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Introduction.

A group, L, is said to be quasisimple if L is simple modulo its center Z(L)
and L is perfect, that is to say L is its own commutator group. A quasisimple
subgroup, L,of a finite group, G, is said to be standard if the centralizer of L
in G has even order, L is normal in the centralizer of every involution cen-
tralizing L, and L commutes with none of its conjugates.

In 1973, M. Aschbacher proved [2] theorems which definitely showed the
fundamental importance of standard subgroups in the study of finite simple
groups, and since then research of several authors has focused on the deter-
mination of finite groups with a standard subgroup of known type. In partic-
ular, Seitz [10] has dealt with the groups, G, containing a standard subgroup,
L, such that L/Z(L) is a Chevalley type group of characteristic 2 and of rank
greater than 2 with {Z(L)] odd and such that the centralizer of L in G has
cyclic Sylow 2-subgroups. Using the “induction” method, he has reduced the
problem to the four special cases L/Z(L)=Sp.(2), UL2), 0;(2), and OF(2): these
are the only Chevalley type groups of characteristic 2 and of rank greater
than 2 for which the induction method breaks down. The purpose of this half
of the paper is to settle certain problems which arise in the analysis of the
case that L/Z(L)=Sps2). In the appendix, we discuss a similar problem in the
case that L/Z(L)=Ug2), which is handled by Yamada [14].

The induction method also breaks down for Chevalley type groups of rank
1 and 2, and these have been treated by the so-called “pushing up” method
(see, for example, [8] and [9]). As in those cases, the analysis of the cases
that L/Z(L)=Spe2) and Ug2) divides into two parts:

A: For suitably chosen maximal parabolic subgroups P; and P, of L, we con-
struct a 2-local subgroup N;, i€ {1, 2}, which contains P; and has appro-
priate properties.

B: Using N, and N,, we construct a subgroup which is a central extension of
a certain Chevalley type group.

For example, when L/Z(L)=U¢2), our task in Part A is to construct 2-local
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subgroups which resemble certain of the parabolic subgroups of Ly4) or Us2)
X Uq?2). Then our task in Part B is to construct a central extension of L44)
or Ul2)yxX Us2).

In this paper we concentrate on Part B. The arguments in Part A involve
a detailed analysis of 2-local subgroups using individual properties of L and
vary with the type of L. On the contrary, the arguments in Part B are formal
applications of general properties of Chevalley type groups. Although the
results of this paper focus on Sp.(2) and Uy2), it seems that analogous theorems
can be obtained for the groups Oz(2) and 0F(2) as well. However, the shape
of such theorems would depend on the outcome of the analysis in Part A (see
Theorem 2 of Section 4 in this connection). Since work on the part is in pro-
gress, we will not discuss the groups here.

The organization of the paper is as follows. Section 1 contains certain
results on Chevalley type groups. The main result there is (1.8), which is a
consequence of a theorem of Curtis [7]. Section 2 contains the statement of
the basic hypotheses of the paper. Sections 3-7 contain the statement and
proof of the main results of the paper.

We shall follow Artin’s notation [1], Section 1, for the finite classical
groups except that we denote by Sp,(g) the symplectic groups. Otherwise our
notation is standard. Thus if ¢ is a prime power, E, denotes elementary abelian
groups of order ¢, and an E,subgroup is a subgroup isomorphic to E,.

For the background of the theory of Chevalley type groups, we refer the
reader to Carter [4] and Steinberg [13].

1. Preliminaries.

The first four lemmas of this section are concerned with the linear, unitary,
symplectic, and orthogonal groups in the sense of Artin [17. They are identified
with certain of the groups defined by Chevalley [5] and Steinberg [12] and so
they have “natural” BN-pairs.

(1.1) LEMMA. Let M be one of the groups Uf2), LL2), Us2), Ls2), Sp.4),
Sp2)XSpL2), and z an involutive automorphism of M such that K=Cy(z) is iso-
morphic to Sp2). Let S be a z-invariant Spsubgroup of M, (B, N) a natural
BN-pair of K such that B=Cgs(2), and s, t the distinguished generators of the
Weyl group W=N/BAN. Then there exists a natural BN-pair (B, N,) of M
satisfying the following conditions:

(1) S<B,;

(2) z normalizes B, and Ny;

(3) Cp(&)=B and Cy(2)=N;

(Under the condition (3), W is canonically embedded in the Weyl group W,=
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N./Bi~\Ny, so we regard W<W,. Also, z acls on W, by the condition (2).)
@) if M=UL2), U,2) or Spi4), then s, t are the distinguished generators
of Wy;
(5) if M=L,2) and the distinguished generators of W, are labeled

o
71 £ Vs

O

O

then ri=v, and {s, t}=1{rs, riv3};
(6) if M=Ly2) and the distinguished generators of W, are labeled

o O O O

1 ¥a ¥s ¥4

then ri=r,, ri=ry, and {s, t}=1{rirs, rorsrst;
(1) if M=Sp,(2)XSp«2) and the distinguished generators of W, are labeled

O, [e] ] O

Y1 Y 73 ¥y
then {ry, 72} :=1rs, s} and {s, ty=1{rirs, rarsy or {rirs, vers}.

PROOF. Assume M=Sp )X Spy2). Then M=M, X M,, M,=Mi= Sp.2), and
the mapping x—xx% x&€M, is an isomorphism from M, onto K. Let B, and
N,, respectively, be the inverse images of B and N under this isomorphism and
define

B,=B,Bj, N,=N,N5.
Then (B,, N.) meets all the requirements.

Therefore, assume M=Sp(2)XSp«2). Let n=4 or 5, = the automorphism

of GL,(4) induced by the transpose-inverse mapping followed by conjugation

by the matrix

1
1

l s
L1

(blank spaces denote zeros) and ¢ the automorphism of GL,(4) induced by the
nontrivial automorphism of GF(4). We shall use the following identification:

Un(2)=Cat)NSLa(4),
SpH=CEONG L) .

Then we may assume that the action of z on M is induced by 7 if M=U,(2) or
L.(2) and by ¢ if M=Sp,(4) by Section 19 of r3]. Let S, be the subset of
lower triangular matrices with diagonal entries equal to 1,s0 S, is a z-invariant
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Se-subgroup of M and Cs,(2)€Syl(K). Considering the semidirect product of
M by <{z>, we prove the following:

(1.2) If z,€1(zS,) and Cyulz)=Sp.2), then z,<z5.

PROOF. Assume M=U,2) or L,(2). Let A, be the unique E ,subgroup of
Se. Then S,/A.=E, and [Csya(2)|=2; so z;4, is conjugate to zA, under S,.
Hence we may assume z;,=zA4, Then z;,€2z4, where A=C4(2). Let

1 1 )
w= 1 S ] 1
1 1 1 1
If a=A4,—A4, then an easy computation shows z*=zv and (zu)*=zvu, Now z,€
2%, but zuez¥ by [3], Section 19. Hence zvu&z¥, and since Ng(A) acts tran-
sitively on (A/<{v>)*, it follows that z”zA={z, zv}. Therefore, z,&z5,

Assume M=UL(2) or L2). Let u be the involution of Z(S,) and let Q=
Ox(Cyu(u)). Then an easy computation shows that the number of elements of
So/Q that are inverted by zis equal to |S,/Q : Cs,e(2) ; 50 z,Q is conjugate to
zQ under S,. Hence we may assume z zQ. Then since Q/(ud=E, and
[Cai<u>(2)| =8, it follows that z<u)> is conjugate to z{u> under Q. Hence we
may assume z;=z{u). As zucz? we have z,€z5.

Finally, assume M=Sp(4). Let A be one of the two Es-subgroups of S,
Then Sy/A=E,, [Csyalz)]=2, and |C(2)|=8. Hence z =z%. Thus (1.2) holds
in- all cases.

Now let S be a zinvariant Ss;-subgroup of M. We argue that S is conjugate
to S, under K. There exists an element m&M such that S™=S, by Sylow’s
theorem. Set z;=2z™ Then z,€2Ny(S,), so we may assume z,<2zS, again by
Sylow’s theorem. By (1.2) there exists an element xS, such that 2=z Thus
mxe K and S™*=S,.

Therefore, in proving (1.1), it suffices to consider the case that S=S, As-
sume S=5S, and set U=Cs(z). The following is a standard knowledge:

(1.3) There exists a natural BN-pair (B, N) of K such that B=U and a
natural BN-pair (B,, Ny) of M satisfying the condition (1)—(6) of (1.1).

Furthermore, we have

(14) If (B, N*) is another natural BN-pair of K, then N* is conjugate to N
under B.

This follows from the fact that N* is determined canonically by an S,-
subgroup U* of K such that UnU*=1 and that U acts, by conjugation, transi-
tively on the set of such S,-subgroups. (1.1) now follows from (1.3) and (1.4).

Essentially the same proof shows the following:
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(15) LEMMA. Let M be one of the groups Liy(4), SLy4), Li(2)X Ly2), and
z an involutive automorphism of M such that K=Cy(z) is isomorphic to Ly(2).
Let S be a z-invariant Sy-subgroup of M, (B, N) a natural BN-pair of K such
that B=Cg(2), and v, s the distinguished gemerators of the Weyl group W=
N/BA\N. Then there exists a natural BN-pair (B;, Ny) of M satisfying the fol-
lowing conditions:

1) S=B;;

(2) z normalizes B, and N,;

(3) Cpl2)=B and Cy,(2)=N;

@) if M=L;4) or SLy(4), then v, s are the distinguished generators of the

Weyl group W,=N,/B:"\Ny;
(5) if M= L,(2)XL,(2) and the distinguished generators of W, are labeled

@] O O [¢]

¥y 72 73 [
then {ri, vo)*=1{rs, vt and {r, s} ={rirs, rors or {riry, vars).
(1.6) LEMMA. Let the notation be as in (1.1). Then M=<S, K>.

Proor. By (1.1) M=<S, s, t>, hence the result follows.
Similarly, we have
(1.7) LeEMMA. Let the notation be as in (1.5). Then M=<S, K).

(1.8) LEMMA. Let Gf be a group with a Bruhat decomposition in the- sense
of [6). Then Gf has a BN-pair (B*, N*) such that B*~\N* has a normal com-
plement S* in B*. Assume that the Weyl group WH*=N*/B*\N* is isomorphic
to the Weyl group W(I) of a root system X of rank I>1 and that the isomor-
phism carvies the distinguished genmerators of W* onto the reflection wy, -, w,
associated with the fundamental voots IT={r,, -, r;} : see [4], Chapter 2. Identify
W* with W(X) and choose an element w,= W* which carries the set X+ of positive
roots onto the set of negative roots. For each weW¥, choose a representative
n(w) of w in N*, and define

XE=S*nn(wow,)*S*n(wow,) .

A root subgroup is a conjugate under N* of X%, 1<i<I[. Let r—X¥ re2, be

the one 1o one mapping of X onto the set of root subgroups given by [6], Theorem

3.8, such that '
n(w) XFn(w) =X -

Furthermove, assume the following :
(1) GE=<X¥;re2> and Gf is quasisimple;
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(2) for all independent roois v, s€ X, it is possible to arrange the rools of
the form Ar-+-ps, 2, p>0, in some order so that

EX;k) X?]SHXTT+;:S:

) of A is the set of all roots of the form Ari+pr;, i#j, and A=\J Ay,
then for each r< A, there exists a subset S of Ai; for some {i, j} such
that re8, w(S)<X* for some weW*, and X¥<(X¥;r+s&S).

Now let Gy be a group and suppose therve exist subgroups X,, re+Il, satisfying
the following conditions:

(1) Go=(X,;rexIl> and G, is perfect;

(i1) for each re-+Il, there exists an isomorphism X*¥—X,;

(iii) for each {1, j}, i# ], there exists an epimorphism

<X>§ri1 X1<7_]> - <Xiri; Xi’l‘j>

which extends the isomorphisms given in (ii).
Then there exists an epimorphism ¢: Go—G§/Z(GF) such that ker ¢=2Z(G,) and
(Xer)p=(X%,)°, where o is the natural epimorphism GF—GF/Z(G¥).

PrROOF. Suppose r& A—I/\J(—II). Then there exists a unique set {i, j}
such that r€A,; There exists an element we<w;, w,> such that rew({r,, r;})
and we may choose n(w;)e<{X%, > for each . Hence it follows that

XPS(XE,, X4

and that the epimorphism given in (iii) is faithful on X¥. Define X, to be the
image of X} under the epimorphism. Thus we have defined the subgroups X,,
r€ A, and isomorphisms XF—X,. It is clear that G, is generated by the sets
X,, r€A, and that the generators satisfy all the commutator relations implied
by (2) for pairs of independent roots 7, s belonging to some A;;. By [7], Theo-
rem 1.4, there exists a central extension (G, r) of G¥, an epimorphism p: G—G,,
and subgroups X,, €4, of G such that (X,)*=X* and (X,)’=X,. Let N=kerz,
Z=kerno, and N=Kker p. Then since G/Z is simple and G, is perfect, it fol-
lows that N<Z. Thus there exists an epimorphism ¢ : Go—G¥/Z(G¥) such that
zro=p¢. Clearly, ker =27 and (X,)?=(X¥)°. Now [G, ZI<N=<Z(G); so [G’, Z]
=1 by the three-subgroup lemma. Since G,=G, it follows that G,=(G)?, and
therefore [G,, Z°]J=1. Thus ker ¢<Z(G,) and, as G¥/Z(G¥) is simple, ker o=
Z(G,). This completes the proof.

2. Notation and hypothesis.

In this section we fix notation for Sps(2), state the basic hypothesis, and
define certain subgroups of the group satisfying the hypothesis.
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(2.1) Notation. Let L=Sps2). Then L is a Chevalley group of type (Cs)
over GF(2). Let A be a root system of type (Cs) and @={r, s, {} a system of
fundamental roots, where the Dynkin diagram is as follows:

Let (B, N) be a natural BN-pair of L and let Ue Syl(B). In fact, B=UeSyl,(L)
and BN N=1. There exists an isomorphism W=N/B~N—W(A) which carries
the distinguished generators of W onto the fundamental reflections. We shall
denote by r, s, ¢ the distinguished generators of W also. Thus 7, s, ¢ are in-
volutions generating N and satisfying the relations

(rsy=(st)i=(tr)*=1.
Let w be the element of W such that UnU*=1. Then
w=rstsr-stst=1strst-rsr.
Notice that stst=tsts and rsr=srs by the above relations. Let
P=,s, 7, P,=U, 7, s>,
A=0,(P), Ay=0,(P).

Then P;/A,=Sp(2) and P/ A,= Ly2). Both A; and A, are elementary abelian
and have order 2° and 2¢, respectively. Let

K=PAP,  Ki=Pn PR,
UlemUTStST s U"z___UmUtst’l‘St .

Then for each i< {1, 2}, we have P,=AK;, AinK;=1, and U,eSyl(K;). Also,
{s, 1<K, and {r, s}<K,, as rstsr centralizes <s, {> and Isirst permutes {r, s}.
The groups K, K, will not appear in the statement of the main theorems, but
play an important role in their proof.

It will be helpful for computations to represent L as a group of matrices.
We identify L with the group of matrices X with entries in GF(2) satisfying

tX
1 1

where *X is the transposed matrix of X. Under this identification, we may
choose U to be the subset of L consisting of lower triangular matrices, and
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We shall consider the following situation:

(2.2) HypoTHESIs. G is a finite group, z is an involution of G, L is a sub-
group of the centralizer of z in G, and L=Sp.(2). Furthermore, G satisfies the
following conditions:

(1) for ie{l, 2}, there exists a z-invariant 2-subgroup C; such that Ce(2)

=A4A;

(2) for i {1, 2}, there exists a z-invariant subgroup M; of Ng(C;) contain-

ing C; such that Cy, 0, (2)=P.C;/Cs;

(3) there exists a z-invariant 2-subgroup S such that Cs(z)=U and Se

Syl,(M;) for each 1.

We remark that conditions (2) and (3) imply that each C, is a normal sub-

group of S.

(2.3) DEFINITION. Under the hypothesis (2.2) we set
L=M,n\M7st, Lo=M, Mt
S;=SN\SreesT Se=S\Sestrst
Thus K;<L; and U,;<S, <L, for ie {1, 2}. Let
X,=5,1\5%¢, X;=S:n\S¢, X.:=SNS§s.

For ue{r, s, t}, let
X—u:(Xu)u: Yu:<X:u> .

The groups X., will be called X-subgroups. Finally, we set
G0:<Y7'7 YS’ Yt> .

(2.4) COROLLARY. Under the hypothesis and definition above, the following

mclusions hold :
LGy <Ly, Ly=<KM,, M,>.

PrROOF. Since S,<L, and s, t=K,<L,, it follows that X,<L,: so V,.<L,.
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Similarly, ¥V, and Y,<L,. Therefore, G,<<{L,, L,>. Since L;<M,; for each i,
it follows that <L,, Lo=<<{(M,, M,>. Now let

Ur:Ugngsy Us:UszET; Uz:UM\Ufm,
and for us{r, s, t} let V,=<U,, (U)*>. Then L=<KV,, V,, V,> and hence L=<G,.

3. 0:;(2) and O3 (2).

We continue with the notation and hypothesis of Section 2. In this section,
we prove the following:

THEOREM 1. Suppose the following conditions hold:

() M/Ci=U2) or L 2) and M,/Cy= Ly(2);

@) IS|=2%;

) LS, (UNnUs)y*]=1L
Then G, is a perfect central extension of Og(2) ov OF(2).

Proor. For each i {1, 2}, let M,;=M,/C, and let bars denote images in
M, We will discuss the structure of M; more carefully. The situation in M,
is clear. Since M,=K,=L,2) and S=U,, we have

(3.1) The m_apping x—%, x=K,, is an isomorphism of K, onto M, and it
carries U, onto S.
Hence

(3.2) |S:SNS"{=2,

(8.3) |S:SN\S*|=2.

Next, consider M,. As |S:515%|=2 by (3.3), (1.1) shows that the following
holds:

(3.4) There exisis a natural BN-pair (B, N) of M, such that S<B, and
either
(1) M. =U/2) and 3, T are the distinguished generators of the Weyl group
W,=N.,/B."\N,, or
(2) M,=LJ2) and if the distinguished generators of W, are labeled

C

L &

o}

O

then (5, Hy=(1,, £1f,) and i=1t..
As a consequence, we have

(35 [S:SnS' =4
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Next, we prove
(3.6) For ie{l, 2}, we have M;=C;L;, C;n\L;=1, and S;=SNL;.

PrOOF. First, assume :=1. Consider the following chain of conjugates
of S:
S Sr Ssr Sts'r Sstsr Srsts’r-

The orders of the intersections of two consecutive conjugates are known by
(3.2), (38.3), and (3.5), and hence we can estimate the order of the intersection
of all the conjugates. As |S|>2" by hypothesis, we have |S,]=2°%. Now Cy,(2)
=P, by hypothesis and so

CNMP " NC(2)=ANPP " =ANK=1.

Hence C,NL,=1. Let M,=M,/C;. Then since $,<S and |5,|=15,|>2°=15|, it
follows that S=S5,. Thus <5, K,)<L,<M, and so L,=M, by (16). As S=C,S,,
SNL=S,.

Next, assume i=2. As above, we have C,nL,=1. Since K,<L, and M,/C,
=~ K,, it follows that M,=C,L, Similarly, since U,<S, and S/C,=U,, we have
S.=SNL,.

We also have the following:
3.7 S,=U,.
Next, we prove

(38) The following conditions hold:
(1) SnS¥=1;

(2) X.=SNS*7;

B) Xi=SNS"'=SN\SF*;

4 X,;=SnS*';

B) X =(CnCFY;

© SNS*=CGs;

7 1S|=2%

PrROOF. As SNS*"\C(z)=UU?=1, (1) holds. By definition, X, <S5 Ststrsirs
=5SNS*". Now (3.6) shows that there is a natural isomorphism M,—L, which
carries S, 7, and § onto S,, 7, and s, respectively. Thus (3.1) yields that | X, |=2.
Also, since ST\S*"=1 and |S:SNS"}=2, it follows that |[S~\S¥"|<2. Compar-
ing orders, we have X,=S\S5¥".

By definition, S;N\S#'<S\ST8mt=5~S%" and X, <SN\S¥rstsr=G\Sws,
Arguing as above, we have [X,|=2 and |Sn\S**|<2. Furthermore, using (3.4),
(3.5), and the natural isomorphism M,—L, given by (3.6), we have |S;\Si5t|=2.
Comparing orders, we thus obtain that X,=S\S*'=S5,\Si.
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Arguing just as above, we have that X;=SNS*’ and that | X, |=4. Now
(3.1) shows that C,=SN\S™"; so
(CQﬂCéSt)TS—:sz\CéSZTS
S—Smsrsrtstm
=S\S%*.

Consequently, |C,NCet| <4, Now |S:SNS*|=2 and C,C;<<SN\S°, which shows
that |C,C,:C,|<4. Hence |C,:CiNC,|=<4 and consequently 1C; s CinConCEY
<16. Hence |C,|=<2%. Since |S|>2' by hypothesis, we must have that |C,]
=25 |Con\Cit|=4, and |C,C,: Col=4. (5), (6), and (7) now follow immediately.

Next, we establish a crucial commutator relation.

39 [v,, Y=L

Proor. From the definition of X, and (3.7), it follows that X,=U,NU3*;
so by hypothesis [S, X*]=1. Since X, <SS, it follows that

X ZC(XNC(XEreen)

Computing in L, we have that X:*7**"=(X,)” and that [Y,, t]=1. Therefore,
Ly, Y=L

We can now identify G,. We distinguish two cases.
(38.10) If M,/C.=U/2), then G, is a perfect central extension of 0z(2).

PrOOF. Let G#=0;(2) and let B*, N*, S* and W* be as in (1.8). Then W*
is isomorphic to the Weyl group of a root system of type (B,). Let Il be a
system of fundamental roots and choose notation so that the labeling of the
Dynkin diagram is as follows:

For ue+II, define X} as in (1.8) and set Y}=<(X%,>. We remark that the
extension G* of G¥ by a fleld automorphism satisfies the hypothesis of Theorem
1. Hence the conditions which hold in G also hold in G*. Thus (3.1), (3.6), (1)-
(3) of (3.8) and their analogues for G* show that there exists an isomorphism

a: YEYH—LY, Yo

such that (X%)*=X., and (X*¥)*=X.,. Also, it follows from (3.4), (3.6), and
(D), (3), (4) of (3.8) that there exists an isomorphism
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B:YEYH —LY, Yo

such that (X*%,)°=X., and (X*%,f=X.,. As |X¥|=2, @ and § are equal on Y*
Also, since [V, ¥;1=1, it follows that there exists an isomorphism

<Y7>!<J Y;k> - <Y’r> Yt>

which is equal to @ on Y} and to B on Y} Now both <Y,, Y and (¥, Y
are perfect as they are homomorphic images of perfect groups. Therefore, G,
is perfect. We can now apply (1.8) to prove that G./Z(G,)=G¥.

(B1D) If M,/Ci=LL2), then G, is a perfect central extension of OF(2).

PrOOF. The argument is similar to that of (3.10). Let Gf=03(2) and let
B* N* S* and W* be as in (1.8). Then W* is isomorphic to the Weyl group
of a root system 2 of type (D,). Let II be a system of fundamental roots and
choose notation so that the labeling of the Dynkin diagram is as follows:

4

[
Define X} and Y¥, us 711, as in (3.10). Then there exists an isomorphism
a:KYEYE —LY, Yo

which carries each root subgroups onto the corresponding X-subgroups. Also,
there exists an isomorphism

‘8: <Y;k) Y?:) Y&";> - <Y8y YE>
which is equal to @ on Y¥ such that
(X%, X Pp=X...

Indeed, if 1, i={l, 2, 3}, denotes the image of I, under the natural isomorphism

M,—L,, then s=1f,, t=1t1,, and =1,  Hence if we define
X, =SinSitte-i, X, =(X,)",
for each 7, then X.,=X., X.,,. Furthermore, by the definition of S,
SinSgtete-i <SSt

and comparing orders, we have that equality holds here in the extension G* of
G¥ by a graph automorphism. So 8 may be chosen so that (Xi‘zi)-3:Xﬂi‘ Now
let
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Yi=<Xeep> .
Then as [Y,, YV, J<[Y,, Y.]=1, there exists an isomorphism
KYE,YE) —> <Y, Y,

which is equal to a« on Y} and to f§ on Y} Therefore, G, is perfect and
Go/Z(Go)= G¥ by (1.8).

4. Uy 2) and L(2).
In this section, we prove the folldwing:

THEOREM 2. Suppose the following conditions hold :
() MJCi=UL2) or LL2) and M,/Co=2Ly(4), SL(4) or L2)X Ly2);
@) |Si=2%;
(3) either [My, (UNUY¥ =1 or C, is abelian.
Then G, 1s a perfect central extension of Ug2) or L2).

PrROOF. The argument is similar to that of Theorem 1. For each ie {1, 2},
let M;=M,/C,. Using (1.5), we have

(4.1) There exists a natural BN-pair (B,, N,) of M, such that S<B, and
either
(1) M,=Ly4) or SLy(4) and 7, § are the distinguished generators of the Weyl
group Wy=N,/BsN\N., or
(2) M,=L(2)X Ly2) and if the distinguished generators of W, are labeled

@]

78, 7o 8,
then {7y, 5.}*=1{Fs, 3.} and {7, S} ={F.F,, 5,55} or {75, 5,7s}.
Hence
42y 1S:SN\S7|=4,
4.3) |1S:5Sn\S° =4
Using (1.1) and (4.3), we have

(4.4) There exists a natural BN-pair (B,, Ny of M, such that S<B, and
either
(1) M,=UJ2) and 5, T are the distinguished gemervators of the Weyl group
W.=N,/B.~N,, or
(2) M= L{2) and if the distinguished generators of W, are labeled
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O O
U PR

O

then (5, 1)=(1,, t5) and Bi=f¥,.
Hence
4.5) 1S:SN\St=2.
Next, we prove
(4.6) For i={l, 2}, we have M;=C;L;, C;~\L;=1, and S,=S~L..

Proor. For the case i=1, the argument of (3.6) applies with obvious
changes. A similar argument using (1.7) shows that the assertion for i=2 will
follow, once we prove [S,|>2% As in the case of S, this is proved by
consideration of the chain

S St Sst S‘rst Strst Sst'rst Ststrst.
Next, the argument of (3.8) gives

(4.7) The following conditions hold :
1) SNnS¥=1;

2) X,=SnS*7;

@) X=SNS*’=SNSt*;

4) Xi=SNS"";

By X=(CnCPY*;

6) SNS*=C.Cy;

(7 |1S[=2".

Using the condition (3) of the theorem, we next prove
48 LY, Y, ]]=L

ProOF. By the definition of X;, UNUi*<X, Computing in L, we have
| U,NU|=2. Also, it follows from (4.4), (4.5), and (4.6) that X,=S,N\S§** has
order 2: see the proof of (3.8). Therefore, X,=U U,

First, assume [M,, (U U =1. Then M;<C4xX{) by the above. Now
X=S."\S*<L, by 47); so Y <L.=M,nM7**". Thus

Y =Ce(XMNCe(XPT) .
Transforming by rs, we have
YV, =Ce(X)NCo(XH=Ce(Y ).

Next, assume that C, is abelian. Then (5) of (4.7) shows that the group
M={C,, Ci**> centralizes X{. As C; normalizes C, and as C.,n\C¥'=X{ has
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order 2, C, centralizes X{. As SN\S*=C,C, by (6) of (4.7), the structure of
M,/C, shows that M covers M,/C,. Thus MC,=M, and it follows that M,
centralizes X{. Therefore, [Y,, Y, =1 by the previous discussion.

We need one more result before identifying G,:

(4.9) One of the following holds:
1) M,/Ci=Uf2) and M,/Co=Ly4) or SL,(4);
(2) M./Ci=L,2) and M,/Co= L{2)X Ly(2).

PrROOF. Let X=<S, s>/SN\S*® and consider its structure. By (4.1)
5 L4y if My/Cy=Ly@4) or SLy(4),

X:{ L)X L2 if My/Co= Ly(2)X Ly(2).

Also, by (4.3) and (4.4)
N L4 if My/C,=U/2),
:{ L)X Li2)  if My/Ci=L,2).

Hence the result follows.

Now we identify G,.

(4.10) If M,/Ci=U(2), then G, is a perfect central extension of UZ2).

ProoF. The argument is quite similar to that of (3.10); so we only indi-
cate necessary changes. First of all, M,/C,=L,(4) or SL.4) by (4.9). We let
G¥=SU,2). Arguing as in (3.10), we may find epimorphisms

a: YEYEH-—LY, Y,
B YE YE —> <Y, Y

which carry the root subgroups faithfully onto the corresponding X-subgroups.
However, since |X}|[=4, it may happen that « is not equal to Bon YE In
that case, replace a by ra, where 7 is a suitable field automorphism of <Y, V*>
such that (X%)y=X%, (Xt)y=X%, and ya=§ on YX

41y If M,/Ci=L2), then G, is a perfect central extension of L2).

PROOF. First, M,/Co=2Ly(2)X Ly(2) by (4.9). We will proceed just as in
(3.11). Let Gf=Ly2) and label a fundamental root system of type (4;)

O (®]

71 Sy ¢ Sg [

Then there is an isomorphism
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a: YE, YE; i=1,2 —> <Yy, Vo

such that (X%, X¥,)*=X., and (X%, X%,,)*=X.,. Also, there is an isomorphism

7y

‘B: <Ys#;y Y;iy Y;k> > <Ys: Yt>

such that (X#, X%, Y=X., and (X¥,)’=X.,. Hence

(Xilei82>a:(X1{81X;k82)ﬁ
and both a and § are isomorphisms from Y¥X Y% onto Y,. Thus Y, is written,
in two different ways, as a direct product of two subgroups each isomorphic to
L2). An easy argument using Krull-Schmidt theorem shows that such a direct
product decomposition is unigue up to permutations of direct factors. Hence
either (Y5)*=(Y¥)® for each i or (Y)*=(V¥_)’ for each i. In the latter case,
replace a by ra, where 7 is an automorphism of <Y7F, Y3; i=1,2)> such that
(X%, V=X* and (X%, )V=X*% for each i:. Thus we may choose a and 8

7 754 54 =83-4

so that (Y ¥)*=(Y¥)’ for each i. Then since
Xt,=YinX% X%,
it follows that (X%,)*=(X¥)f. Therefore, a=p on<Y¥; i=1,2). Now define
Vo= ((XE)D,  Vea=d(XE)%.
Then there exists an isomorphism
YE Y —,, Yo

which is equal to a on Y} and to 8 on Y{. Therefore, G, is perfect and
Go/Z(Gyy=G¥ by (1.8).

~

5. U,(2) and L.(2).
In this section, we prove the following:

THEOREM 3. Suppose the following conditions hold:
(1) M,/C,=U2) or L2) and M,/Cy=L(4), SL(4) or L (2)X Ly 2);
@) [Si=2*;
(3> Z<C1C2/C1>:Z(C2)C1/Cl
Then G, ts a perfect central extension of Ui2) or L(2).

Proor. The argument is quite similar to that of Theorem 2. First, (4.1),
(4.2), and (4.3) hold without changes. We will refer to these as (5.1), (5.2), and
(5.3), respectively. Next, we have

(5.4) There exists a natural BN-pair (B,, N of M, such that S<B, and
either



Standard subgroups, I 103

(1) M,=Uy2) and 5, T are the distinguished genevators of the Weyl group
W1:N1/Blf\]v1> or
(2) M.,=L2) and if the distinguished generators of W, are labeled

O C O Q

t, t, Iy i
then (8, )=(Z.l,, f.fsls) and fi=f;_;.
Hence we have
56.5) |S:SNSH=8.

Next, the arguments of (4.6) and (4.7) show that the same holds in this case as
well except for an obvious change in (7) of (4.7). We will refer to them as
(5.6) and (5.7), respectively. Next, we prove

(68) LY, Y. I=1

Proor. The argument is similar to that of (4.8). By (5.7)

Xi=(CnCHH™,

and
SNS*=C,C,.
Thus the group M=<Z(C,), Z(C.)"**> centralizes X{. Also, since C, normalizes
C,, it foliows that C, normalizes X{". Therefore, MC,<Ng(X{).
Now in the factor group M,=M,/C;, SN\S*=C, by the above, and Z(C,)=
Z(C,) by hypothesis. Hence
M=<ZEnS%), ZENS)=,
and
M=U(2) or L42)

by (5.4). Let

Lo:<Ys, Z<X:z)> .
By (5.6), there is a natural isomorphism M.— L, which carries 5, 5, and { onto
S, s, and t, respectively. Using (5.4) and (5.7), and computing in L,, we obtain

Lo=<Z(S:n\SD, Z(S:NSD* .

Hence L[,=M, which shows that L, is isomorphic to U,2) or L,2) and nor-
malizes X¥. Since X, is a quaternion group or a dihedral group of order &,
it follows that [ L,, X¥J=1. An easy computation using (3) of (5.7) shows that
ystsy normalizes Lo; s0 [ L,, X" ]=1. Therefore, [L,, Y{1=1 aund, in partic-
ular, [V, Y5 ]=1. Transforming by rs, we obtain [V, ¥, ]=L

An argument of the proof of (4.9) yields the following:
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(5.9) One of the following holds:
(1) M,/C;=UL2) and M,/C.,=Ly4) or SL4);
(2) M./Ci=L,2) and M,/Cy= Ly(2)X Ly(2).

Now, arguing just as in (4.10) and (4.11), we have the following:
(5.10) If M./Ci=UL2), then G, is a perfect central extension of Ux(2).
(5.11) If M,/C,=L2), then G, is a perfect central extension of L.(2).

6. Spe(4) and Sp(2) X Spe(2).
In this section, we sketch a proof of the following:

THEOREM 4. Suppose the following conditions hold :
(1) M,/Ci=Sp4) or Sps2)xXSp2) and M./Co= Ly(4), SLy(4) or Ly(2)X Lo(2);
2) |S|=2%;
(3) C, is abelian.
Then either G, is a perfect central extension of Spe(4) or Go/Z(Go)=Sp(2) X Spe(2)
and z interchanges the components of GofZ(G).

As in the previous sections, a crucial step of the proof of Theorem 4 is the
proof of an analogue of (3.8) and the commutator relation [Y,, Y,J=1. These
are proved by arguments parallel to those in the proof of (3.8) and (5.8). Once
these are proved, the argument of (4.10) shows that if M;/C,=Sp.{4), then Go
is a perfect central extension of Spe(4).

Assume M;/Ci=Sp(2)xXSp(2). Then M,/Co= L(2)X Ly(2). Arguing as in
(4.11), we have that there exist direct product decompositions

Yo=Y, XY, Y =Y,XY,, Y=Y, xY,

such that [V,, ¥Y,,_ /=1 and [V, Yi_,J=1 and such that Y;=Y,,_,, Yi=Y,,_,
and Y;=Y,,_,: see the proof of (3.11). Hence if we set

G=<Yr, Y5, Yip,

then G, is a central product of G, and G% The mapping ¢: x—xx% x€G,, is
a homomorphism from G, into Cg2) with ker ¢ contained in Z(G,). Let V,
us{r, s, 1}, be as in the proof of (2.4). Then clearly V,<Cy,(2) and so, as
Vu=Cy (2)= Ly(2), we have V,=Cy,(2). This shows Y=V, so

G{=<V,, Vs, V>=L.

Hence G,/Z(G)=Sp(2), which completes the proof of Theorem 4.
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7. Go=<{M,, My).
In this section we supplement Theorems 1-4 by the following result:

THEOREM 5. In Theorems 1-4, if Go/Z(Go)ESD2)XSpe2), then the following
conditions hold :

(1) Go:<M1, My,

(2) Z(Gy) has odd order;

(3) SeSyl(Go).

PROOF. In the proof of Theorems 1-4, G,/Z(G,) has been identified with
G¥/Z(G¥) by using an epimorphism ¢ : G,—GF/Z(GF) such that ker ¢=2Z(G,) and
(X.,)?=(X% )7, 1<i<l, whose existence is guaranteed by (1.8). In the present
situation, X,, is a subgroup of S and Z(Gf) has odd order. Furthermore, |S|=
|G#/Z(GE)|,, as analogues of (7) of (3.8) show. Now let S* be as in (1.8). Then
S*eSyl,(GF) and S*=<(X}; 1<i<[)> by Lemma 4 of [11]. Hence if we set T=
{X;;; 1=i<D>, then T9=(§*). Since T<S and |S|={(5*°], we must have
S=T and SNZ(G,)=1. Consequently, S<G, and SZGo) ) Z(Goy)ESYL(Go/Z(Gy)).
Since G, is perfect, Gaschiitz theorem implies that Z(G,) has odd order, and
hence SESyl,(G,). Analogues of (4.1) and (4.4) show that M,=<S, Sststy and
M,=<S, S™>. Since L<G,<<{M,, M,> by (2.4), it follows that G,=<{M,, M,).

Appendix.

We will discuss Part B for the case that L/Z(L)=Uy2). By the discussions
of the previous sections, it is now clear how we formulate and prove our result.

Let L=U4?2) or SU«2). Let A be a root system of type (B,) and O=1r,s, t}
be a system of fundamental roots, where the Dynkin diagram is as follows:

O

O O

r N

Let (B, N) be a natural BN-pair of L andlet U Syl,(B). There exists an iso-
morphism W=N/B~N—W(A) which carries the distinguished generators of W
onto the fundamental reflections. We shall denote by 7, s, ¢ the distinguished
generators of W also. For simplicity of notation, we shall also denote by 7, s,
¢ the representatives in N of the distinguished generators, and choose them to
be involutions satisfying the relations

(rsy=(st)!=(tr)’=1.
Define
P1:<U> S, t>, P2:<U) 7’, S>,

A1:02<P1) ’ A2:02<P2) .
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Now consider the following situation: G is a group, z is an involution of
G, L is a subgroup of the centralizer of zin G, and L= Uy2) or SU2). Assume
that G satisfies the following conditions:
(1) for 1= {1, 2}, there exists a z-invariant 2-subgroup C; such that Co,(2)
=A;;
(2) for 1€{1, 2}, there exists a z-invariant subgroup M, of Ng(C;) contain-
ing C; such that Cy, 0 (2)=P;C;/Cy;
(3) there exists a zinvariant 2-subgroup S such that Cg(z)=U and Se
Syl (M;) for each 1.
Assume furthermore that the following conditions hold:

(i) M,/Ci=L4) or U2)XU,2) and M,/C,= Ly(4)X Ly(4), SLy(4)xSL,4),
or SL,(4)+xSLy(4), where = denotes the central products with amalgam-
ated centers;

(i) |S]=2%;

(iii) C, is abelian.

The argument of the previous sections shows that under the above hypotheses,
the group G, as defined in (2.3) is a z-invariant subgroup such that L<G, and
Go/Z(Go)= Lo(4) or U 2)X Uy2). Furthermore, G, is perfect and the conditions
(1)-(3) of Theorem 5 hold even if G/Z(G)=U2) X Us2). To see this, consider
the proof of Theorem 4. In the present case (Y, V;> is isomorphic to U,2)
and hence perfect. Similarly, <Y, , ¥ > is perfect. Therefore, G, is perfect.
Next, the homomorphism x—xx? x<G,, carries { Xy Xs,, Xop onto U, Uy, Uy,
where U, U,, U, are the same as in the proof of (2.4). We now proceed as in
the proof of Theorem 5. As U=<{U,, U, U,> by Lemma 4 of [11], SN\G, covers
an Sp-subgroup of G,/Z(G,). As [S|=2% by an analogue of (7) of (3.8), we
have S<G, and SN\Z(G,)=1. Hence (1), (2), and (3) of Theorem 5 follow. In
the case that L=Spy2), this argument breaks down as (Y, Y. p=Sp(2) is not
perfect and U#<U,, U, U>.
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