Asymptotic behaviour of singular solutions of linear partial
differential equations in the complex domain

By Sunao OucHI®

(Communicated by H. Komatsu)

Let L(z, 0) be a linear differential operator of order m and K={ze(C"*!;
¢(z)=0} be a characteristic surface of L(z, d). If K is simply characteristic,
then we can construct singular homogeneous solutions of L(z, d) in the form

0.1 u(Z):szjOa {2DP (),

where a,(z) (j>7,) are holomorphic and {@,#)} is a sequence of functions of
one variable, singular at t=0, and satisfying

0.2) L 0=0,.(1).

The method has been generalized by Hamada [3], Hamada, Leray and Wagschal
[97 and Persson [[7] to the case where K is a characteristic surface with con-
stant multiplicity, so that we can in general construct singular homogeneous
solutions in the form:

©.3) D)= % a0,

This method of construction of u(z) and v{z) is traced back to Hadamard
[10], Lax [117, Ludwig [12] and others. It is useful in order to comstruct
various solutions. Hamada [2], [3], Wagschal [8], Hamada, Leray and Wagschal
[97, De Paris [17, Persson [7] and Komatsu [5] used it to solve singular Cauchy
problems. Mizohata [13], Persson [14] and Komatsu [5] used it to construct
null solutions in the real domain. And many mathematicians have employed -
this idea to comstruct fundamental solutions.

If we set

e |
(0.4) 2,t)= I'G+1) (log t—r(j+1), j=0,

O, )y=—I(—i(—=ty, j<0,

* Partly supported by Fujukai Foundations.
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where 7(s) is digamma function and I'(s) is gamma function, then u(z) has a
pole and a logarithmic singularity on K and 1(z) has an essential singularity
on K. Therefore, the behaviour of u(z) near K is simple, but that of u(z) is
much complicated.

In this paper we shall investigate the behaviour of homogeneous solutions
of L(z, d), which are singular along a characteristic surface K of constant dou-
ble multiplicity under the condition of non-vanishing subprincipal symbol and
show the Stokes phenomenon of solutions. And we shall show that solutions
constructed in the following sections are unique modulo holomorphic functions
under some conditions.

Let us give a simple example :

(gt gy e, =0,

(0.5) u(o, y):;_ >

ou(0, y)

ox =0.

According to (0.3) the solution u(x, ¥) is expressed in the form

(0.6) u(x, 3’>—% 2 (Zn)' ( )

However, this does not give sufficient information near the characteristic sur-
face {y=0}. Our method shows that there exist two functions u{x, ¥) and
u,(x, ¥) such that

0.7 ulx, y)=ux, y)+ulx, »)

and for every ¢>0
0.8) ulx, y)= 2\/3’73% exp (E];i)(l+0((%z>4eXp (_
(251 e 525,

0.9) wusx, y)=— 2;/\/; exp ( :; )(H-O((l/xz)'iexp (——

)
(5l s 3=rl=3-).

010)  w(x, »n=5(1+0(2)) (| 5|0 m2]are 5|25 +e),
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ulx, y)= <1+O( (’ny’—wo > largf~-—n-]> +e

The case of operators with multiplicity more than 2 and applications will
be treated in forthcoming papers.

In §1 notations and summary are given. In §2 we construct a formal solu-
tion with a parameter 1 and in §3 we give its estimates. In §4 another solu-
tion is constructed by the method due to Hamada, Wagschal and others. In §5
the relation of two solutions constructed in §2 and §4 is stated. In §6 and
§7 we give a homogeneous solution represented by an integral and we analyze
it to obtain its asymptotic behaviour near the characteristic surface. In §8 we
prove a uniqueness theorem stated in §1.

§1. Notations and summary.

Let z=(z,, 23, -+, z,) denote the point in the complex (n+1) dimensional

space C™*' and we write z=(z,, 2), 2’=(2y, 23, -+, 2Za) and 2"=(zs, 25, -*-, Zn)-
Dual variable of z is denoted by &=(&, &, -+, §x)- Let
(1.1 L(z, 0)= X a.(2)0*

jatsm

be a linear partial differential operator of order m with coefficients a4(2)
holomorphic in a neighbourhood £ of z=0. We employ notations

R G K s R
(1.3) go=(E)* (&)1 - (En)n

and

(1.4 lal=a,ta;+ - +an.

We set

1.5 Li(z, = 3 au(2)¢".

In particular the principal symbol of L(z, d) is denoted by iz, &).

Let K={p(z)=0} be a nonsingular characteristic surface of L(z, 9) through
the origin, that is, grad,p(z)>=0 on K and ¢(0)=0. In this paper we assume
that K is a characteristic surface with constant double multiplicity. We impose

Condition A. The differential operator L(z, 0) is expressed in the form
(1.6 L(z, 0)=P(z, 0)°Qz, )+ R(z, 9),

where P(z, 0) and Q(z, ) are homogeneous differential operators of order m;
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and m, (Zm,+m,=m) respectively and R(z, d) is an operator of order (m—1),
whose coefficients are holomorphic in 2. Moreover

a.m p(z, aa—i)zO and gradgp( . aa—i)ﬂco on K
and
(18) a(z —ai—)a;o on K.

We note that from (1.7) there is a holomorphic function a(z) with a(0)=1
such that p(z, Qg‘%gdz))):O identically. This was remarked in Komatsu [5].

We shall give a proof of it different from in [5] in Appendix. For operators
with constant multiple characteristics, we refer to Komatsu [5] and Matsuura

[6]. From now on we assume that p(z, %—):O identically.

Next we impose a condition on lower order terms:

Condition B. The operator R{z, 0) in (1.6) satisfies

1.9) 7(2, %i—)sz-l(z, %%)#0 on K.

Condition B is equivalent to
Condition B’. The subprincipal symbol of L(z, 6) does not vanish on K,

1 & o
(1.10) 275 oee bele 5,

— Loy z,ﬁo— %0 on K.
0z

Now let S be an n dimentional complex surface through z=0 to which
the bicharacteristic curve issuring from (0,%—?(0)) is transversal. We can

choose coordinates so as S={z,=0}, T=SN\K={z,=2,=0}, (¢(0, 2")=2,), and

o

(1.11) %,

=0 on S

by (1.7).
Our purpose is to investigate solutions with singularity on K of

L{z, d)u(z)=0

1.12 &
— (aizo) w0, 2)=v(e) (=0, 1),
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where v,(z’) is holomorphic in a neighbourhood of z’=0 except on T. We have

THEOREM 1. Under above conditions, if ve(z’) and v(z") are meromorphic,
® then there is a solution u(z) of (1.12) in a neighbourhood of z=0 with singularity
only on K which behaves as follows:

Let ¢(z) be a solution of
9o
on(z 57) 5

oz, g—f)(i‘a Ta—zi¢<‘z))2

(1.13) 1 > g N
o 2 508, L2, 52 )~ La- 5 )=0,
#0, 2/)=0
and set
(1.14) w(Z)=P(2)p(z) 2.
@) If largEo@)| <f—e,
¢(z) Ps 1 Qb(Z)z —1f,,% -1
(L15) u(z)rv(%)— exo (150 >w(z) *(2)+0la(2)™D)

as |w(z)|—o in a<arg p(z)<p for any a, B and >0, where v¥(z) are holomor-
phic functions and p. ave integers or —co. If pu(p)=—o0, u(z) is bounded as

|w(z)| >0 in |arg cu(z)l<%:——e (]arg—w(z)l<—i—§——-e).

(i) If %+e<argw(2)<—z—n—-s and a<arg p(z)<p,
(1.16) [ =Ca gl ()77,
where Cap >0 and p'20.

For another solution #(z) of (1.12) we have

THEOREM 2. Let #(z) be a solution of (1.12) with singularity only on K.
Then (u(z)—#(2)), where u(z) is the one in Theovem 1, is holomorphic in a
neighbourhood of z=0.

Thus we conclude that every solution of (1.12) with singularity only on K
behaves as stated in Theorem 1, which shows the Stokes phenomenon of solu-
tions of (1.12). These will be stated more precisely with proofs in the follow-
ing sections.

§2. Construction of a formal solution.

In this section we shall construct a formal solution in a sense specified
later with a parameter 1 of the following problem
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Lz, d)U(z, A)=0
J U0, 2/, D)=exp (— 2z )u 2"

2.1)

} aiz()U(O, z, A)=exp (—%z)u,(z’),
which has the form
2.2) Uz, Hy=exp (—p) Wz, 1),

where u,(z’) and u,(z") are holomorphic in z’. Later we shall find a homo-
geneous solution u(z) of L{z, 9) with singularity on K by integrating in A after
multiplying some function A().

To determine W(z, A) in (2.2), we give an elementary lemma.

LeMMA 2.1. Let M(z, 0) be a linear partial differential operator of ovder m
and let H(z) and u(z) be holomorphic functions. Then we have

2.3) Mz, 0) exp (pH(2))u(z)= ﬁ}) 1™ exp (pHR) Mz, dyu(z),

where S,(z, 0) is a linear partial differential operator of order j which is inde-
pendent of u(z) and

(2.4) Mz, a>:m(z, %—Ij) ,

(=50 5
[+ aél 321

4a function .

(2.5) Hy(z, B)=

1

This lemma follows from the Leibniz formula of differential operators. In
the following calculations we shall often use Lemma 2.1.
Now, substituting (2.2) into (2.1), we have

(2.6) L{z, d)U(z, H)=exp (——2%(2})2} 22Dz, )Wz, 2).
Since p(z, %—f):o, we have

—(_ym dp \* ( Op
@7) Lz O=(=Dmp(=,5-) o2, 52)=0,

—(_1\m-1 dp
@8) Lz, =(—1mir(z, 55

and
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an(=, %ﬁ—) 5 \2

ez 22 \( 3
29) £z =1z 50 (3

--lower order terms.

£.(z, 3) becomes an operator of order 0. Hence, if we set

2.10) RyD=(~1""(z, %‘ﬁ—) ,

we have

(2.11)  L(z, &)U(z, H)=exp (— 2o {2 Ly AT D R+ jZZL‘élZ‘m“”_L’j} Wiz, 7).
We seek for W(z, 4) in the form

2.12) Wiz, D= 2 2| exp (—20wn(z, DL,

where C will be determined later so as to justify the arguments concerning
integrations by parts. Set

(2.13) Wiz, 2):l3gcexp (—AQw(z, {)dl.
From (2.11) we have

(2.14) L{z, O)U(z, D=exp (—2p(2))A°

B[ ALY e a0t () e (a0 R

+ (-0

()" oo —a0Lowafat

=exp (—1290(2))23720 SC exp (—A0)L{z, 3,, Opw.dL,

where
2.15) £z, 8., a;):(a%)m’” I2+(§C—)2(m—n.€ko+ jé(g—c—)2<m'ﬁ,f,-.

In order to comstruct formal solutions wa(z, ), we introduce auxilliary
functions:

(2.16) Fip=E0

271

I'(—=pn" (<0,
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@17) Fn= g iy tog 71U+ (G20),

where [I'(s) is gamma function and 7(s) is digamma function and 7G+D=

_To—f—(l‘}‘%-i—%"l— +%) {(ro; Euler’s constant). We remark that

df](ﬁ)

(2.18) =f;-1n).

Uz, Hy=exp (—22¢(2))W(z, 2) is said to be a formal solution of 2.1), if w,(z, 0
satisfy the following equations and initial conditions:

.£2w0+(a%)2320wo=0 ,

(2.19), w0, 2/, Q:uo(zl)fz(g s

ow,
02,

(% 2(m—2><£2+$0(%)2>wn+1 ;m (ac )Z(m » LiWnss-j,

0w.+:(0, 2, §)
0z,

=@ )fAO+ 5 9” (0, 2)u )l

(2.19)7+41

Was+:(0, 27, O= =0 for n=0.

For initial conditions, we note that

(2.20) U, z/, A=exp (— /1221),13 Sexp( ADwL0, 2/, OdL
=exp (— 222 exp (~20us)u e

—exp (—2228(|exp (~20 5 d )tz

=exp (— Az u,(z")
and

390<0 z')

(2.21)

U, 7, 2) ,
B P wa(0, 2/, £)dl

=exp (—22)2 3 (] (~29 exp (—ag 2020
+{ 0 (=2 24l 22O gy

9p(0, 2’) *wy(0, z, )
oz, o pac

=e€exp (—1221)1350exp (_;C){ awo«a);:', 0 _
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—exp (— 2202 exp (—0ui) dC

=exp (—Az)u2),

if the curve C can he deformed to the one enclosing the positive real axis.
We want to find w,{(z, {) of the form '

(2.22) s walz, O=_ 3 wa A2f(0).

Substituting w(z, {) into (2.19), and wn+1(2, 0) into (2.19),+4, we have
(2.23) 2 (Izwo i Rows, j+2)f D=0

and

@28 3 Lt Rownn et 3 Lownsscs a0} i-sem-n(©=0.

Hence woz, C)z_qusznﬂwo, {2)f L) is a formal solution of (2.19),, if w,, £2) satisfy

( ) { Law, =0,
2.25 Aws, (0,
2 wosld, =), 220y,
( 25) jl Low,,;=0,
2.
‘ w0, 2= 20250 DD g
LW o RoWo, =0,
(2.25) dw, o0, 90(0,
’ { we,o(0, 2)=0, w{)io 2) 90(@ Z)uo( oF
Lawy, 5+ Row,, j+2:0
(2.25);
] w0, )= g (=),

And also, if wge1,; (n2>0) satisfy the equations

2.26
229 0w 44(0, 2)

m
{ LoWair, ;1 RoWnirt, jrot 325 aEswn+3—s,j—2(s—2>:O »
0z,

wn+1<0: Z’>: :0)

then w,.(z, C)z_w<§2n+2wn+1,,-(z)fj(C) is a formal solution of (2.19),...

We note that from (2.9), the principal symbol I,(z, &) of L£,=.Ly(z, 0) is
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p( 82)52) ‘

This implies that .C, is a partial differential operator of order 2 whose second
order term is an ordinary differential operator along bicharacteristic curves on
the characteristic surface ¢(z)=const. Therefore, equations (2.25); and (2.26)
have holomorphic solutions w,, ;(z) in a certain neighbourhood V of z=0 which
does not depend on n and j. Thus, summing up, we have

(2.27) Lz, =1z ) (E

THEOREM 2.2. Suppose that L(z, 9) and K={z€ £ ; p(z)=0} satisfy Condition
A, Then there exists a formal solution Uz, 2) of problem (2.1) in the form

(2.28) Uz, H)=exp (—2290(2))20 Walz, 2),
where
(2.29) Wale, D=2 exp (—0) 3, wn &FAOE

and w,, z) are holomorphic in a certain neighbourhood V of 2=0, VC £, inde-
pendent of n and j.

In the next section we shall show that the formal sum <§2 Nz (O
—oljs2n
is convergent by obtaining the estimates of w,, (2).

§3. Estimates of formal solutions.

In this section we shall obtain estimates of w,, ;(z). To get them we shall
make use of the method due to Wagschal [8] and Hamada [3]. The method is
also explained in Komatsu [5].

When a(z) and b(z) are formal power series, a(z)<b(z) means that each
Taylor coefficient of b(z) bounds the absolute value of the corresponding co-
efficient of a(z). In the following we assume that 0<r<R‘'<R. Let @(¢) be a
formal power series in one variable f such that

3.1 6()>0,
3.2) (R—1)0O(t)>0.
From now on, we put f=pz,-+z,+ - +2z, with a constant p>1 to be determined

later. Put @“’%t):((%)j@(t).

LEMMA 3.1. (Wagschal) Let
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(3.3) Alz, 3):d2 a.{(2)0*
i

be a linear partial differential operator with coefficients a,(z) holomorphic on a
neighbourhood of the polydisk Cr={z=C"**; |z;|<R}. Then there is a constant
C which is independent of O(t) and p=1 such that if

(3.4) u(z)<O9(t),
then
(35) Az, D)u(z) <Cp™@I+m™(1).

LEMMA 3.2. (De Paris) Let
(3.6) B(z, a):azq b, (2)0°

IS
be a linear partial differential operator with coefficients b,(z) holomorphic on a
neighbourhood of the polydisk Cr. Then there ave constants p=1 and C, such
that if

(3.7) v(2)KBIP(t)
and
(3.8 u,(0, 2009 (), (=0,1, -, (k—1),

then the solution u(z) of the initial value problem

(%)k”<25=3<2, Du(z)+v(z)

3.9

(aizo)l u(0, 2N)=w(z")  (U=0,1, -, (k—1))
satisfies
(3.10) u(2)<C,09(¢).

Now we introduce majorant functions due to Wagschal and Hamada:

k!

(3.11) 6(}3)(1’):@:?‘51;_1—

(k=0),

tlkH—s

& s!
(3.12) 00 (= ;}) RIS (B=0).

We note that

(3.13) (Tj?)l B<0(1) =R () .
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For 6®(¢), we have

LEMMA 3.3. Let R>2r. For E<0 we have

(3.14) L gy 2t

R=1 g (2).

2I
(R—2r)
Now we set

(3.15) Hy(t)= 6"”(2‘) (keZ).

—1)

H,(1) satisfies conditions (3.1) and (3.2). We note the following facts concern-

d

ing derivatives HY(f)= (dt Hy(t):
LEMMA 34.
(a)

(3.16) HP( KR HI™() .
) If k<

(3.17) HP@) < HE#0 (1)
(¢ If k=0

(3.18) HP@)< (R{E’ )6’(“’”(1‘)
(@) If <0 and R'>2r

(3.19) HP(t)« (IZQI,MR/ )0<“"’(t)

For proofs of Lemmas 3.1~3.4 we refer to Komatsu [53

Now let us estimate w,, ;(z). We choose R so that coefficients of the opera-
tors L(z, 8) and R(2) in (2.11) and u,(z’), u.(z) in (2.1) are holomorphic on the
polydisk Cz First we estimate w,, (2.

LEMMA 3.5. There are constants =1, Mi>0 and A,>0 which are independ-
ent of j such that

(3.20) w, {2) KM ATTH (F) (7=2).
Proor. First we note that we can choose C>0 such that
(3.2 Wo,(2) KCHY(), Wo, (2) K CH(E).

Obviously, if j is odd, w,, ;(z)=0. Suppose that (3.20) holds for j>j+-2. Then
by Lemmas 3.1 and 3.4 we have
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(3.22) gzo(z)wo,J+2(Z><<MlclAl_(J+2)HJ+2(t>

KMCAT TP HP(E)
for a constant C,>0.
Hence by Lemma 3.2 we have for some constants C,>0 and p=1

(323) wo,J(Z)<<M1C1C2A1—(J+Z)HJ<Z') -

Hence for some A, and M, we have (3.20).
For w,, (2) we have

PROPOSITION 3.6, There are constants p=>1, A, B, and M which are inde-
pendent of H{t) such that

(3.24) Wa, {2) K MAS I B§ H (1) (7=2n+2).

PrROOF. We prove this lemma by induction. Assume that (3.24) is valid,
when 0<n<N, or n=N-+1 and j=>J+2. Since by Lemmas 3.1 and 3.4

(8.25) gzo(z)wz\’ﬂ,J+2<<C1MA§(NH>_(J+2)B§+1H.(IZX—;P2(N+1>(”
LKCMAF -7 By H 81 0(8)

and

(3.26) Lz, W35, 7-505-2 K CMAF TH2BF s HF 3R (1),
we have by (2.26) and Lemma 3.2

(3.27) Wys1,s KCCMASY -7 By HF S (1)

+Co, 2 CMAGT 7B+ HY (1),

Therefore for some M, A, and B, we have (3.24).

PROPOSITION 3.7. There are positive constants M, A, B and C which are
independent of n and j, and a neighbourhood V of z=0 such that for z&€V

|z]"7

(n—n!
(3.29) [, £2)| SMACI-*(j—n)! @Cn+2=j>n).

(3.28) [ wa, 2) | SMA"B"™7 (—oo<j=<n),

Proor. By Lemma 3.4, we have, when j=>2n,

R’ X
) T pu-m
(3.30) Hou( < r =y ()
and, when j<2n,
22n—jR/

(n) J-ny
33D HiBn(D € 50977 (1)
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If 0<t<y/2, we have

(3.32) 0<k>(z>s(%)k“ Bl (20
and
(333) GP(H<2 B k11 (B<D).

From (3.30) and (3.32), we have for ;>2n
2N\i-n .
(3.34) | H (DI <Dy(5) " (=)
for some D;>0. By (3.31) and (3.32), there is a constant D,>0 such that for

n=j<2n

(3.35) H ()] suzzzn-f(-i—)j Ge-mt.

Finally, for j<nu there is a constant D, such that

(3.36) LH P (0)| < Ds2227 [ 1|73 f(n— j) !
Hence by Proposition 3.6 we have, when j>=,

(337 | wa, (2)| SMAZ* B3 D 2*"(2/ry"(j—n)1,
and when j<n,

(3.38) [ wa, {2)| SMAFIBE D227 | 2"~ [(n— )|

for some D, and D,. From (3.37) and (3.38) Proposition 3.7 follows.
Set

(339) wie, O=_ 3 w0

and

(3.40) w2, 0= 3w 27K0.
~0 <0

PROPOSITION 3.8. There is a constant c, independent of n such that wa(z, {)
converges in z€V and |{]>c¢,|z].

Proor. By Proposition 3.7 we have

= d wpnei 121" (=11
(34D) 2w DO IS B MArBr D
Hence, if |{]|>2B]z]|, we have
S(2BYyG-D! 1
(342 2Ce) v =ar
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This completes the proof.

Set
(3.43) wz, = 3B wa (2/40)= Z TR0,
where
(3.44) BiD=_ ¥ waa) (G20,

nz(j-2)/2

PROPOSITION 3.9, The series in (3.43) converges uniformly on any compact set
in {{; a<arg{<B, {x0} and z€ V.

Proor. By Proposition 3.7, we have

(3.45) DI E v @I+ 3w 2]
<3 MA®B™ Edlin MARCI-*(j—n)!

7=y (n—N!  esGenre

<MA¥(exp (AB|z])+DI'(j/2+41)

<M AT(G/2+1).
Hence we have
(3.46) fw*(z, O |£§1 [w3(2)] /O]
< $waripn ST EET0mD <ppexpe,1s.

This completes the proof.

§4. Construction of another formal solution.

InTthis section we shall construct another solution @, of (2.19),:

£2w0+<%>230w0:0 ’

(4.1), Wo(0, 2, O=us(z")10),
1@%— DR+ (0, 2)u)W©),

() Lot Y Yo § () L

awn+1(0’ Z ’ C)
02,

(4.D)n+1

z'T}TL+1(O) Z/y C)Z =0.
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The initial values of @y(z, {) have a singularity at {=0. We construct @, by
the method due to Hamada, Wagschal and others.
Now we shall find a characteristic function of the operator .£y(z, )+

Rz, 8)(—;5)2 through {=0 at z,=0. Let ¢(z) satisfy the equation

<Z’ ) 5 2
42) (= %)(% afz GZ Y=z 32)=0,

#(0, 2)=0
Then ({+¢(z)) and ({—¢(z)) are simple characteristic functions. It follows from

a result in Hamada [2] and Wagschal [8] that there exist %, (n=0, 1, ---) such
that

(4.3) Walz, O= 3, (wn A {CH PN+ 05 (2)f (L—¢(2))

where @ (2) and @, ,(z) are holomorphic in a neighbourhood V, of z=0 which
is independent of #n and j.

We shall give lemmas concerning estimates of ¥Z (z) without proofs. We
also make use of H(f) in (3.15) and assume that the polydisk Cp={lz;| <R} is
contained in V, and 0<r< R'<R.

LEMMA 4.1. There exists p=1, A and E; such that
(4.4) W) <KAE{HP(H)  (j=1).

Let us consider the equation

(o) o= B (s gt 4@,

mazc©=@4%§¢§:a

4.5

We have

LEMMA 4.2. There is a neighbourhood Vs of z=0 such that for afz) and
bi(z) holomorphic in V, there exists a formal solution u(z) of (4.5) of the form

(4.6) u(z)= jj;l (uj@f (PN +u; @ (C—¢),

where u;(z) ave holomorphic in V,. Moreover, if
@7 aiz), b{z)K AQY-T+(¢) (s=2),

there arve p=1 and Fy such that
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(4.8) u(2), uF (DK AF,09-7+72(1),
where O(t) satisfies conditions (3.1) and (3.2).

By making use of these lemmas we get estimates of @3 (2):

LeMMA 4.3. There are constants G, L and K such that
4.9 Wz (DK GL"KIHY(t).

We can prove Lemma 4.3 by the method similar to that used in § 3. Lemma
43 means that the power series

(4.10) 3 3w @C=@Y/ 5!
are uniformly convergent, if |({2=¢(2))|<c, for some ¢, Thus we have

PROPOSITION 4.4. There is a constant ¢, such that W(z, c>=éow,,(z, Q) is
holomorphic in {(z, 0); L]+ 12] <cs, (Cxd(2))20}.

We note that w,(z, £ constructed in §2 is holomorphic in {(z, {); z€V,
[€1>colz]} but Wa(z, €) in this section is holomorphic in a neighbourhood of
z={=0 except on {{+¢(z)=0}.

§5. The difference w,(z, {)—W.(z, O).

In this section we shall show that w,(z, {—@W.(z, { is holomorphic in some
neighbourhood of z={=0. We note that, though their constructions are differ-
ent, they satisfy the same equations (2.19) (or (4.1)). First we give a lemma.

Set x:(xﬂ’ X1y 707 Xn):(Xo; x’)ECn-H and
a 9
o M € 0 00=(5) +(g) + M. €. 0 80,

where M{x, {, 04, 0-) is an operator of order 1 whose coefficients are holomor-
phic in a neighbourhood of x={=0.
Let us consider solutions of the equation

(%)kM(X: g, 8z, Bulx, O=1(x, 0

ou(0, x, O
x4 B

(5.2)
u(0, x/, O= 0.
LEMMA 5.1. Suppose that for small e and v with |7|<r u(x, {) is holomor-
phic on w,={(x, {); 1 x| v, 12150, =76}, If flx, Q) is holomorphic on
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o={(x, 0); x| =r, | x|+ 1L =2r, | x| <07}, then u(x, {) is also holomorphic on .

Proor. Set v(x, O=M(x, {, 0., opul{x, {). v(x, £ satisfies
(5) otx 0=1x, 0.

From the assumption v(x, {) is also holomorphic on w.
Now consider the Cauchy problem

M(X, C’ a:cy aC)ﬁ(x) C):U(xy C)

(5.3) 070, 2, 0) _

a0, x’, D= o, 0.

Since the principal part of M(x, {, 9, 0 is (—a—ax—y—l—(%)z, Cauchy problem
[

(6.3) has a unique solution #(x, {) on w. From uniqueness we have #(x, )=
u(x, {). Hence u(x, {) is holomorphic on w. This completes the proof.
Let us apply Lemma 5.1 to the functions

(5.4) Bulz, O=w(z, O—W.(z, ).
They satisfy
o \2?
{cor () itz 0=0,

0

(5.5)
ﬁo ’ —
azo (0: z, C)_O:

B0, 2", O)=

(a%)m’”(fﬁRo(—a%)z)ﬁm(z, 0

55 —= B ()" Lubarasa, 0,

800, 2, C>=—aﬁ”(—g’zf';©=o.

PROPOSITION 5.2. There is a neighbourhood V of z={=0 independent of n
such that B,(z, ) is holomorphic on V.

ProoF. We note that B,.(z, {) is holomorphic in
(5.6) A={(z, O; [LI>colz], 0< L@@ | <cy, 20l <ay, |27 <a’}

by Propositions 3.8 and 4.4 for some constant ¢, ¢;, do, a’>0. Hence for small
7%0, Balz, ) is holomorphic in a neighbourhood of (0, 7). We can find a trans-
formation z=y(x) which maps x,=0 to z,=0 and %(0)=0 and is biholomorphic



Asymptotic behaviour of singular solutions 19

{(m-2>
near z=0 such that the operator (%)2 * (£2+Ro(%)2> is transformed into

(E_a%)?(mma(x)«—a—i—o)z{—(gg)z+1ower order terms) (a(0)x0).

Thus we can apply Lemma 5.1. Obviously Bz, {)=0. Since B.(x(x), {) is
holomorphic near (x,{)=(0,7), we can find 7, 7 and ¢ so that B,(y(x), Q) is
holomorphic on

(6.7 o ={(x, O 12l Zr, |21 ¢/, [T—71<el.
Set, as in Lemma 5.1,
(5.8 o={(x, Q); x| Zr, [ x|+ =20, {27 <0}

Let us prove by induction on n that f,(y3(x), {) is holomorphic on w. Sup-
pose that B,.(x(x), ), 0=<n=N, are holomorphic on @w. Then the right hand side
of (5.5)y+1 is holomorphic on w. It follows from Lemma 5.1 that By.(x(x), O
is holomorphic on w. Set V=y(w). This completes the proof.

§6. Integral representation of solutions.

In this section we shall give a singular homogeneous solution u(z) of the
operator L(z, 0) such that

Lz, 0)u(z)=0,

N EICON
(6~1> u(O, z )_F((ﬁ—f—l)/Z) Zﬁ‘SH)/Z 4
ou(0, z7) (27
=T D/D S (BEN),

whose singularity lies on the surface K={p(z)=0}. We shall construct u(z) by
making use of Uz, 1) in the previous sections.

Now recall that U(z, )= g}oexp (—2p(2))Wa(z, 2), where
(6.2 Walz, 2):23§Cexp (—2Dwlz, DAL

=2] exp(-20__3  wa ((0dC.

<js2
Let us define the path Cs as follows:

Co=CGICICy  (d>0),
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Ci=1{{=rexp(il), d=<r<oo},
(6.3 s={{=d exp (ip), 0=Lp=0+2xr},

Ci={{=r exp ({(+27)), d<r< oo},
where the path Cy starts at ooexp (i), goes around the origin on C¢ and ends
at coexp(i(@+2x)) on C;. Set C=C, in (6.2). Wy(z, ) is holomorphic in

larg 2] <z/2. By varying C in (6.2) we can extend W,(z, ) holomorphically in
A. We have

PROPOSITION 6.1. W,(z, A) is expanded as follows:
6.4) Wolz, D)= X w, (A7,
—oLjien+2
Hence W, (z, 2) has a most a pole at 1=0.

Proor. If |arg il <=m/2, we have

(6.5) Wn(Z, 2):23—m<§2n+2wn, j(Z)SCO exp ('"XC)f](C)dQ .
Since
<6'6) SC’O &Xp (-_ZC)fj(C>dC:,l—<j+l) ,
we have (6.4).
Set
1 2
o o %Sl‘a exp (—2p(2)Walz, DA
and
6.8 g’g(s):-Zl—_S exp (- DRNIL (),
Tidp,

where h(2)=24%log 2) and I} is a path which is defined by the same way as C,.
We will show that

(6.9) u()= 3 ual2)

is a solution of (6.1) and from (6.9) we will derive an integral representation of
u(z). To do so we estimate gi(s).

LEMMA 6.2. g%(s) is a holomorphic function of s except at s=0. More pre-
cisely

(6.10) gis)=I((p—R)/s*P2  (BZk+1),

(_1)<§~k>/2

(6.11) ) =0uss TP T

s =P/2(log s)



Asymptotic behaviour of singular solutions 21

(41> and k—p is even),
(6.12) HS)=0 ;s kP2
(k+1>p and k—f is 0dd),
where 05 is a constant with
(6.13) [05-gl SNR*F/T((k—B)/2+1)
for some N and h. A

Proor. It follows easily from varying the path I'=17", that g2(s) is a holo-
morphic function of s (sx=0). If g>k+1, we have for s>0

6.14) g¥(s)== —Zi—lg exp (—225)228- F+1(log 2)dA
0

r

ZZS:eXp (= 225)2B- kD 43

=T (B—F)/2)s*Pr2.
If B<k-+1, then we have

(6.15) grﬁ(s):%{5 exp (—22)2% **(log 2)d2
Ty
:_EITS exp (— ) F s H P (log p—log +/5)d e -
Ty
Since

1 0  I=0 or even
(6.16) —?S exp (—p)pld p= (—1)nre
Ty

2z Jr m [<0 and odd,
we have (6.12) by setting
6.17) b= exp(—ptlog pdp (1<)
’ Y il :

Now we estimate §,. Substituting p=|I{/2p, we have

(6.18) al:i |Z [ (—llH—l)/Zg[1 exp (_[” pZ)p—ll](log |” 1/2p)dp .
0

7l
By deformating the path I, to the one that starts at co on the real axis, goes
around the origin once on the circle |p|=1 and goes to coexp (i(27)) on the
real axis, we can show that there are N and % such that (6.13) is valid by
making use of Stirling’s formula.

Form Lemma 6.2 we have the following proposition which is obtained in
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Hamada [3]. Our construction of a solution of (6.1) is different from that in
Hamada [3].

PROPOSITION 6.3. u(z) ((6.9)) is a solution of (6.1) which is holomorphic in a
neighbourhood of z=0 except on K={p(z)=0}. Moreover u(z) is expressed in the
form

élak(z)go(Z)‘k—f-b(Z)(lOg () +cz) B odd.
godk(Z)go(z TRHUE B even,

where ax(2), b(z) and (z) are holomorphic functions in a neighbourhood of z=A0.

In general u(z) has a term of infinite negative powers of ¢(2). So it is not
easy to know the behaviour of u(z) when z tends to K, ¢(2)—0. Our integral
representation given later will enable us to know it.

PROOF OF PROPOSITION 6.3. First we note that

(6.20) U= _ 3 wn (Deh-el@),
and w,, {z, )=0, if j is odd.

Hence

(6.21) W@=Su@D=3 % wnDgh-le2).

By Proposition 3.7 for <0, we have
6.22) 3 (W, (2| SM B AP |2 - [(n—j)

=Mexp(lz| AB)XBlz)V'/{j] 1.
For j=1, we have

(6:23) B 0 DI= B (w4 3 w2
S_(j_z)/zz)SKjMA”Cf'"(j—n) I+ nZZ)jMA”B"‘fIz[ i f(n—j)!
SMAT(G/241).

We return to (6.21):

(6.24) lu(Z)lSjZS)OM’((BIZI)‘j'/UI D1g5-s(e(2)]

+]ZZ;M/A"'IF(J'/2+1)fg§-3<@9(2))¥-
We have
(6.25) j2§3z4’j IC(G/2+ 1) [ g5-(p(2))]
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szégA’jF(j/Z-H){so(Z)l“"5"3”2(15;—5—3i+F(<j"‘3—1)/2)‘1110g e(@)])

o T(j/2+1)

MAI M2

=2 MY TG0

Hence (6.25) converges, if |p(2)|2A=<1/2.
On the other hand

(6.26) 2B 121)7'/171 D] &5-sle(2)]

A

[ p(2)| 978211+ |log p(2)]) .

= Z_BlzDVT(=j—3)/2)/1]] Dlg(z)|~#-i=»12,

Obviously (6.26) converges uniformly on any compact set in {r>[@(2)| >0} for
some r. Expression (6.19) is clear. From the method of construction of U(z, 1)

= ioexp (—22p(2)Walz, ) it follows that

627 (0, 2= %Srexp (— 222 (21278 (10g D)dA
=r(s+1/2 50

and

(6.28) a—“%fi:%&,exp (=22 us(z)23log DdA

=T(E+D/25r

u(z) is a solution of (6.1).
We have, by making use of Wy,(z, 1) and w,(z, {),

THEOREM 6.4. There is a solution u(z) of (6.1) in a neighbourhood of z=0
which is expressed in the form

(6.29) u(z)=%§z Srexp (—220(2)) Walz, 224(log DdA,
where

(630) Walz, D=7 exp (—20wa(z, O

and

(631 Wiz, O=__3 wn 20

Now let us represent u(z) in a form different from (6.29) with the aid of
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Wz, ) constructed in §4, which is convenient for analysis of singularity. To
do so let us recall

(6.32) wi (2, Q= Zg W, 20
and
(6.33) wale, O=_ 2w &f(0.

Hence we have

(6.34) Wiz, D=2 exp (~A0walz, Od¢

~ 23SCexp (—=20)(ws (2, O+ws (2, O)dC.

Since wj (z, {) is single valued, we have

(635) Wiz, D=2 exp (~20wi (2, OdC

+23SICI=d exp (—2wz (z, OdC.

From Proposition 52 there are holomorphic functions 8,(z, {) (n=0, 1, --)
such that

(6.36) Wa(z, =Wz, O+ Palz, ).

Hence for small 4 we have

(6.37) Wiz, 2)=13S o EXP (A0 @z, O Balz, O—wi (z, D)l

1<

+2 exp (— 20wt (2, Ol
=2 exp(=A0(@alz, O—wik (2 )

+2 exp (20w 2, 0.
Thus we have by Proposition 3.9

THEOREM 6.5. In a neighbourhood of 2=0, the solution u(z) of the problem
(6.1) defined by (6.29) is represented as follows:

(6.39) u()= 5o exp(~2¢(2)22*(10g 2)d2



Asymptotic behaviour of singular solutions 25

x{ _ exp (=200 O—wHz, D)L

1 =
- 2 BTV +
+ o0 nzzlogrexp( 2p(2))228W (2, A)log AdA,

where

(6.40) wi(z, D= wiz 0,

(6.41) (z, O= 3, @az, 0)

and

(6.42) Wi, 2):23gcexp (—AQwi (z, OdC.

In §7 we will show that in integral representation (6.39) the essential part
of u(z) when z tends to K= {p(z)=0} is

643)  u )= %Sﬁexp (— 2p(2)228*(log D‘”S]w exp (— )z, O)dC.

§7. Asymptotic behaviour of singular solutions.

In this section we shall give informations of asymptotic behaviour of u(z).
In order to do so we shall investigate functions defined by integrals. Let us
recall that the path C§ starts at d exp (if) and ends to dexp(i(6+2x)) on the
circle |{|=d.

Now set

01)  Lol@)= |, exp (222 og DA exp (10w’ (e DAL,

(12) L= %g [EXP (—22(2))22°*(log Z)dlgogexp (—=20w(z, OdC
and

(7.3) I(2)= 571? io Srexp (— 20(2)W iz, D22 (log DdA.

For I (z) we have

LEMMA 7.1. [I.(2) is expressed as follows:

(7.4) FOELHOENCOY
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where gé_i(s) and W} (z) are defined by (6.8) and (3.44) respectively.

The proof is the same as that of Proposition 6.3.
Now to investigate I ¢(z) and I, 4(z) we need asymptotic behaviour of the

functions

(75) Wi, z>=§cgexp (—0wH(z, O)de
and

(76) Watz, D :chexp (=20 (z, DL
as |A|—oo0.

LemMA 7.2. For any ¢>0,
7.7) Wiz, D~ ]i) TH(2)A-a+D
as [A]—oo in the sector |arg A-+0|<r/2—e¢.
PrOOF. We have

d exp (1)

(7.8) W(_;(Zy ,D:S €eXp (—ZC) go w;(z)‘l—y(]c;_i_l) dc .

¢
Substituting A=pgexp(—if) and {=7 exp (if), we have
. a & ; exp (i(j+1)0)
; —if)= - )i T2 g
79) G, pexp (i) = exp (—pn) Jmitam' R ay
By Watson’s lemma for asymptotic expansions, we have

(7.10) Wiz, D~ i;) TH) Ao
p3

as [A|—co in the sector |arg A+6|<r/2—-.
To investigate Wy(z, A) let us introduce functions

(7.11) fO= 5, s L+,
where |a;|<AG+D/(d’Y, d’'/2>d> b /k (0<k<1/2), and
(7.12) FQ, b, e>=§ exp (=207 QL.

Cs

LevmMA 7.3. We have

(7.13) F(2, b, 0)~exp (1b) ji’; @, 2-0%D
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as |2]—oco in the secltor |arg A+0] <cos (k).

Proor. We have

b+d exp i8> . C

(7.14) FQ4, b, O)=exp <2b)§ a;& exp (—K)T"(;iﬁ) ac.

[

Since —Re A(b--d exp (i8))<—F{2] for some  in the sector larg 2--6] <cos™ (k)
we have (7.13) from Watson’s lemma.

Set
(7.15) Wz, D=W iz, V+Wilz, &),
where
7.16) Wile, D={ _exp(~20) & a7 L= gNdC.
g

From Lemma 7.3 we have

LEMMA 7.4, In a small neighbourhood of z=0 which depends on & we have

(7.17) Wz, D~vexp (229(@) S w5 (DL I+

as |Al—co in the sector larg A-+0| <cos (k).

Proor. Since ¢(0)=0, we can take a neighbourhood of z=0 such that |¢(2)]
<dg there. Hence we can apply Lemma 7.3.
Next we consider integrals in . To do so let us investigate functions

1
1 J— 32,42 1
(7.18) K¥a, 6)= —-ngpexp( A22a®) kY2, O)(log D)dA
and
1
2 J— 242 2
(7.19) K¥a, b, 6)= o Srexp (—A2a® k32, b, B)(log A)dA,

where a, beC! and 6] <r. EYA, 6) and k%A, b, 6) have properties:
(i) k¥2, 6) and k%A, b, §) are entire functions of A and satisfy

(7.20) ', 6)], 12°Q, b, 6)| <Cexp(c|a]),
(it)
(7.21) Y2, 0)Nj=§J BLA-U*D

as [1]—oo in the sector |arg A+0|<=m/2—e¢,
(iif)
(7.22) KR, b, O)vexp (26) 3 KBTI
J==J2
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as |Al—oco in the sector |argi-+6|<cos () (0<x<1/2), where Ei=Fk¥b) is
bounded.
For K*(a, ) we have

LEMMA 7.5.
(1) K¥a, ) is a single valued holomorphic function of a except at a=0.
(i) For any >0 we have in the sector |arg a—8| <(3/)z—e

J
(7.23) K¥(a, 0)= 3 Fis,805,(a)+a bounded function,

where g¥(s) is defined by (6.8).

PrROOF. Since
(7.24) " K¥a, 0)=%§:exp<—p2>kl<;z/a, Odp,

(i) follows. To prove (ii) we may assume that #=0 and set K¥a)=K¥a, 0)
and k'(Q)=~' A, 0). For any e with |arg a| <3z/4—e we can find an arg =0
(161 <x/2) such that Re (2a)*>0. Hence from the assumption of 2%(1) we have

(7.25) Ki(a)=5- exp(—2a?k(log DA
]

oy

= _Z%SzweXp (—Zzaz)(j ZO)J B A9+ 012 log D)d2A
6 ==dJ1
in larg a| <(3/4)r—e. Thus we have (7.23).
For K¥a, b, 6) we have

LEMMA 7.6.
(i) K*a, b, 6) is a single valued holomorphic function of a except at a=0.
(i) Let |arg a—f| <cos™k—z/4 and set w=b/a. Then for any >0 we have

(7.26) K*(a, b, O)~(w/a)"? exp (0?/4) g;l»jw-f

as lw]—oo in the sector |arg w| <z /4—e, where vi=2""2/T k%, and in the sector
largw—=n | <B/4)r—¢

[K*a, b, )] <C.|b|~7> (Je=D)
(7.27) [K*a, b, )| =Cllogb]  (].=0)

[K*a, b, )| =C, (Je=—1).

PROOF. Since

7.28) K*a, b, O)= —i—fexp (—ku/a, b, O)dp,
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(i) is clear. To prove (il) we may assume that §=0. We set K¥a, b)=K*(a, b, 0),
k2, by=F%2, b, 0) and k**(A)=exp (—AD)k%A, b). We have

(7.29) K¥a, b= %S?exp (— 1t op) k() a)d

:%exp <w2/4)§ exp (— Rt/ a)dp.

=3
—w/

Let |argw| <m/4—e. Then we have ‘arg %(p+1/2)t<cos—llf—5, provided p>

—1/2. Hence we have

(7.30) K*a, b)=-2-exp (w2/4)§ exp (—(wp)z)k2*<—c—:—(p+1/2))dp

-1
and

(7.31) EH( 2 (p41/2))~ f? *—’ki‘Tﬁ
G ) (L (p+1/2))

as l%(p+1/2)i—»oo in the sector iarg %(p—!—l/Z)t <cos g, Let us set

(7.32) K¥(a, =2[ " exp (—(@py)k(p-+1/2))dp
and
(7.33) Kia, b)= %S:Mexp (—<wp>2>k2*(—‘;i<p+1 /2))dp .

Then we have from (7.31)

@31 1KKa, 1|7 exp (~Re wpr)C(1+ S (o +1/2) " d
</(9)]"c exp (~(Rewy/16)
and

035 Kie, =(3)", exp (~apn{ 3 B e+1n)

w , - (N+2)
+0(%p+1/2) " dp.
We note that

(7.36) Aj<w>:g°_°mexp(—(wp>2><p+1/2>-f-ldp~ Ii ;@™ oty =2/
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as |w|—oo in |argw|<n/4—e for any ¢>0. Therefore

(7.37) Ko, ty=(7) exp /9 3. #(2) 7 4@

+0((2)" )+ Kxe, 1)

as |w|—co. Thus we have
2 @\72 2 - -7
(7.38) K*a, b)~<z> exp (@ /4)( Sy

as [w]—oo in the sector |argw|<z/4—e, where vi=2"""2/T k2,

Next suppose that |arg w—n|<(3/4)r—e. Let us return to (7.19). For (a, b)
with |arg a|<cos™'#—r/4 and |argw—n|<37/4—e, we can find an arg 1=0,
with |0,] <cos™'x such that |exp(—(1a)*+2b)|<1. Since |arg | <cos lx,

(7.39) PN~ 3 RO
J==dg

as {4|—co, Thus we have

1

(7.40) K¥a, b=

-1
2 29~ 4D
Sralexp( (Aa) +Zb)(j:§_J2k]l

- .
+-2-+0() )log Hdi.

Since
@4 7 exp (— oy )1 di=(—wa) (a4 D+ 0 0] ) (@20)
and

(7.42) gj;i—gpelexp (~a+26) 182 432 tog (~5)1+OM) (loj—o0).

Therefore we have

(7.43) K*(a, b)=j21 a (kL (—w) T (7)+0(lw]| 7))~ ki log (—b)-+O(1)
=J2
(lw]—00).
Consequently the statement of (ii) of this lemma follows.

REMARK 7.7. We do not make use of the higher order terms of asymptotic
developments (7.21) and (7.22). They are concerned with smoothness up to the
boundaries. (7.21) is connected with smoothness of K%a,#) on the set
{a; larg a—0|<(3/4)r—e}, (7.22) is connected with smoothness of K*a, b, &)
when (a, b) tends to (0, 0).

Now let us return to the functions I,,4(2) and I, 4(2).
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PROPOSITION 7.8. For any >0, we have
Brs —_—
(7.44) Lo@)= 3 W3 (2)85- gra(V 0(2))+0L)
as 1o(2)]—0 in |larg Vo(2)—0| <@/4)x—-e.
Proor. From Lemma 7.2
(7.45) FEWi(a, D T D
=
813 )
~ S @00
F=

as [A]—co in |arg 14+0|<(w/2)—e. A simple application of Lemma 7.5 leads to
(7.45).
REMARK 7.9. We note that the asymptotic development of Wj(z, ) and

the formal sum iOWZ (z, ) are equal. This implies that (I, ¢(z)—I:(2)) is an

infinitely differentiable function on the set {z; |arg v ¢(2)—0| <(3/4)x—e} .

Set
(7.46) w(2)=¢(2)p(z)~*
and
(7.47) Ti@)= 57 . exp (=) Wiz, 2)log D

PROPOSITION 7.10. Let |arg v/ ¢(z2)—0| <cos k—x/4 (0<£<1/2). Then there
are vi(z) (j=1, 2, ---) holomorphic in a neighbourhood of z=0, p. integers or
—oo and constants C.>0, pL.=>0 such that

(i) if larga(z)|<(z/4)—e,

(7.48) o)~ ( zﬁg Vexp (4 ‘;ﬁg)( £ i@l

as w(z)]—oco, and
if largw(z)—n| <(3/4)rx—e,

(7.49) | 155(2)] <Cl )| -7+
and
(i) if larg(—w(@)|<(z/4)—e
_ —@)\?- 1 ¢@\ & - i
(750) T () oo (1o (2ri@ee )
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as |w(z){—o0, and
if larg (—o(z)—m)| <@/ —s,

(7.51) @) <Cal ()| -7,
where if py (o p-)y=—oo, IE4(2) (or I54(2))=0.

Proposition 7.10 follows from Lemma 7.4 and Lemma 7.6. We note that the
(748)~(7.51) are valid, if we replace arg w(z) by arg w(z)+2mz (meZ). This
follows from the proof of Lemma 7.6.

Now suppose that |arg vg(z)—8]<cos k—(x/4). Then (I, 4(z)—I4(z) is
bounded by Lemma 7.1 and Lemma 7.5. Set [4(2)=1IFs(2)+154(2)—11 (z)+1:(2).
The asymptotic behaviour of ,(z) is essentially dependent on If¢(2) and I5,(2).

Let us return to the integral representation (6.29) of u(z). Put I'=I_; and
C=Cy. Then we have u(z)=I4(z). By applying above results we have the main
theorem

THEOREM 7.11. u(z) behaves asympiotically near the characteristic suvface
K={p(2)=0} as follows:
Let a<arg p(z)<B.

(1)
P(2) \7+ I LORVE-N iy
(7.52) u(z)~< @(z)> exp (7 o2 )(jglvj(z)w(z) >,
as {w(z)|—oo in the sector larg w(z)|<m/4—e and
—P(2)\?- 1 ¢\ _;
(7.53) u(z)~( o) ) exp (1 o(2) )(J;vj(Z)w(Z) )

as lw(z)| =0 in the sector |arg (—w(2)| <w/d—e for any >0, where if p.(p-)=
—oo, u(z) is bounded in larg o(2)| <z/4—e (Jarg—w(z)| <m/d—e).
(ii) For any >0 there are Cop.>0 and p’>0 such that

(7.54) lu(z)| =Capelp(z) | =¥
in the domain (w/4)+e<larg o(z)] <B/dr—e.

Proor. (i) and (ii) follow from Proposition 7.10 and the fact that @#(z)
(j=1, 2, ---) are independent of 4.

REMARK 7.12. If u,(2") or u,(z’) in (6.1) is not identically 0, at least one of
b+ or p_ is positive. This follows from the method of determination of
Wa, {0, 27).

By exchanging h(2) in the integral A2, we can get homogeneous solutions of
L{z, ) with singularities on K in various form. And by investigating integral
representations, we obtain their informations near the characteristic surface K.
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Thus Theorem 1 is proved. For the solution u(2) of (0.5), p,=p-=2, Wi (x, V)
=wi(x, y)=0 and @§(x, ¥)=w5(x, y)=1/2. u(x, y) is represented in the form

(7.55) ulx, y)ZZS:eXp (—2%3) cosh (2x)2 dA.

§8. Proof of Thesrem 2.

In this section we show Theorem 2. To do so we need existence and

uniqueness of Goursat’s problem.
Consider the differential equation

B @Fule= 3 a (OIS (1B1=m),

where a,(x) and f(x) are holomorphic on the polydisk Ca={xeC"*'; x| =R}.
Pose the boundary conditions
(8.2) (02" (u(x)—v(x))=0 when x,=0 for 0<k<p;—1

(i=0, 1, ---, n), where v(x) is also holomorphic on Ckg.
The following lemma follows from Theorems 5.1.1 and 5.1.1" in Hérmander

[4].

LEMMA 8.1. Let A be the set of multi-indices of the right hand side of (3.1)
such that au(x)=0, and assume that B does not belong to the convex hull of A
considered as a subset in R™. Then the boundary value problem (8.1) and (8.2)
has one and only ome holomorphic solution u(x) in C, for some r with 0<r<R
which depends only on B, A and M= gré%}é >t tau(x)| and is independent of f(x)

lal=m

and v(x).

We apply Lemma 8.1 to solutions of
8.3) @220 i) = 3 (26 u(x)+ ().
where |Bl=m.

LEMMA 8.2. Suppose that (83) satisfies the assumption of Lemma 8.1. Let
u(x) be holomorphic on Cp—{x,=0} and satisfy (8.3) and

(84) @290, £)=0, 0=k=p—1.

If f(x) is holomorphic on Cg, then u(x) is holomorphic in a neighbourhood of x=0.
Proor. Let 0<le{<R/2. Consider the problem

85) @0 )= 2 (50wl +/ (),

(8.6) (0z)¥(u(x)—v(x))=0 when x,=0 for 0<k=<pg,—1,



34 Sunao OucHur

and
8.7 0z (ulx)=vx))=0 when x,=¢ for 0<k<pB,—1,
where
Bit (xl'_s)p ”
(8.8) Ua<x): 2 ——"—<azl)pu(~x0’ g, X )'
p=0 P!

By the assumption v.(x) is holomorphic on Cp and (d,,)*v.(x)=0 on x,=0 if
0<k<p,—1. By Lemma 8.1 u.(x) exists in Co={x&C"*; | x,| <, | x;—e| <7,
[x”}<#’} for some v’ with 0<»'<R/2 and independent of e. Uniqueness im-

plies that u(x)=wu(x). Thus u(x) is holomorphic in U {xel™ | x, ] <,
0 lel<(B/2)

lxi—e| <#’, |x”| <r’}. This set contains x=0 as an interior point.
Let us return to the operator L(z, 0,)=P(z, 9,)*Q(z, 0,)+ ---. We shall apply
Lemma 8.2 to L(z, d,). Since ¢(z) is a simple characteristic function of P(z, 9)

with i]5(2, a90<z))a;o and ¢(0, z’)=z,, it follows that by means of the co-
08, 0z

ordinate transformation

89 Xo=20, X:=@2), x;=z; (j=2)

Pz, d)u is written

(8.10) P, e u=(adzyt 3, a0+ @)@a)™ k-

where the dots indicate terms of order (m;—2) with respect to 9,, and ¢,x0.
Thus L(z, d)u has the form

(811) L(x, 8.)u=c(x)@agPa)™ *ut -,

where ¢(0)=0 and the dots indicate terms of order (m—3) with respect to 0z
Thus we have

THEOREM 8.3. Suppose that u(z) satisfy
(8.12) L(z, 3)u(z)=1(z),
where f(z) is holomorphic in a neighbourhood of z=0, and u(0, 2’) and %u(o, z’)
[

are holomorphic in a neighbourhood of z=0. If u(z) is holomorphic except on
K={p(2)=0}, then u(z) is holomorphic in a neighbourhood of z=0.

Theorem 2 in §1 is an easy consequence of Theorem 8.3.

Appendix

Let K be a holomorphic non-singular surface through z=0, that is, K=
{z; (2)=0}, p(0)=0 and grad,e(z)=0 on K. Suppose that K is a characteristic
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surface of P(z, 0), p(z, %):0 on K. We prove the following lemma which is

shown in Komatsu [5] by a method different from ours.

LEmMA. If grad:p(z, ——>ﬂFO on K, there is a function a(z) holomordhic in

a neighbourhood U of z=0 such that a(0)=1 and p( M)#o identically
on U.
PROOF. We seek for a(z) to satisfy
0PN _
©.1) p(z, ota az>:0
By the Taylor expansion of p(z, &), we have
n da 0 op
©2) e e )+ 3 o e M50 5)

+ o= 1@!'“‘(%%)%’""“'&(2)50,

22laism

where m is the order of P(z, d). By dividing (9.2) by ¢(2)a(2)™"?, we have

( i(p +<p() p Ea—>aal""”ha(2)+h(Z)aZO,

a sxi@iem\ 0Z

9.3) 2 3«5

where h(z)= p(z,f ) / ¢(z) which is holomorphic from the assumption.
( op )ﬂFO We shall show that (9.3) has

Now we may assume that e
0

a solution a(z) with a(0, z2)=1. Since on zo—O (9.3) becomes

0
9p(z, A=
9.4) ('z 5082) aazi—

90,2, 5 (55) " haf0, )40, 2)=

29=0 2sags=m

and ¢(0)=0, we have for small z

820_H< 87’ >’

where H(z, &, a) is holomorphic in a neighbourhood of z=0, &=0 and a=1.
(9.5) has a solution a{z) with (0, z/)=1.

9.5
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