0. In view of Lemma 2.10, the assump-
tion of partial 4/—1v'da’oo-semihyperbolicity implies the inequality
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—Im T‘}(C’)S&lRe Cnl'l—b‘:[m CnI+C§',€-
Therefore we have a decomposition of the form 7,=a+B+y, where
fal<e ], 181<b7], |rI<Cp.e.

We choose {2.15) as a solution of (2.6). As the condition that it be contained in
@ of (2.18), we then obtain

th<<A/2, |si<kel2, t<1/2.
Our assertion clearly follows from these estimates. q.e.d.

4. Here we discuss the relation between various notions of hyperbolicity which
we have introduced until now. To make the comparison systematic, we first
remember the notion of Ihyperbolicity: Let ICS™2 be open. We will say that
p{D) is I-semihyperbolic to 2,>0 (resp. to x;<<0, resp. I-hyperbolic with respect to
2,=0) if 2,=0 is non-characteristic with respect to p and if the homogeneous
characteristic roots z3(¢’) all satisfy Im <%(¢/) >0 (resp. Im (") <0, resp. Im <3(&")=0)
for & € I This corresponds to saying that p(D) is R™X+/—1Ida’cc-semihyperbolic
by the terminology of [8]. Since we are treating the operators with constant
coefficients, it is not necessary here to refer to the space variables.

LEMMA 2.12. Assume that x,=0 s non-characteristic with respect to p. The
Jollowing are equivalent.

1) There exists a wmeighborhood I of v'=(0,---,0,1)€ 82 such that p(D)
1s I-semihyperbolic to ©,>0.

2) There exists ¢>0 such that the homogeneous characteristic roots t%({’) of
p satisfy

Im < Im ] of ¢eC*?, Ref,<—clRel”|.

8) There exist positive constants q<1,a,b,¢,C such that the inhomogeneous

characteristic roots t;((’) of p satisfy

Imz,(V<aRe & 1" +HIm ' 1+C 4f ¢eC*, Rel(,<—c[Rel”|

In fact, 1)=3) is proved in Corollary 2.4 of [7] employing the local Bochner
theorem. The implication 8)=2) is similar to Remark 2.1. Finally 2)=1) is trivial.

PROPOSITION 2.13. Assume that there exists a neighborhood I of v’ € S* % such
that p(D) is I-semihyperbolic to ©,>>0 (resp. to x,<0, resp. I-hyperbolic with re-
spect to 2,=0). Then given data F;(2’) holomorphic on (2.4), we can find the solu-
tion F(2) of the Cauchy problem (2.3) which can be continued up to a domain of
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the form

2.27)  {z=o+4/ —1ycCm; 0<a, <8 (resp. —5<x,<0, resp. |z,1<5),
(o' <A, Ay l+oledy” ) <y.<B'L

The proof is similar and is omitted. Note that this time we can even admit
¢(t) in (2.4) such that it only satisfies ¢(f)/t<e with a suitable ¢ (whose smallness
depends on the smallness of the neighborhood I). In fact, the case when ¢(t) is
a linear function of ¢, that is, when (2.4) is a wedge domain, is already treated
by Theorem 1.1 in [8].

Now we compare various hyperbolicity.

LEMMA 2.14. Consider the three following propositions:

H,(v'): There exists a neighborhood I of v/ € $*2 such that p(D) is I-hyper-
bolic to x,>0.

H,(v): p(D) is 4/ —1v'da’co-semihyperbolic to x,>0.

H,(v"): pD) is partially 4/ —1v'da’co-semihyperbolic to x,>>0.
We have the following implication relations:

1) Hi 0 )=H: 0 )=Hs0).

2) Hi(e') for every o' in a meighborhood of v'=H, ().

3) H,{') and 30') are distinct=H,(v').

Proor. 1) follows easily employing Lemma 2.12. 2} is clear by definition.
Assume finally that the roots a;=7%(y) of the equation p,{l;,»')=0 are distinct
and satisfy Im «;>0. Choose v'=(0,---,0,1) for the sake of simplicity. By the
continuity of the roots, <%({’) are also distinet if [¢”|<k|¢,| for a sufficiently small
k. Since simple roots are holomorphic, hence Lipschitz continuous, we have

]TOJ(C')—CYJCn[ﬁCIC”]y if IC”[<k]Cn11
whence
Im G <UIm i +elg”], if [¢7|<KL.], Rel,<O0.

The last inequality clearly holds for [¢7|>k|Z. . g.e.d.

Let v'=(0,---,0,1). A typical example of p(D) which satisfies H,(»') but not
H,(v"}) is p(D)=Di+ .- + D% (k<mn). A typical example of p(D) which satisfies
H,(»") but not H,() is p(D)=D3+D,D, (n>38). Note that for this operator the
homogeneous characteristic equation p,(Z;, v')=0 has the same double root 0 as the
preceding example. We will show that for this operator the assertion of Theorem
2.5 does not hold. Consider in fact the function
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F(zlv 23y zn) = (z%+4(22+i)zn>-1/2~

This is a well defined holomorphic solution of (D}+ D,D,)F=0 near the part [y.|<1,
¥,>0 of the initial surface z;=0. But F is singular e.g. along y,=0, 2,=0, z,=0,
=4y,.

To conclude this paragraph we give some remarks about references. What we
call I'semihyperbolicity is very close to the notion of partial micro-hyperbolicity
beautifully defined in [18]. But the latter contains all the elliptic operators which
is the main difference. {Indeed “micro” means treating S.S. instead of support.)
We rather preferred the adjective “semi” instead of “partial” on account of the
traditional use of the latter. That is, “partial” means discussing something in
specializing some variables concerned. Thus our definition of “partial +/ —1v/dg’oo-
hyperbolicity” given in Definition 2.9 is coherent with the definition of “partial
hyperbolicity modulo the hyperplane »'2’=0" given by Leray [21]. For such opera-
tors (even with analytic coefficients) Leray gives a theorem of the type Corollary
2.8 (with “hyperfunction” replaced by “Gevrey function”) but under the additional
assumption that the roots of p,(x,»’)=0 be distinct (see also [3]). Thus for the
operator with constant coefficients, it reduces, in view of Lemma 2.14, to treating
our +/—1v/dz’co-hyperbolic operator. On account of the above example for D+
D,D,, the partial +/—1v'da’co-hyperbolic operators do not form a good class from
the viewpoint of seeking solvability theorem of the type Corollary 2.8.

5. Finally we list up miscellaneous intermediate cases. Put z'=(xs ---, z4),
o =(Tpry, -+, Tuey). That is, 2/=(z,2', 2,) and the notation is a little different
of the one used in the final paragraph of §1. We employ the same notation for ¢.

PROPOSITION 2.15. Assume that the homogeneous characteristic roots t3{l’) of
p(D) satisfy

(2.28) —Im %) <b(Im &, -HIm ) +efdl, if Rel,<0.
Let o(t) be as tn Proposition 2.2. Then given data F;(z') holomorphic on
(' =a'+4/—1y € C; |2/ |<A, W I<B, olly™)<y.<B},
we can find the solution of the Cauchy problem (2.3) holomorphic on
fz=3+4/—lyeCr; —0<u; <0, |&'|<A’, [y <P, Ay l+oly") <y,<B'}.

In fact, it suffices to modify the calculation of the case [&[>1/], &.<—&"],
7, <0. By the assumption we have a decomposition of the form »,=a+g-+y, where
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fa|<blp,), [BI< &, I71<(b+c)ln”l. As a solution of (2.6) we choose

—1 —1 —1
wlzoy x”z'l—#””a Ln= " a; Y1=s, ’!/I: IEI§ EI; ?/H'—'O, Yn=¢.

The remaining verification is similar.

PROPOSITION 2.16. Assume that the homogeneous characteristic roots %(C’)
of p(D) satisfy

(2.29) —Im 75({") <e|Re L+ Im L, |+ g7 |+ Ol
Let ¢(t) be as above. Then given data F;(z') holomorphic on
{#/=0'+v/ =1y e C*Y; |2/ |<A, oy <y}
we can find the solution of the Cauchy problem (2.3) holomorphic on
e=a+v/—lyeCm; —3<m<0, |¢/|<4’, |n|<A’, Ayl+olde ) +o@y™) <y,

The proof is similar: We decompose 7, =a+8+7 -+, where |a|<¢&,], |8]<
b+el7’l, [y 1<cl&], |77|<Cd.e, and choose

—1
z,=0, ¥'= Wifn’,

—tr! —trt ta
=8, = &Iy = EII; & .
UBES VETapsy VTt BT

PROPOSITION 2.17. Asswme that the homogeneous characteristic roots %) of
(D) satisfy

(2.30) —Im HZ ) <elRe L[+ b Im &, |+ e|Im L |+ Cel. .
Let ¢(t) be as above. Then given data F;{z’) holomorphic on
{o'=0'++/ =1y € C*; [2'I<A, o(ly™ ) <ya},
we can find the solution of the Cauchy problem (2.8) holomorphic on
fe=o+v/—IyeC; —8<a,<0, [¢/[<A/, [hI<A’, Ay l+e@ 7)<y}

In fact, this time we can choose 777=0 in the preceding case. This allows
the term ¢lc|z,]) to drop out.

In later section we apply Proposition 2.16 to p(D)=D%+ -.- +D?_,—D,_, D,
with ¢H={{, -+, {aa), §f=C,—y and Proposition 2.17 to p(D)=D?—Di— -.- —D2_,
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— D, D, with the same ¢%%,7’. The latter example is legitimate on account of the
following elementary calculation: Put

LG=VEG+ -+l

Then for |#!|>|£77|/2 we have

IIm Cllé'\/lcg_f" M +C%»‘+ lCn—-ICn[S'\/sleI lz+‘Cn—1Cnl
<271+ elg, 1+ Gl

For [7"{<|&M|/2<4/|€ueila] We have

lIm Cl [—<—‘\/61Cn—1§nl£5! Cn]+C£[ Cn—l l'

Finally for {9 7|<[&171/2, 4/1C,—1C.]<|E1}/2 we recall the elementary estimate
ImVa+sy/ —1b=+v+/a*+b2—a<|bl/+/2¢  for  a>0.
Then we have

G421 TGl |2 ]
Im¢ i< < —
Mm = et 2 e o~ B

<2/ 2{7" 14+ A/ 1Cmlal

§3. Singular spectrum of boundary values of real analytic solutions.
1. Now we are ready to state and prove our main results.

THEOREM 3.1. Let p(D) be an operator which is +/—1v'da’co-semihyperbolic
to 2, <0 (resp. to =,>0) in the sense of Definition 2.4, Assume further that
p(Dyj+/ —1, D"} is Ihyperbolic with respect to x,=0 for a neighborhood I of v’ € §™%
Then for every real analytic solution w of p(D)u=0 defined locally on %,>0 (resp.
on #,<0), its boundary values become microanalytic to the direction / —1v'da’co
(that s, this direction is mot contained in S.S.bf(u)).

REMARK 3.2. To obtain the same conclusion it only suffices to assume, instead
of the real analyticity of %, that S.S. u does not contain the directions

v/ —1((1—6)dz,+6v'da’)co, 0<o<1,

This is obvious from the beginning of the proof below if the citation of Proposi-
tion 1.2 is replaced by Remark 1.4.
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Proor. Let U’ be an open subset of R*! and assume that % is defined on
{0<2, <o} X U". Choose f;(z') €’ BT, 7=0, - -+, m—1 such that S ) =bf(u) in U".
In view of Lemma 1.1 it suffices to show that for every local operator J(D.),
[ V% (Do) Wi(a', @')|or=p i real analytic in every subdomain V'cU’. By virtue
of Proposition 1.2 there exists another real analytic solution v of p(Djv=0 on
{0<®, <8¢’} XV’ such that its boundary values agree with f;(x')*J(Dy) W', 0w o
on V’. Thus the theorem is reduced to the following lemma.

LEMMA 3.3. Let p(D) be an operator such that it is 4/ —1v'dx’co-semihyperbolic
to 2, <0 and that p(Di/+/—1,D’) is I-hyperbolic with respect to x,=0 for some
neighborhood I of v’ € S*2. Let v be a real analytic solution of p(D)u=0 defined
on {0<w, <X V. Assume that the singular spectrum of the boundary values
v;(@') contains only the direction 4/ —1v'dx’co. Then v can be continued as @ real
analytic function to a neighborhood of the origin of R™.

We prepare a lemma which serves as a converse of Lemma 2.6.

LEMMA 3.4. Let p(x, D) be as in Lemma 2.6. Let u be a hyperfunction solu-
tion of plx, Du=0 defined on {0<2,<8IxXU’. Let I'"CR™* be a convex open cone
with the vertex at the origin. Assume that the canonical extension [u] of %
satisfies

8.1)  S.8.[ulc{n,>0x{y—L(x{1—0)dz,+0u'dx’)o; o €7 NS 2, 0<6<1},
where I''° is the dual cone of I'' defined by

I ={¢' € R"; &'y =0 for any y' eI’}

Then there exist a constant k>0 depending only on plx, D) and a holomorphic
solution Fl(z) of plz, D)F=0 satisfying the following properties: For every V'c U’
and for every open subcone 4'CI satisfying 4’ NS 2" NS™? there exists e=
e(V7, 4"} such that F(z) can be continued to

8.2) {z=z++4/—lycCr; z,<¢, 2’ € V', |y, |<min {0, z,}+kly’], ¥y ed n{ly’ |<elh

Moreover [u] agrees with the hyperfunction defined as the boundary value as
22’ +4/—1I"'0 of the hyperfunction Yz, F(z,, 2 defined on (3.2)N{y, =0} and
containing 2’ as holomorphic parameters.

ProOOF. Choose W’ such that VVeW'eU’. Let [[«]] be a modification of [u]
satisfying supp [[ullC{z,>0}x W’ and [[u]l=[u] in {z,<s}x W’. Put
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v=[[u]lxW(a', 4°), w=[[u]lxWz', § m40),

where W(x/, A’°)=g Wiz, o’}deo’ ete. Note that

4rong™?

supp vC{x, >0}, supp wC{x, >0}.
By the routine caleulus of the S.S., we see from (3.1) that
S. 8. W] g <ot xwr Sl <O}X W’ X {24/ = 1da; 00}

Hence there exist functions W.(z) holomorphic respectively on an infinitesimal
wedge approximating {x, <8} X W’ +4/—1{%y,>0} from the inside such that

w=W, (5, +4/—10, ") — W_{z, —+/ —10, z').

Here we have employed an abridged expression for the boundary value in the
obvious way. Thus especially W.(2) agree with each other to a holomorphic
function on z,<0.

First of all we are going to prove that W.(2) are in fact holomorphic, re-
spectively, on

{zl<el+o/ —1{ £y >0 X E) n{lyl<el,

if we choose a proper subcone E'C4’ and a sufficiently small ¢>0. This is not
an obvious conclusion from the estimate of S.S.w, because one asserts here
that the domain of definition of W.(z) touches y;=0 for small ' € E’. Remark
that Wiz, 4’°) is the boundary value of the holomorphic function W2/, 4°)=

S 2W(z’, o')do’ from a conver wedge-like domain infinitesimally equal to
47°ns™

R*'+./—14'. We will denote this domain by R*'+4/—140 for the moment.
Then v is the boundary value of the hyperfunction v(x,,z’):[[u]]*}W(z’, 4’°) with
holomorphic parameters 2’ from the same wedge. Remark thatx the latter has
also support in {x,>0}. By the partial flabbiness of the sheaf $(), we can extend
v(xy, 2') to RX (R* 144/ —140) preserving the holomorphic parameters and with sup-
port in 0<x,<5. Denote this extended hyperfunction by the same letter v. Then
put

1 ©  plxy, 2)
Viz, 2')= — .
=, 21) 2r4/—1 S_oo 2y—2 d;

Viz, #') is clearly holomorphic on (C\[0, §1) X (R*1+4/—14’0) because it separately
satisfies the Cauchy-Riemann equation in respective variables. We have obviously
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(@, )= V(@ +4/—10,2") — Viz, — /=10, 2").
Put
dy={xy,>0x 4", Ad=RXA'=4,+4_,
and similarly E., E with E’ instead of 4.
By the coherency of the boundary value operation we have

v(w)=V{z++/—14,0)— V(z-++/—14-0).
Now on {x,<d}X W’ we have

p(e, Difv-+w)=p(z, DIfull=pla, Ditul="E, u,{/)0= @),

By the estimate (3.3) we have an expression of the form w;(z)=F;(x'++/—1I"0).
Applying the edge of the wedge theorem of the Epstein type, we thus conclude
that the function

ple D)(Vie) + Wla))— %, Fyie) e el

agrees with plz, D,}(Viz)+ W_(z)) and hence can be continued holomorphically up
to a domain of the form {|z|<e}X+/—1EN{y|<e}, and similarly for the matter
on the opposite side. Now let F(z) be the solution of the holomorphic Cauchy
problem p(z, D,)F(2)=0 with the data F;(z’) by way of our boundary operators.
Owing to the precise version of Cauchy-Kowalevsky’s theorem, F(z) is defined at
least on a domain of the form

(3.4) fzeC; |z l<Hy'l<e, 2’ € V', y € 4],
We have

plz, D) {F(z)( (—1)™im—1—7)!

1
24/ —1 2

__2—75\%7) log (—zl)} = TZ;: Fi(2')

whence we conclude that the function

piz, D»{ Vi) + W2 —F(z)(—%%—ﬁ log (—zn}

can be continued in a univalent holomorphic way onto a domain of the same form.
Since the real hypersurfaces y,=Im<{’, 2’) are non-characteristic with respect to
plz, D,) for sufficiently small [¢’], we can apply Bony-Schapira’s method of sweep-
ing out ([2]) to conclude that the function

1

Viz)+ Wal2) —F(z)( e T

>10g {(—2)
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can be continued a little beyond the real hypersurface y,=0. Hence especially
W.(z) is also holomorphic on {lzi<e}++/—1E.N{yl<e} for smaller ¢>0. (See
Fig. 2.)

In the above we have proved the following: There exist a neighborhood V’
of the origin, constants &’ >0,' ¢>0, and

functions F.(z) holomorphic resp. on P

(I <0V V4 TN ly1<e)) ) conmon i

such that of -definition
F(2)

[Wl=Fuz+s/—14,00—F_(z++/—14_0),

In fact Fo(2)=V(2)+W.(2). Here we have ve

rearranged the notation for the sake of
simplicity. Since supp{ulc{xz,>0}, we see

that F, agree and define a common holomor-

w
phic function on +(2)

({—0<a, <O}X V' ++/ =14 N{yl<elz. )}, -
ig. 2.
where ¢{|2,]) may decrease to 0 with |z,|.

(This is a local version of the edge of the wedge theorem.) Now consider
flwy, 2)=Fyle,++/—10,2) — F_(z,—+/ —10,2')

as a hyperfunction on {z,|<d}X(V'+4/—14'N{ly’|<e’}) with holomorphic param-
eters z/. By what is said above f(z,, 2’} has support contained in 2,>0. In faect,
this may not be elear on the very neighborhood of x,=0 because &({%;|) may de-
crease to 0 with |2;]. But we have the unique continuation property with respect
to holomorphic parameters (see [12], Theorem 8.2.1; or apply the Holmgren uni-
queness theorem to the partial Cauchy-Riemann system). Thus the zero propagates
along z,=const. up to where f(z,,2) is defined, and we can conclude that

supp flx;, 2') C{w =0}
We have

m—1
(3.5) (21, 2, Dyy, Do)f (i, #')= Z Fi(2)5077 ().
=

In fact, if we let 2/=>a’+4/—14’0 in both sides, we obtain, on account of the
compatibility of the boundary value operation, the known equality
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(1.3)bis p(@, D)[u]= "g (@) 1= (3),

On the other hand, the right hand side of (8.5) can also be written as

Gi(w+4/—10,2") — G_(x,—4/ 10, 2"),
where

_ m—1 , bl m—1—7 _]‘__L
Gulo= x File )< oz, > (_ 2ry/—1 2 >
€OUm <X V'+4/ —1d:n{lyl<el).

Thus (1.3)bis means that the pair of holomorphic functions (F.—G.)(z) defines 0
as hyperfunction on the real axis. Again by the edge of the wedge theorem we
conclude that F..—G. agree and define a holomorphic function on {|,]|<8”}x V’+
v/ =1(4n{lyl<e¢”}) maybe with a smaller V’. Thus letting ,=0 we have estab-
lished (3.5).

Now compare (3.5) with the obvious relation

m=—1

P, &, Dy, D) (Y() Flz)) = 3 Filz)d ™ ()

=0

which holds on (3.4)N{y,=0}. By the Holmgren uniqueness theorem we conclude
that there we have

Y(@,) Flz)=fla,, 2) = Fy(w,+4/—10, 2") — F_(z,— 4/ =10, 2/).

Next we try to continue Fl(z) to a suitable wedge. On ,>0, [u]=u satisfies
the equation p(x, D)[u]=0. Hence by Sato’s fundamental theorem the estimate
{3.1) can be strengthened to

(3.6) 8. 8. [U]lmy>0 Tl >0 X 4/ —1{( = (1 —0)dz, + o' da’ Yoo ;
o' el NS 2 §,<8L1).
Put
do={y € R*; |y, |<(O./(1—=0,))|y' 1, ¥’ € 4'}.

Then (3.6) implies that there exists G(z) holomorphic on
{0<2 <X V' +4/ =14 N{lyI<e’ (|2 )}
such that [u]=G(x++/—14,0). Thus
Fi(@++/—=14,0)— F_(z+4/—14_0)=G{a++/—14,0),

and by the edge of the wedge theorem we conclude that F.(z) can be continued
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to

{0<@ <8y X V' 44/ =14o) N{ly|<e"{ 2, )}
maybe for smaller V' and there satisfying F.(2)—F.(2)=G(z). This especially im-
plies that the hyperfunction with holomorphic parameters f(%,, 2/)=G(x,, 2’) is real
analytic on

{0<2, <o”}X V/+o/ =14 0 {ly' |<e” (|2, )]}

The real analyticity of a hyperfunction with holomorphic parameters 2’ also prop-
agates along =x,=const. (see [24], Chapter III, Theorem 2.2.8 or {12], Corollaire
8.2.3). Thus we conclude that f(x,, 2/) is real analytic on the set

(3.7) {0<2, <8"YX V' +4/ =14 0{ly' |<e”}
with ¢ independent of z,.
Summing up we have shown that the common real analytic function Fiz, 2’)=

fley, 2Y =Gz, 2’} defined on (3.4)N(3.7) can be continued as a holomorphic function
of (2,,2’) to a neighborhood of the set

{e=a+4/—1lyeC®; —0"<2;,<0, o/ € V', |z |+ly <Kyl ¥ €4 n{ly |<e"}}
Ulg=2+4/ —lyeC*; 0<2,<d”, =0, ¥’ € &' N{ly’|<e"}}.

Since this holomorphic function is a solution of p(z, D)F=0, it can be continued up
to a wedge-like neighborhood of the second component employing the Cauchy-
Kowalevsky theorem. Thus we have obtained a domain of the form (3.2) and a
holomorphic function F(2) on it having the required property. It is clear that the
constant k has been preseribed by the characteristies of p(x, D), hence independent
of the other data.

Until now V' was a small neighborhood of the origin. Such a representation
being unique, we can connect them along the boundary x,=0 so that in the final
expression V’ may be arbitrarily close to U’ with the sacrifice of the constant e.

g.e.d.

ProoF OF LEMMA 3.3. From now on we choose »'=(0,---,0,1). Owing to
Lemma 1.7 the canonical extension [v] of v satisfies (3.1) with I"’={y,>0}. Hence
in view of Lemma 8.4 we can assume that v(x) is defined by a holomorphic solu-
tion F(z) of p(z, D)F'=0 defined on

(3.8)2 {z=x++/ —1lye C*; |z <Myl |2/|<A4, Ay |<y.<eld)}
Ulz=z++/—1IyeCm; 0<a,<d, |2/ |<A4, |nl<ky'], Ay |<y.<ed)}

Moreover we have a stronger assumption that wv(z) is real analytic on z,>0.
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Therefore by the edge of the wedge theorem F(z) can be continued to a neigh-
borhood of the edge {0<x, <o} x{j2’|<<A}. Taking into account the fact that 1 in
{8.8) is arbitrary, we thus conclude that there exist in fact convex non-negative
continuous functions ¢{t), ¢(t) of t>0 satisfying ¢(0)=¢(0)=0, ¢(t)/t—0 if t—0 and
¢(t)>0 for t>0 such that F{z) is holomorphic on

(8.9) {e=z+v/—lyeCr; 0<z <d, |2/ |<A, |y <My, —dla)+o(y") <y,<B.
Hence especially Fj(z')=b}(z, D)F(2)|,,=, are holomorphic on
(3.10) {#/=0'+v -1y eC; |0/ |<A’, oly")<y,<B).

(Recall that owing to Lemma 2.6 F;(z’) define the hyperfunctions v;(z’), that is,
the boundary values of v(x). Because v;(2’) is now given by f;(a')%J (Do) W(&', @) |0/’
and the latter is obviously defined by the holomorphic funetion

fj(x,):,J(Da\’) W(Z', CO’) [a)’:»’,

we see by the edge of the wedge thesrem that Fj(z’)=f5(x')=§J(Da,r) Wiz, 0')|o—s
hence that we can employ ¢{t)=¢2 in (3.10).) )

Employing the observation made until now we try to continue F(z) to a neigh-
borhood of the origin. In view of the local character of the assertion this will
prove our lemma. First we use the assumption of 4/ —1v'da’co-semihyperbolicity
of p and employ Proposition 2.2 to solve the holomorphic Cauchy problem (2.8)
with the data Fj(z’). Then the solution F{z) can be continued to a domain of the
form

B.11) fe=a+v/-lyeC"; —o<m<0, |o/|<A”, Ay l+olde ) +o@y”) <y, <B'}.
Thus we have continued F(z) up to (3.9)U(8.11). Next we recall that p(D,/+/—1, D"
is Ihyperbolic with respect to x,=0 for some neighborhood I of v’ €.$*%. This
permits us to apply Proposition 2.13 with the role of x, and y, interchanged.
{That is, we solve the Cauchy problem starting from the each initial hyperplane
z;=x; {const.) to the direction of 4/ —1y; with the origin of #'-space suitably trans-

lated.) Thus the solution F(z) can be continued from (8.99U(3.11) to a domain
of the form

fe=2+v/ ~1yeC; |2]<d”, |a/|<A’, |yl <C, 7(x)+odly” ) <y,<B"},

where

_f—¢) i 2,>0,
Put X(m‘)_{tp(clwll) if x,<0.
u
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Q={lz,|<", @) <y,<B"}.
Then the above domain contains the following set
(3.12) {21, 2) € €% Y+a2<CY, (@, 9,) € QY x{27=0).

(Strictly speaking, we must let y” vary near the origin. Because the necessary
modification is easy, we put y”=0 in the sequel for the sake of simplicity.)

We assert that we can apply the local version of Bochner’s tube theorem to
the set (3.12) with respect to the variables 4/ —1z,2, -+, 2, in order to continue
F(z) to a neighborhood of the origin. (For the local version of Bochner's tube
theorem which we use, see, e.g. [18]. Note that the role of , and Y, in the first
coordinate is interchanged compared with the usual use.) Though the convex hull
of 2 swallows the origin, we cannot affirm this directly because of the local
character. The accurate proof will be carried in two steps: First we attach the
wedge to the part ;>0 as in the figure 3-1. By this we can replace the curve
Ya=—¢ (%) by another which has a really negative angle of inclination at the
origin, (See Corollary 2 in [18] and remark nearby. This is a variant of the local
Bochner theorem and close to Kashiwara’s lemma in idea.) Then we swallow the
origin by the slope of the wedge employing the usual local Bochner theorem as
in the figure 3-2. (This is possible because the wedge approaches a true prism as
we make the “imaginary” part of it smaller by similarity compared with the “real”
part.)

Thus we have continued F(z) to a neighborhood of the origin, hence proved
Lemma 3.3 and in the same time Theorem 8.1. g.e.d.

ExAMPLE 3.5. The partial Cauchy-Riemann operator D;++/—1D, on R” (n>3),
the partial Laplace operator D+ --- +D% on R™ (k<n), or more generally an

In Ya

™
=]

Fig. 3-1. Fig. 3-2.
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operator whose principal part is the product of some of them satisfy the hypothesis
of Theorem 3.1 with »'=(0, ---,0,1). Note that for these operators p{D;/+/—1, D’)
is even hyperbolic with respect to #,=0. For p(D)=D;++/—1D, we can apply the
theorem to every direction 4/ —le’da’co such that w,>0. Thus the S.8. of the
boundary values of real analytic solutions on z,>0 is contained in the open hemi-
sphere

(3.13) R* X {4/ —1o'da’'c; w,<O0}

This estimate improves our former work [7] on the equator w,=0, and is the best
one as well as we consider the whole real analytic solution at the same time.
Similarly for p{(D)=D3%+ --- + D3 the 8. 8. is accurately estimated by

(3.14) R X {4/ —1lw'da'co; @i+ -+ +wi+0}.

It is rather surprising that the sets (8.13), (3.14) are not closed though the 8. 8.
of the boundary values for each solution is of course closed. As remarked in the
introduction, these examples are already treated by Schapira [25], [26].

We add an artificial example of a polynomial which satisfies the assumptions
of our theorem. Consider the operator

p(D)=Di+44/—1D:D,+ D¥2D}—4D%) + 44/ —1D, DiD,—2DiDz.
This is obtained expanding the doubly quadratic polynomial

(G L — 2 — G+ )+ 8

and replacing ¢, by +/—1. An elementary calculation shows that the latter
polynomial has real roots for real & satisfying 1£,1>2/&,]. Moreover, for complex
¢ satisfying 1C,1>2/¢;| the roots have the asymptotic form

26,200,  O(&)).

Because the roots of p({{)=0 are —4/—1 times these, we thus see that p(D) is
+ —1dx,00-semihyperbolic to 2,<0 and that p(D/+/—1, D’) is Fhyperbolic with
respect to 2,=0, where I={¢’ ¢ §772; 1&,|>2 &}

REMARK 3.6. The method of proof of Theorem 3.1 shows that it is applicable
also to operators whose coefficients may depend on the variable x,. In faet, the
process by which we have reduced Theorem 3.1 to Lemma 3.3 is valid in view
of Remark 1.5. Also, Proposition 2.2 or Proposition 2.13 concerning the solvability
of the Cauchy problem for various semihyperbolic operators have respective cor-
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respondents in the case of variable coefficients (see [8]). Thus we can see e.g.
that the generalized Lewy-Mizohata operator D,++/—1xtD, on R* (n>8) comes
in our example: Combining with our former result given in [8], we conclude that
the 8. 8. of the boundary values of its real analytic solutions on +x,>0 is accu-
rately estimated by

RIXW/ —1o/da'co; 0,<0} if k is odd,
R"IX{y/ —1o/da'co; +w,<0}  if k is even.

2. We suppose that the assumption of Ihyperbolicity of p(D,/+/—1, D)
in the hypothesis of Theorem 8.1 is too strong. That is, we expect that a holo-
morphie solution F{(z) of p(D)F=0 defined on a domain of the form (3.9)U(3.11)
can be continued to a neighborhood of the origin under a much weaker condition.
But for the moment we do not know mueh better than the use of the local
Bochner theorem based on the above hypothesis. In this respect we will give two
miscellaneous results.

THEOREM 38.7. Let p(D) be an operator which is I-semihyperbolic to ;<0
(resp. to x,>0) for some neighborhood I of v/ €S™ 2. Let u be a hyperfunction
solution of p(D)u=0 defined locally on x>0 (resp. on 2,<0). If S.S.u does not
contain the directions +/ —1(x=(1—8)dx,+6v'dz')co, 0<6<1, then the S.S. of the
boundary values of u does not contain the direction +/ —1lv'dx'co.

ProoF. We can proceed just in the same way up to the estimate (3.9). Then
this time we can directly apply Proposition 2.18 with the initial hyperplane x;=e
{and with the origin of C*™* suitably translated). Considering the fact that the
constant J, the limit of continuation of the solution F(z), is independent of ¢, we
can conclude directly that F(z) can be continued to a neighborhood of the origin
as e—0. q.e.d.

This result is apparently a refinement of our former work [7] in the sense that
we treated only the real analytic solutions formerly. (Our former method is,
however, also capable of deducing Theorem 8.7 without essential amelioration.)
Note that this theorem asserts a kind of reflection phenomena of the singularity
at the boundary on the hyperbolic region. Consider for example the wave equa-
tion [}=Di+ .-+ + D% ,;—D? with the boundary z,=0. Let u be a hyperfunction
solution of [Ju=0 defined locally on 2,>>0 on a neighborhood of the origin.
Theorem 3.7 asserts that if the S.8. of the boundary values of u contain the
point (0, 4/ —1&dx’co) in some component, where & satisfy &+ --- +&2_,<£2, then
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S. S. u must contain a direction of the form o/ —1{x=(1—8)dx,+8&'dx')oo, 061
on any neighborhood of the origin. On account of Sato’s fundamental theorem
there are but two possible directions, namely +/ —1(x¢&dx,+&da')oo with &=
(E2—(&3+ -+ +&_,))42. Thus considering the result on propagation of singularity
along bicharacteristics we ean conclude from this that S.S.u must contain either
of the two half bicharacteristies hitting 0:

(3.15) br={(=&t, &'t; v/ —1(x&dw +E'da’)oo); t>0

Since we do not pose any boundary condition, it is possible that another of these
is outside S.S.w, that is, that the reflection does not occur and the ‘“‘energy is
absorbed in the boundary point”.

In view of Lemma 1.7 the converse is also true. That is, if the 8. 8. of the
boundary values does not contain (0, o/ —1&’dx’co0) with & satisfying &+ -+ - +£&2_,<&5,
then the two half bicharacteristics (8.15) are outside S.S. u.

Now we give another variant which is a little stronger than Theorem 3.1.

THEOREM 3.8. Let v'={0,---,0,1). Concerning the S.8. of the boundary
values of @ solution of p(D)u=0 on x,>0, we can obtain the same conclusion as
Theorem 8.1 or Remark 3.2 if only we assume, instead of the +/ —1v'da’oo-semi-
hyperbolicity of p(D) to x,<0, the inequality (2.14) in Proposition 2.3.

PrOOF. We proceed in the same way as in the proof of Theorem 3.1. Then
it suffices to prove an assertion corresponding to Lemma 3.3. Instead of (1.1) we
employ a curved wave decomposition of the following form:

a{x)= X i Wz, w)do,
3.16 S
(3.16) Whe, @)= @D (XD .

’ (—2x4/—1)" {(ww++/—1{22— (20)2)*++/—10)" °

where k is a positive integer and J(z,») is a polynomial of z, (see [24], Chapter
111, Example 1.2.5).

LEMMA 3.9. The phase W*(z, w) 48 holomorphic on Im zo> K{{Im 22— (Im zw)?)*,
where K>0 1s a constant.

PrOOF. Put
Lh—1/2]

I=Im{z,++/ =1 =g+ T (—1LCosla®—y ") e % (22'y")¥,

J=

where we have employed the notation z*=23+ .-+ +2% ete. If 2/°—y’*>N|22'y'|,
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we have
[(—1)/2]

12?/1+(x12_y HE1— $Cos N33
3

Thus if we choose N sufficiently large, we obtain I>y,. If 2%—y’<N|2x'y’),
then we have
%' 2
%’z—y’2£N<W+2Ny’ >,
hence
2?<22N2+1)y",
2 —y? <2 +y " <@UN?+3)y%, |20y |<@N2+3)y"

Thus we obtain

[(e=1)12] 2 2 3 ) 2
I>y,— Zo WCegl @ =y (o8 20"y ¥ =y — K(y'™)F,

=
where K>0 is a constant. This proves our lemma for v=(1,0,---,0).

END oF PROOF OF THEOREM 3.8. Now we apply Proposition 1.2 employing as
W(x/, »’) the components of the curved wave decomposition corresponding to (3.16)
instead of (1.1). Then the real analytic solution v(x) given there has the boundary
values v;{z) of the form f;(@)*J{Dy)W*&', 0')|e=sr on V’. Therefore owing to
Lemma 8.9 the hyperfunction v;(x’) are given as the boundary values of some
holomorphic functions Fj;(2') defined on a domain of the form (3.10), where ¢, =
Kt*, Then Proposition 2.3 gives the solution of the holomorphic Cauchy problem
(2.3) on a domain of the form

=2+ y/ZTY € C%5 30, [0 [<AY, Allys|+]oy /04050 4 Ky [ <y, < B"}.

As remarked after the proof of Proposition 2.3 the exponent 2k/(2kg-+1) becomes

greater than 1 if we choose k sufficiently large. Thus the above domain enjoys

the same property as (3.11) and from now on the proof goes in the same way.
q.e.d.

In [6bis] we gave a conjecture that we will have the conclusion of Theorem
3.1 assuming only that p(D) is 4/ —1v'd2’co-semihyperbolic to x, <0, that is, assum-
ing the inequality (2.2} for v'=(0,---,0,1). (There the two directions *x,>0 were
not yet separated.) For the present we have no confidence on this conjecture
nor a counter-example. (If we are optimistic we will even be able to replace the
inequality (2.2) by (2.14) of Theorem 3.8 in the above conjecture.)
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§4. Propagation of singularity along the boundary.

1. We now enlarge the class of manageable operators by somewhat restricting
the behaviour of the singular spectrum of boundary values.

THEOREM 4.1. Let p(D) be an m-th order operator with respect to which x,=0
1s non-characteristic. Assume that its homogeneous characteristic roots satisfy

{4.1) Re2(»)=0, Imc2()<0, j=1,---,m

for some direction v'. Let bflu), j=0, ---, m—1 be the boundary values of a hyper-
Junction solution u of p(D)u=0 defined locally on x,>0. Assume that
1) S. 8. u does not contain the directions v/ —1(=(1—8)da, +86v/de’)co, 0<0L1;
2) TLEJS S. bj(u) has compact cross section with a level plane {«'v’=const.}X
{+/ —1v'da’eo} in the boundary cosphere bundle. Then S.S.bj(u) does not contain
the direction +/ —1v'da’co.

Similar assertion holds for solutions on z,<0 if we change the sign in (4.1).

ProoOF. Choose a linear coordinate transformation such that »'=(0,---,0,1).
Let U” be a convex neighborhood of 0¢ R*% and put U'=U"x{{z,|<a}. We can
assume that u is defined on {0<x,<6}X U’. Owing to Proposition 1.8-Remark 1.9,
for every V7€ U” and for every a’<a there exist ¢’>0 and a real analytic solu-
tion v of p(D)w=0 on {0<x,<#'IXV’ (where V' =V"Xx{z,|<a’}} such that its
boundary values agree with

(4.2) Fi@) I Do) Wo(2', o' Morzstlyr,  §=0,--,m—1.
Here f;{a’) is a fixed element of ' P[U’] independent of J(D.,) and satisfying
Fi{a" vy =b} (Wly-.

Reecall that Lemma 1.1 holds also for the plane wave decomposition Wy(z’, ') as
remarked there. Thus it suffices to prove that (4.2) become real analytic on a
neighborhood of the origin for every J(D.). Note that each hyperfunction in {4.2)
is the boundary value of the function F,-(z’)zfj(ac’)f{J(Dw’) W2/, @'} o=} which is
holomorphic on C*2X{y,>0}. Note also that ouri condition on p{D) implies that
plev=18D,, D) is partially +/—1v'da’co-semihyperbolic to ;>0 in the sense of
Definition 2.9 for every angle ¢ satisfying »/2<6<3z/2. Thus we can apply Prop-
osition 2.11 to every such direction 2, and solve the holomorphic Cauchy problem
(2.3) with the initial data F;(z’) on 2,=0. The solution F(z) is then holomorphic
on a domain of the form
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(4.3) {lz,1<08, max (z,0)<ky,, |2'|<4}l

On the other hand, by Lemma 8.4 the hyperfunction v(x) is represented as the
boundary value of the hyperfunction with holomorphic parameters Y(z,)Fl(x,,2')
as #/—a’+4/—140. Here 4’ is a cone arbitrarily close to the cone {y,>0} and
F(z) is a function holomorphic on a domain of the form (3.2). Here we have
deliberately used the same symbol F(z) as the above function by the very reason
that they agree on account of the Holmgren uniqueness theorem. We claim that
this common function F(z) is in fact holomorphic on a neighborhood of the set

(4.4) 0<a, <d’, %:=0, |2'|<4’, >0}

In fact, recalling the proof of Lemma 3.4 we see that F{x,, 2’), as a hyperfunection
with holomorphic parameters 2/, is given as the difference of the boundary values
of F.{(z) in the form

(4.5) Flz, 2")=F.(%,++/—10,2") — F_{x;—+/ =10, 2').

By the way, F.(2) is a pair of defining functions for the hyperfunction v(x) which
in turn is obtained via Lemma 1.8 by adjusting an identity e.g. of the form

(4.6) P(DHITY (2 —tla"Dwlllx Wo(a/, »)} = gf,-(x’)* Wola, v')6 ™79 (@) 47 (@).

The hyperfunction under the operator p(D) in the left hand side of (4.6} is the
boundary value of the hyperfunction with holomorphic parameters

[0 Y(wl—t(w’))[u]]];Wo(z’, v')

along the cone {y,>0}. Hence it admits obviously a representation of the form
(4.5) with V.(2) instead of F.(z) which are holomorphic resp. on

{zeC™; x, <8, |2/|<A!, =y,>0, y,>0l.
The same assertion holds also for the term y(z). Recall on the other hand that

S. 8. r(@ c{o<e, <o, |/ {< A X{x£4/ —1dzo}.
On account of the edge of the wedge theorem of the Bogoliubov type, this implies
that the functions W.(2), defining y{x) as the boundary value from the above
wedge, can also be continued resp. to a wedge infinitesimally equal to +y,>0.
This is even true if we translate the origin by a vector /—1(%s, - -+, Yn_s, 0), be-
cause for our choice of v the singularity of the convolution factor J{ D) Wo(2/, @) ar=s
is invariant under this translation. Moreover, the functions W.(z) agree on z,<0
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on account of the condition supp r(x)C{x,>0}. In fact, by the edge of the wedge
theorem, W.(z) first agree as holomorphic funetions on a neighborhood of the part
2, <0 of the real axis. Then, the hyperfunction W (x,++/—10, 2’) — W_(a; —4/ —10, 2')
with holomorphic parameters 2/, will vanish identically on the part x,<0 of the
boundary of our domain because of the unique continuation property. Therefore,
again by the edge of the wedge theorem, W.(z) agree there. Thus in view of
Corollary A.1 in the appendix we can deduce a little more careful conclusion that
the modified hyperfunction v(z) given by Lemma 1.3 admits also a same type of
representation. Thus the real analyticity of the hyperfunction Flz,,2’), which is
already assured on a neighborhood of the edge y=0, propagates with respect to
the holomorphic parameters 2’ along ;=const. up to the whole set (4.4).

Now we can apply Proposition 2.11 to extend F(z) to the direction +y, start-
ing from every initial plane z,=a%=const. for 0<#(<¢’. Summing up we have
thus obtained a function F(z) representing v(x) and holomorphic on a domain of
the form

{lzl<o”, |2'|<A”, y.>0}

Recalling the fact that v(z) is real analytic on z,>0 we see then that F(z) is
holomorphic on a domain of the form

=zt —TycC™; |2 |<A”, |9,1<8", (0,9, €2},
where

Q:{]xllgﬁ’”’ yn>0}U{5”,<m1<25,"’ yn>_5}-

Applying the local Bochner theorem to this domain interchanging the role of 2,
and y;, we can finally continue F{(z) to a new domain which rounds the corner of
2 to a smooth quadratic curve. The part of the boundary

=0, & =0X[{~8"'<m 3", Yu=0}U{—e<y,<0, 2,=8"")]

is, hence especially the origin is, contained in this new domain. Thus F(2), hence
v(x) and its boundary values (4.2) become analytic on a neighborhood of the origin.
g.e.d.

We can apply Theorem 4.1 e.g. to the operator p(D)=Di+D,D, (n>3) with
v'=(0,---,0,1). Then the theorem asserts the following: If u is (for the sake
of simplicity) a real analytic solution of p(D)u=0 on x,>0 and if the S.8. of the
boundary values contain the direction 4/ —I1v'dx’co somewhere, then the intersee-
tion of S.S. b {u)US. S. b (u) and R*2x{x,=const.} X {4/ —1v'dz’cc} cannot be com-
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pact. That is, the spectrum +/—1v/dx’cc propagates along x,=const. in some
manner. This is a kind of propagation of singularity phenomena in the boundary.
In the next paragraph we will strengthen this consideration up to the level of
bicharacteristic for the wave equation.

2. Thus we consider the wave equation
(4.7) o{Du=(D}+ -+ +Di—D%)u=0,
where z, is the time variable.

THEOREM 4.2. Let u be hyperfunction solution of (4.7) defined locally on x,>0.
Let bt (u), 7=0,1 be its boundary values. Let v € R*™ be a direction satisfying
0:(0,v')=0, where p, is the principal part of (4.7). Assume that
1) S.S.u does not contain the directions 4/ —1(=(1—8)dx,+0v'da’co, 01,
2) S.8.b7(uwUS. S. bf(u) has compact cross section with
by={""+t{grad p;)(0,v'); t € R}X{4y/ —1v'dx’co}.

Then S. 8. bf(u) has no intersection with by

As the situation is symmetric the same assertion holds for a solution on x;<0.
Note that b, is a bicharacteristic strip of (4.7) which lies entirely in the boundary
x1:0.

ProOOF. By a suitable linear coordinate transformation which fixes the bound-
ary z,=0, we can always assume that »'=(0,---,0,1) 2’°=0 and that

(4.8) p(Dy=Di+ --- + D 3— D, D,.
Then we will have
(4-9) AD'={(0’ ttty 09 xn—-ly 0); w’n—l e R}X{’\/;—denoo}‘

As the curved wave decomposition of d(z’) we employ the one introduced in the
final paragraph of §1:

6(:0’) = S 2 Wl(x/: (l),)d(l),,
s"
where now

2f= (ny Tty xn—2>y = (xn—-ly wn) y

that is, the wave component is really curved only for the first group of variables
(see {1.27) for the detailed form of the component W,).
Now assume that the solution u is defined on {0<@, <8} X U’, where U'=UIx U
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and U'CR™3, U'CR? are convex open neighborhoods of the origin in the respec-
tive Euclidean spaces such that UY! is of the form {jz,_,|<A4lx{lz,|<a}. By the
hypothesis of the theorem we can assume (if we choose a sufficiently small) that
S.S.bf(w)US. S. bf(u) does not contain the direction +/—1v'da’cc near the part
UrxaUTn{lz,|<a} of 8U’. Thus we can apply Theorem 1.10 and obtain a real
analytic solution v of p(Djv=0 on {0<x,<d’}X V' such that its boundary values
agree with

(4.10) Fi@) (Do) W@, @)oo}y, 5=0,1,

where Vel and f;(z') €’ PIU] is a fixed extension of bi{u)ly-€’B(V’). Thus
by our repeatedly employed argument to prove the theorem it suffices to show
that v can be continued analytically onto a neighborhood of the origin.

Note that the hyperfunction (4.10) is represented as the boundary value of
the function F;{z')=f. ,-(cv’)*,{J (D YW (2, @')|er=s}]y- Which is holomorphic on a domain
of the form ’

W >yt -+
To solve the holomorphic Cauchy problem (2.3) with the data Fj(z’) to the
direction x,<0, we can therefore apply Proposition 2.16 but this time with ¢//=
(& *+ ¢y Lusa), EF=Cy. The solution F{z} exists on a domain of the form

{Z:x“}"\/jyecn, —6<x1£0y lx,]<A/7 ]?/1l<A',
Ayl +efai+ 4R+ - Hyhoe) <yl

By the same argument as in the proof of Theorem 4.1, F(z) is the defining fune-
tion of the hyperfunction v(x) on z,>>0. Moreover by the same argument employ-
ing Corollary A.1 we see also that F(2) is holomorphic on a neighborhood of

0<a, <o, 9,=0, [2/|<4’, 'y >ys+ -+ +ia)

Thus we can on the other hand apply Proposition 2.17 to our operator p(D) to
continue F(z) in the direction of y,-axis starting from each initial plane x, ==
const. between 0<29<¢’. As a result we obtain a function F(z2) holomorphic on

{z=2+/ —1ycCm; |y, |<A”, W |<A”, (%,y) €2}

U a neighborhood of the edge {0<x,<d; |2/ |< A"},
where
R={-0"<x; <0, klal+yi+ - +yi2) <y}

U {0<e, <", klyi+ - +922) <y}

Then we can apply the local Bochner theorem first to the corner
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5/[ 5//
{o<as s v=tjufa={4n v=0, —e<n.<ol,

in order to make a positive angle with the x,-axis along the y;-axis, and next to
swallow the y,-axis making the profit of this angle. Thus F(z), hence v(x) has
been continued to a neighborhood of the origin. g.e.d.

REMARK 4.3. We know that there exists a real analytie solution » on %,>0
of the equation p(D)u=0 for the operator (4.8) such that the S. 8. of its boundary
values just agrees with f,.. (Consider e.g. the global solution of p{D)u=0 whose
8.8. agrees with {0}x}, constructed by Kawai [17] etc.) We do not know if
we have a solution for which the S.8. of the boundary values agrees with the
half of /., nor if we can strengthen Theorem 4.2 up to the propagation of S.S.
along the half boundary bicharacteristic. By the way, apply to this equation
p(D)u=0 a coordinate transformation of the type z,=¢(z,_,) in the boundary. Then
we obtain an operator p{z, D) such that for its real analytic solution on x,>0 the
S. S. of the boundary values propagate along the curve z,=¢(x,—), Zo= -+ =2,_=0.
Choose especially this curve in such a way that it intersects the plane z,=0 only
at the origin where they are tangent. Then we see that Proposition 1.2 never
holds for this operator p{x, D) with v'=(0,---,0,1). In fact consider the solution
for this operator obtained from the above solution u of the original equation by
this coordinate transformation. The modified solution » which is to be given by
Proposition 1.2, after the inverse coordinate transformation, would then have to
be a real analytic solution of the original equation whose boundary values have
. S. concentrated at the point (0, 4/ —1v'dx’co), hence void by Theorem 4.2. Since
J(D.) is arbitrarily, this means that S. S. bf{u) do not contain 0,/ —1v'dz’oo); a
contradiction. It will be natural that one would have to use a decomposition into
a kind of bicharacteristics in order to extend Proposition 1.2 to the operator with
variable coefficients.

3. Applying the results of §3 and §4 we can deduce some results on continua-
tion of real analytic solutions. See Theorem 3.1 in [7]. For example, a real
analytic solution u of the partial Laplace equation (D?+ --- + Dj)u=0 (k<n) defined
outside the set x;=x,=0 can be continued as a hyperfunction solution to this set.
The proof is just the same. Of course it suffices to assume that « is a hyper-
function solution such that S. 8.« does not contain the directions

U+ (1-8)da; +8dx,)oo, 0<o<1
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to obtain the same conclusion. We neglect to formulate the precise theorem which
follows by the same line from the results of §3 and §4, because it is a rather
simple repetition. We can also add some results on the analyticity of minimal
dimensional singularity for real analytic solutions. See [9] or [11]. For example,
if we have a real analytic solution u(z) of the partial Laplace equation (D?+ .-
+D3)u=0 defined outside a submanifold C of class C! in 2,=0 such that % cannot
be extended as a hyperfunction solution to C, then each conormal v/ =(y,, ---,v,)
of C in {x,=0} must satisfy vi+ ... +120, hence in particular the dimension of
C cannot be less than n—k. Further, if C is of dimension just equal to n—k and
if in addition %(x) can be extended as a distribution to C, then C must be a real
analytic submanifold. It seems difficult to give a direct proof to these simple
facts for the harmonic function without employing the microlocal boundary value
theory. Similarly we can improve the result on the “timelike” property of the
singularity. In concluding we will formulate a result for the wave equation:

COROLLARY 4.4, Let C be a weakly timelike curve of class C! contained in
2, =0. Assume that C is strongly timelike outside a compact set. If there exists
a real analytic solution w of the wave equation (4.7) defined outside C such that
it cannot be continued to C as a hyperfunction solution, then C must be in fact
strongly timelike everywhere.

It was already known in [9] that such a curve must be weakly timelike.
What is improved is that we can now remove the isolated light-like directions
employing Theorem 4.2.

Appendix A

In proving two fundamental lemmas in §1, we cited the boundary value
theory of Kataoka. Since the detail of his magnificent theory is not yet published
at the time of preparation of this paper, we give here for the sake of self-con-
tainedness a direct elementary proof of them for a case a little restrictive but
sufficient for our purpose.

ANOTHER PROOF OF LEMMA 1.3. Recall the condition

supp fC{x, >0},

(1.11)bis { _ .
S. 8. fola, =01 X {4/ —1d2,c0}  (resp. 8. 8. fc{z, >0} X {4/ —1da,00}).

Such a hyperfunction f(z) can be represented as
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Flo)=F.(@4++/ —1I'0)~ F_(x—+/—1I'0),
where F.(z) are holomorphic, say, on a domain of the form

(A1) {le <8, 12/ |<A}+o/ =L N{yl<el)

respectively (and moreover in the case outside the parentheses they extend to a
neighborhood of the part #,>0 of the edge). Here I" is a convex open cone con-
taining the positive ¥, axis and it ean be chosen as close to the cone {y, >0} as desired
if only ¢>0 is diminished accordingly. The condition supp fc{x,>0} implies that
in either case F.(z) agree with each other to define a holomorphic function F(z)
on a neighborhood of the part z;<0 of the edge. Now we are going to solve the
equation

(A.2) p(z, D)U(z)=F{z2)

for Ulz) which will enjoy the same properties as F(2) enumerated above. For
this purpose we make the coordinate transformation z,=2Z2%. (This idea is similar
to one used in the elementary proof of the water-melon slicing theorem given in
[12].) The equation (A.2) is transformed to
(A.3) o2t 7 LD, D \UZ, ) =F(23, 2.

2Z,
Put G(Z,2)=F(Z3 ), V(Z,2)=U(Z%2). The new domain where we consider
the equation (A.3) is the image of (A.l) by this transformation, hence somewhat
a neighborhood of a set of the form

(Zi=X+v/ 1Y, 6 G [ X 1<8, 0<Y,<etx iz € C™Y5 [o/ <A, y'=0}.

Owing to Kashiwara’s lemma a function holomorphic on such a domain can be
continued up to a wedge:

(A.4) 1 X1<o”, |2/ <A, Ky |<Y,<e".

Moreover, if we remove any small neighborhood of Z;=0, we can choose k& arbit-
rarily small at the sacrifice of ¢”. This follows from the fact that I" in (A.1) was
arbitrary and that our transformation is regular outside Z,=0. Further, in the
case outside the parentheses G(Z;, 2') is also holomorphic on a neighborhood of the edge
except for X;=0. This follows from the corresponding property of F(z). Now
the equation (A.3), after eancelling the denominators, has the following form

(A.5) {D3,+2,9(Z,, 2'; Dy, D'YVIZy, 2')=G(2,, 2'),
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where m is the order of p and ¢ is of order less than m—1 in Dy,. (For the
sake of simplicity we have re-employed the symbol G.) We try to solve the equa-
tion (A.5) for V(Z,2') on the domain (A.4) giving the Cauchy data, say 0, on
Zy=+/—1s for a small s>0. Owing to the factor Z,, our equation satisfies the
condition of Theorems 4.1, 4.2 of Bony-Schapira [2] for any k>0 in (A.4) if only
we choose ¢” and ¢” sufficiently small. Thus we can find the solution V(Z,2") of
(A.5) holomorphic on (A.4), which, in the case outside the parentheses, extends
by the same Theorems also on a neighborhood of the edge except for Z,=0.
Applying the inverse transformation Z,=+/z,, we see easily that the function
Uz, 2)=V(4/2,,2') is the desired holomorphic solution of (A.2), that is, that Ulz)
becomes holomorphic on a domain of the form (A.1) for any I" and that it defines
a hyperfunction u(x) satisfying (1.11) and the equation p(z, D)u=f. q.e.d.

Because of the elementary character of the above proof we can obtain the
following a little more detailed variant which we needed in §4:

COROLLARY A.l. Let (y',y") be a grouping of the variables ¥y, -, Ypoy.
Consider the case where the coefficients of plx, D) depend only on x,. In the hypothe-
sis of Lemma 1.3 assume further that the hyperfumction flz) also admits o
representation of the form

J@)=Fi{z++/—1Ii0)— FL(x++/—1I10),
where I'i={xy,>0,y,>0} and Fi(z) are holomorphic resp. on
(A.6) {lz 1o, |2 |< A, 0< 2y, <0, H)2<ey,),
and also on a neighborhood of

{lo 1<, [2'|< A, y=y,=0, 0< =y, <5}

Then the solution u(x) of plx, Dyu=f given by Lemma 1.3 admits ¢ representation
of the form
W) =Uslz++/—170)—U_{z—+/—1I'0)

such that U.(2) extends also on a domain of the form (A.6) with smaller constants
d,4,c.

Of course we include the case y’’=(5, where the last inequality in (A.6)
implies simply ,.>0.

Proor. What Corollary A.1 asserts is the global character of the domain of
existence in the parameters z/. Remark that FL(z) is nothing but the continua-
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tion of the function F.(2) holomorphic resp. on (A.1). After the transformation
2, =22 used in the above proof they become therefore holomorphic on the union
of
{1 X1<d, |[o'|<A’, 0< Y, <, ey, > (')
and of
{(1X,1<0, 12/ |<A, k(y" | +ly) <Yk

By the hypothesis that the coefficients of p(z, D) are independent of 2/, the exist-
ence theorem of Bony-Schapira can be applied uniformly with respeet to 2’ along
the initial plane Z,=+/—1s. Thus we can assure a same type domain for the
solution V(Z,, 2'), hence for its inverse transform U{z). g.e.d.

PROOF OF LEMMA 1.7 in the case of constant coefficients. Assume that u is
defined on {0<x,<8}x U’ and that

(A7) S. 8. bt w) N U X/ —To'da'co; o € =0,

where U’ is a neighborhood of 0c¢R”™ and £’ is a neighborhood of » €872
Choose a non-characteristic real analytic hypersurface z,=¢(z’) as in the proof of
Proposition 1.2. By Sato’s fundamental theorem the product Y({w;—t(2’))[u] still
has a meaning on {z,<&;\(10}xaW’) even if » is a mear hyperfunction solution.
Let [[Y{x,—t(z')){ull] be an extension with the smallest support. By the same
reasoning as there, modifying this extension if necessary we can obtain the
equality

Lobis  pUDI ¥ —talulli= "5 510 wx) + 5 ayla)0 (1 —t(e!),

where f;(a)€’PIW’] is an extension of bf(u)lp- and a;(@’) €' P(W3,) satisfy
supp a;(z) C Wi \W'.

Now let W(x/, ') be the component of the curved wave decomposition (1.1)
in dimension n—1. Put W(z/, .Q’)——-S 'W(x' ,@')de’. Then by the assumption (A.7)
g;(x")=1;(a" )= Wi, 2') all become reg,l analytic in W’. Take the convolution of
Wi(z', ') with both sides of (1.5)bis. We obtain

A3) pDlo="E, g,(a/)0"" (@) + Blo),

where v, 8 denote the hyperfunctions defined by the obvious manner (cf. (1.6)).
We claim that
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(A.9) {Supp Blz) Clx, >0},

S. 8. B{z) Cla; >0} X {£4/ —1dx,00}.
In fact this can be verified by the same calculation as (1.9) on 2;=0. Now let w

be the solution of
p(D)w=the right hand side of (A.B)

given by Lemma 1.3, hence satisfying (A.9) also. Then we have
p(D)(v—w)=0, supp (v—w) C{z, >0}

Thus by the Holmgren uniqueness theorem v=w in {x,<d}X V', where V'e W’
and 4’< 9, is chosen suitably small. This means that
(A.10) S. 8. vC{z, >0 X {4/ —1dr,c0}  on (@, <X V.
Recall that

LY ( — @ Hulll=v+1[ Y, —t(w’))[u]]]: Wiz’ S \Q),
where

Wiz, S*2\Q")= S Wi/, o' )do'=6(x")— W(x’, 27).

Sn—Z \g’
Therefore we have

(A.11) S.8.1 Y(ml—t(w’))[u]]]*,W(x’, $*H\Q')
Cl{ >0 x{y/ —1{£ (1 —0)dz, +b0'da’)oo; o €S™AQ!, 0<0<1},

and we conclude that on the open set {#; <8’} X V7, the 8.8. of [w]=[[ Yz, —t{z'))[«]]]
is contained in the union of (A.10) and (A.11). q.e.d

It is clear that the above proof goes also in the case where the operator
contains the variable 2, in its coeflicients.

Appendix B

As a biproduct of an argument frequently used in this paper, we give here
a detailed proof of the Green formula which was (or should have been) employed
in §2 of [81V.

b The original proof of [8] contained a mistake by using a device available only in the case
of constant coefficients. The indication of Errata given in [9] was not suitable since it
was available only when ¢p(z, D) is Is-semihyperbolic to x;>—¢ for small ¢>0. The cor-
reet indication as it should have been was as follows: We must replace wy(z,+¢, 2/, ¥/, o)
by wilz, ¥’, »’), the solution of

(1.8)" {‘P(x’ Djwi=0
’ Cilw, DWiley>+0=0;, m-p1 Wy’ 2’ +ico’, '),  §=0, -+, m—1.
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Recall that we are always assuming that #,=0 is a non-characteristic boundary
of the operator p(x,D) of order m. To maintain the generality in accordance
with the notation in [8], we consider here a general normal boundary system
{B;(x, D)\r=}. Let {C;(x, D)}»%" be its dual system. It is characterized by the
classical Green formula: For a real analytic function u(z) defined on a neighbor-
hood of the origin we have

{B.1) o, Dy(u(x) Y{,))
=(p(x, D)ulw) Y{x,) + :',;:::’Cm_,-_l(w, D)(B;(z, D)) —06(a1)).

This formula is also valid for a hyperfunction % which contains x, as real analytic
parameter.

THEOREM B.1. Let u(x) be a local hyperfunction solution of p(x, D)u=0 defined
on ;>0 on a meighborhood of {0}x{|z'|<a}, and let b}(u)=B;(x, D)u|sy-re, j=
0,---,m—1 be the boundary values of u(x). Let, on the other hand, TCTR® be an
open set of the parameter space and let wiz,t) be a hyperfunction solution of the
adjoint equation ‘p(x, Dyw(x, t)=0 containing real analytic parameters t ¢ T defined
also on x,>>0 on a neighborhood of 0. Let g;(x’,t)=C;(x, Dyw!,,r6, =0, -+ -, m—1
be the boundary values of wix,t). Assume that there exists an open convex cone
4 in R™** such that AN(R"X{0)+T and that

(B.2) S.S.g;(2, ty ' |<a}X T 4/ —14°(da’, dt)oo,
(B.3) 8. S.bFw)en {2’ |<a} x4/ —1(pr, 4°)da’co=
Sfor =0, ..., m—1, where pr,.: R"**—R" denotes the natural projection. Then,

with possible modification on a—e<|z'|<a, we can choose suitable cutting off [[u]]
of [u] and f;(2') of bi{w) of support in |z'|<a such that for sufficiently small 6>0
we have the following Green formula:

(B.4) mfg _ i@ ) g (2, t)da’
i=0 Jpn
- "ffj _, Bi(@, D)[]l]ay=sCrmjms(, D2, )y —odec’
i=0 ) gm

= S nv(x)w(x, t)dx.
R

Here v(z) is a hyperfunction with support in <z, <o} x{a—e<|o/|<a). The
cutting off [[ull is so chosen that the product or the restriction appearing in the
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Jormula have sense.

PrOOF. Let [[u]] be a suitable cutting off (with modification) of [#] such that
[[w]] remains micro-analytic to the direction +./—1dz,co on #,>0. Such a modi-
fication can be constructed as follows: First by the flabbiness of the sheaf ( of
microfunctions, we take a hyperfunction %, € B(R") such that

8. 8. w, &S, 8. ([ull s 1<a—erzt)
and that w,=[u]—u, is real analytic in {{2’|<a@—¢/2}. Then we put
[l =2 12120 (@) s + X f1271 <03 (27) U

Note that supp [[ullC{z;>0}X{|2'|<a} and that [[u]]l=[u] in {{2'|<a—e}. If u is
real analytic on x,>>0, we can of course simply take the product ¥y, <. (@) {u]
outside {z;=0, |2’|=a} and then extend it to an element [[u]] with the desired
support. In this case we can take ¢=0.

Now by the definition of the canonical extension and by the Leibniz rule we
have

(B.5) ple, Diltull=v+ E, ‘Cacymsls, DI @)3(51):

Here f;(z) is a suitable cutting off of bf(u) in {{2’|<a} and v is a hyperfunction
appearing by the effect of modification, hence with support contained in {x;>0,
a—e<|z'|<a). Note that v is also micro-analytic to the direction -4/ —1dz,c0 on
x,>0.

Recall here that for the solution w whose boundary values satisfy (B.2) we
can apply Lemma 1.7 and then Lemma 3.4 to conclude that [w] can be expressed
as the boundary value of the hyperfunction with holomorphic parameters
Yz Fla, 2, ¢) as {2/, o)—{@’, t)++/ —140. Here Flz,7) is a holomorphic solution of
tp{z, DVF(z, r)=0 defined on a domain of the form (3.2). (We are considering here
that the parameters ¢ are contained implicitly in the operator *p(x, D}.) Moreover
we know that the holomorphic function g;(2/, 7} =C;(z, D)F(z, 7),,=0 gives the hyper-
function g;{z’) as the boundary value.? Now choose a unit vector w€ 4. Let y>0
be a small parameter and consider the following holomorphic Cauchy problem:

{‘p(z, D)F7(z,7)=0,
Cj(zy D)FT(Z, T)lzl=0=gj((z,v T)+'\/__17w)1 jzoy Tty m_1~

2 The situation in [8] was such that the solution w was given in this form from the begin-
ning, hence Lemma 3.4 was unnecessary.
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The solution F7(z, ) exists on a conical neighborhood of the initial domain {2, =0} X
! |<a} X T+4/—1(40—70)). (Here A0CR* ' denotes a fixed domain infinitesi-
mally equal to the cone 4 at 0.) Hence F7(z,¢) is holomorphic on {0<x;<d}X
{l#"|<a}x T if r is large enough compared with 4. Unfortunately we do not know
if F7(z, ) continues to exist on a wedge-like domain touching the real axis when
7y 40. (This is true for the situation of [8] because *p(z, D) is I*-semihyperbolic
there, which simplifies the argument for the general case developed in the sequel.)
We know however that F7(z,r) continues to exist on a real neighborhood of
0< e, <o)X {|#'|=a}x T if ¢ is sufficiently small, since by the condition (B.2) the
boundary data g;(z/,t) are real analytic on a neighborhood of {|’'|=a}XT.

Now multiply Y{(6—=,)F7(x,t) to both sides of (B.5) and integrate with respect
to #. Then we obtain

(B.6) [, Yo-)Fria, tpte, Ditaide
- S Friz, 1) Yo—wolo)de
# B O, DI, ) el

Here we have employed the integration by parts to deform the last term. Until
now the calculus is obviously legitimate because of the condition of S.S. Note
that we have the following formula which is adjoint to (B.1):

“pla, D)aw V(2:)) = (p(z, D) Y(os) — &, Bu-s-s(0, D){Csle, Dlttlymadla)
Thus applying the integration by parts to the left hand side of (B.6) we obtain
T G DI DB, DI
+ Sgn tp(a, DYF7(x, t)- Y{(9—a,)[[ullda.

Now rewrite v instead of — Y(6—u,)v{x) in the first term of the right hand side
of {B.6). Then we obtain

®.7) B\ 0 O D0, Ol
R

i=0

— 'mil j‘ - Bj (93, D)[[u]]]ﬂ=5{c —j_;_(x, D) Fr (a;’ t)Hg:b‘d{B'

i=0 J g~
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:S F(s, tla)da.
R

Here we wish to let y}0. By what is said above F7(z,z) converges to Flz, )
when 7| 0 uniformly on a complex neighborhood of the real set {0<z,<d}x{a—e
<l2’'|<a}XT if ¢ and § are sufficiently small. Therefore owing to the topological
duality between  A(K) and B[K], where K={0<2,<s}x{a—e<|2’|<a), the right
hand side of (B.7) converges to that of (B.4) if we let y 0.

Next consider the first term of the left hand side of (B.7). It reads

g XR"‘ 1f: gm—_;—l (x t)+'\/ 17’0))‘15'?'

Thus formally there is no difficulty of domain of existence when we let r}0.
Since however the factors are not clearly distinguished as JA(K) and K] as
above, we cannot escape to the easy duality argument. This time we employ
the most primitive argument based on the defining functions. On account of the
condition (B.3) we can decompose f;(z’) into the form

Fila) =fjo($/) + > ij(x"l'«/—_lpllcﬂ),

where (—7'{°)Npr, (4°)=0, f,(z') is real analytic outside {a—e<[2'|<a}, and Fj.(2)
are continued further holomorphlcally to the real axis on |2/|>a. The 1ntegra1
concerning f,(x') can be decomposed as follows:

<x(|z |<a+£2} f:O gm—-J—-l(( )+'\/—v]~7w)>z’
—<x{a-61$lz !Sa+62}( ) ;70( gm—j—l((x,r t) +'\/—_17’w)>z’
+<f,70 X(lx'!<u—5ﬂ( )gm—j—l((x,a t)+'\/?17w)>x’y

where ¢ >¢ and >0 are so chosen that both f;, and g, ;, are real analytic on
|#'|=a—e and on |2’|=a-+e,. The first term is similar to the one already treated,
and we can see by the duality that it converges to

x{a—81<lz'l<a+$2} fJO gm—:—l (x t))

when 7} 0. The second term can be rewritten as the complex integral for the
defining functions:

Sbfjo(z’)gm_j_l((z’, ) ++/ —1re)dz,

where the path of integral D is such that it deforms the real domain {{#/|<<a—¢;}
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into the complex where both f;, and g,-;—, are holomorphic, fixing the boundary
{la’'|[=a—e}. Then it is easy to see that it converges to the integral

<fj0(x,); Xl <a—eg} (xl)gm—j-—l(w,’ t)>x'

when 7} 0. The same argument is valid for the integral
SI nn, @ T/ =1T0 gy (@, ) + 4/ L) da’
1= 52

= §D Fi(@)gn-i—1{(@, 1)+ 4/ —1re)d2’,

where the path of integral D is now such that it deforms the real domain
{le’|<a+e,} into the complex, fixing the boundary {{z’|=a-+¢,}, in such a way that

g2+ —1p for |a']<a—e,

with a fixed vector 7’ I'iN{4N{Imr=0}). The existence of such a vector 7’ is
assured by the condition (—I";°)Npr, (4°)=0. For

(=IinNpry (4 =0 = {(-T'H+4dn{Im=0})=R"
= IindnIm =0} +#o.

Note that the path can be rather arbitrary on a—e<|2’|<a-+e¢,, because the inte-
grand is analytic there. Thus the limit process 7 | 0 can be executed as a simple
substitution y=0 in the holomorphic functions of the integrand. The result gives
clearly a corresponding term in (the same type decomposition of) (B.4).
Finally we consider the second term of the left hand side of (B.7). This term
is more delicate to treat since the second factor may loose the sense if we let 7
small, because of the domain of definition of F7(z,z). We proceed as follows: At
first we consider y sufficiently large so that this term has sense. Then choosing
a vector »’ as above we deform the integral into the complex domain on |2/ |<a—e.
If # is sufficiently large compared with & {so that the points #,=8, 2/=x'++/ =17’
for |#'|<a—e are contained in the domain assured by the precise form of the
Cauchy-Kowalevsky existence theorem), then the deformed integral will always
have sense for any small y>0. Thus we can let /0. The limit integral,
however, can be “re-deformed to the real axis” because the limit function
Cn—j—1l2, D)F(2, 7)],,=5 is certainly holomorphic in a wedge domain so that it can
define a hyperfunction. Thus in the limit we have obtained all the terms of (B.4).
g.e.d.

Finally we add the remark that K. Kataoka has extended the notion of this
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new product appearing formally in the proof of the Green formula to an elegant
theory of mild hyperfunctions on a manifold with boundary. His article will appear
in the same journal soon after [15] under the title “Micro local theory of boundary
value problems I”.

Notes added in proof 1. (Concerning Propositions 1.6-1.8) The convexity of U” is not
at all necessary. In fact, what we have used in the proof is the fact that for 2’ in W’'n
{lz,1<a’} the hyperplane (z'—y’)v'=%,—%,=0 is never tangent to the hypersurface t(y’)=
z;. By the same reason, the convexity of UZ, UZ! in Theorem 1.10 is also unnecessary.

2. (Concerning Remark 4.3) We cannot strengthen Theorem 4.2 to the propagation along
the half bicharacteristic as in the case of interior propagation phenomena. In fact, let E{x)
be the fundamental solution of the wave equation (4.7) with support in #%+ -+ 422 _,<af.
Let v/ € R*1 be a direction satisfying p2{0,v)=0 and »,>0. Then E(z) is a solution of
(4.7) in 2;>0 which is microanalytic to the directions v —1(x(1—8)dx;+0v'dx’)oo, 0<H<1.
But the boundary values have the singular spectrum of the direction v/ —Iv’dz’co just along
the half bicharacteristic: b ={t(grad p2){0, v*); t>0}x v/ —1v’dx’cc}. Applying Proposition
1.2-Remark 1.4 to this solution, we can obtain, if we wish it, an example in real analytic
solution.
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