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§0. Introduction

Let (X, g) and (Y, h) be compact Riemannian manifolds with boundary.
The fention field Af of a C* map f: X—Y is, by definition, a vector field along
f which is written locally as

Af— a i afﬂ afT a -
0.1) A= {a e TN G G e

where 4 and I’ are the Laplacian on X and the Christoffel symbols on Y. A
C” map f: X—Y is called harmonic if it satisfies the equation

0.2) Af=0.

Harmonic maps arise naturally from the variational problem for the energy
@ 8

functional E(f):gxg”hag(f)%%%%—. To be more precise, for a given C* map

¢ 0X—Y, we write My(X, Y) for the set of all C* maps f: X—V with flax=¢,

then f&My(X, Y) is harmonic iff it is a critical point of E: My(X, ¥)—E. We

put the C° topology on My(X, V). In this paper, we shall prove the following

theorem.

THEOREM 1. Let X and Y be compact Riemannian manifolds with boundary,
and ¢:0X—Y be a C~ map. Assume that Y has nonpositive sectional curvatures
and that 0Y 1is convex.® If there exist two harmonic maps f, and f, in the same
connected component of My(X, Y), then we have fo=f.

Note that, in Theorem 1, the existence of a harmonic map in each con-
nected component of My(X, ¥) has been proved in [3]. The argument in the
proof of Theorem 1 implies the following two corollaries.

COROLLARY 2. Let X, Y and ¢:0X—Y be as in Theorem 1. Then each
connected component of My (X, Y) is contractible.

1) @Y is called convex if its inner second fundamental form is positive semidefinite.
Theorem 1 also holds when 9Y is empty.
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COROLLARY 3. Let Y be as in Theovem 1. Then Y is a K(x, 1) space.

After the preparation of this paper, J. Eells and L. Lemaire published the
report on harmonic maps [13, and we knew that our Theorem 1 was also ob-
tained by R. Schoen [7]®. But in [7], the proof of our Proposition 4 which is
the essential step for Theorem 1 is not written in full detail. We are con-
vinced that our Proposition 4 is not so trivial to verify. Moreover through a
private correspondence, Professor R. Schoen told us that he has no intention to
publish his proof of Theorem 1, and suggested us to publish this paper. We
are very grateful for his generosity.

The author would like to express his hearty thanks to his teachers A.
Hattori, T. Ochiai and S. Nishikawa.

§1. Heat equation

First we recall the method to prove the existence theorem in [3]. For
given fo&€My(X, Y), consider the following initial boundary value problem ;

(D £ox=v, Fean 1 0=,

FO, DeMyX, V) for all t&[0, ).

Next form the double ¥ of ¥ and embed ¥ into a suitable Euclidean space RY

as in [3], p. 108. With the metric of RY chosen there, we can reduce (1.1) to
the following equation;
0
(12 £ XXT0, )R, L =avf, F(, 0=y,
floxxin=¢  for all t&[0, o).

We can find the unique solution of (1.2), or equivalently of (1.1), in the follow-
ing sense. The solution f is continuous and C* except at the corner. At the
corner [ satisfies the equation in th@;V L? sense. That is, for any 0<w< oo,
Flxxwo,0r belongs to LYXX[0, wl, RM)=PLHXX[0, w]) for arbitrary p>dim X
+2. Here LIXX[0, w]) is the Sobolev space, for its definition refer to Part I
of [3]. In its definition we must note that the order of the differentiation with
respect to ¢ is counted twice as many as that with respect to x. So the first

order time derivative %J; of our solution f belongs to LAXX[0, ], R¥) and

is not continuous at the corner X x {0} even though the first order space deriva-

tives g—;— belong to L?(Xx[0, w], RY) and are continuous by the Sobolev em-

2) Through a private correspondence, J. Eells and L. Lemaire informed us that they
also obtained their unpublished proof of Theorem 1.
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bedding theorem (see [3], p. 49). Throughout the rest of this paper,
LYXX[0, w], RY) will be denoted by LIXX[0, »]) in short.

Finally it is proved in [3], pp. 158-161, that as ¢ tends to oo, f( , t) con-
verge in the C= topology to a harmonic map fe.

Now we are in position to state our main proposition.

As a main step for Theorem 1, we shall prove

PROPOSITION 4. Let X, Y and ¢:0X—Y be as in Theorem 1. For a C* map
£o: [0, 1IXX—=Y with folu, YEMy,X, Y) for each us[0, 1], let f: [0, I]XXX
[0, c0)—Y be the map with the following property. For fixed u<[0, 1], f(u,, ):
XX[0, o)=Y is the solution of (1.1) with flu, , O=fu, ). Then f is C* on
[0, IIX X% (0, o).

The proof will be carried out in the next three sections.

§2. The regularity with respect to the parameter variable

Take a small real number §>0, and extend f, smoothly to f,:(—4d, 1+0)X
X—Y with folu, YEM,X, Y) for each ue(—9, 1+0). Next choose a C* map
71 (=38, 1-4+8) X XX [0, co)—~R¥ such that 5(, ,0) coincides with f, and that
n(u, , HEMYX,Y). We fix ae(—d, 1+0) for the time being, and define a
map ¢:(—3, 1+8) X X X[0, c0)—R" as

2.1) o(u, x, D=5y, x, H—nla, x, H+a, x, 1)

where f(a, x, t) is the solution of (1.2) with the initial value fi(a, ). Then
o(, , 0) coincides with f, and ¢(u, , t) has the boundary value ¢. Since f(a, , )
is continuous on XX[0, o) and C= except at the corner 0XXx {0}, ¢ is con-
tinuous on (—4§, 1+8)X XX [0, co) and C* except at (—d, 1-+6)xX0Xx {0}. But
%% is C* on (—d, 1+8) X Xx[0, c0) since %‘ui:%’i-.

Let L2(X %[0, w]/0) be the completion by the L§ norm of the space of C*
maps f:XX[0, w]—>RY whose all derivatives vanish at :=0. And let
LE(XX[0, »]/0), be the closed subspace of LI XX[0, ]/0) consisting of ele-
ments f» with f4laxxw0.w1=0.

LEMMA 1. Let flu, x, t) be as in Proposilion 4. Then the k-th derivative
k
g&],: exists for every k=0 and is continuous on (—4, 1+0)x X %[0, co).

PROOF. Since ¢(u, , )€ L¥XX[0, »]), we can define the following infinitely
Fréchet differentiable map;
(2.2) P: (=3, 148X LAXX[0, @]/0)y —> LUAXX[0, &)

P(“) f#)(x’ t>:90(u7 X, t)—i-fﬁ(x’ t)'
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And since H:ait——é.: LYXX[0, w])— LP(XX[0, »]) is also infinitely Fréchet

differentiable, so is the composition map Q=H-P: (—§, 1+8)X LI XX[0, ®1/0).
—L?(XX[0, @]). Then we have Q(a, 0):(8%—A)f(a, , )=0. Let D,Q be the
Fréchet derivative of Q with respect to the second factor. Then

T
D, 0= — e g O (1300 U2 O

o onf ory
~2g T f) o,

where fo(x, )=f(a, x, t). As in the proof of Theorem in [3], p. 120, we can
show that D,Q(a, 0): LI XX[0, ®]/0),—L?(XX[0, »]) is an isomorphism. By
the implicit function theorem there exist a sufficiently small positive number
J, and the implicit function G:(a—d,, a+d.)— LI XX[0, w]/0); such that G(a)
=0 and Q(u, G(u))=0. If we put

Flu, x, H=e(u, x, t)+Glu)Xx, 1),

then we have %];——Asz, JC, , 0=f,and f(u, , t)|ox=¢. Thus by the unique-

ness of the heat equation we have f:f. Next let F:(a—0,, a+d,)—
LY XX[0, o) be F(u)Xx, t)=f(u, x, 1), then Fis C* since G is C~. By the Sobolev
embedding theorem,

/G, ', , >||L°°<Xx[o,w1>§C”F(u)"‘F(u1)”L§’<Xx:o,w1>-

Thus the continuity of f with respect to u follows from that of F.
Let D*F(u) be the k-th Fréchet derivative of F at u. D*F(u) belongs to

k
L{QR, LA{XX[0, »])) and can be regarded canonically as an element of

k
LY XX[0, w]). If we prove Y f =D*F then we can prove the continuity of
k

;%J;‘ in the same way as above. When k=1, DF(u)x, z‘)——f (u, x, t) since

lim |5 (w6, , )~stw, , ) —DFw)

LOCX x(0,0D)

<11mC”——{F(u+9) F(uw)}~-DF(w)]

(XX[O wl)
=0.
. ok f .
In the same manner we can show D*F—= AE Since ae(—4, 146) and w<co
o*f

are arbitrary, e exists and is continuous on [0, 17X XX [0, co), completing
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the proof.

§3. The continuity of DD with respeet to u

We know that f(u, , ) is C* on {u} X Xx(0, o) for each us(—9, 14-4). In
this section we show

LEMMA 2. Let f(u, x, t) be as in Proposition 4. The time and space derwa-
tives of f are continuous on [0, 11X XX(0, o).

PrOOF. Let 0<a<w<oo, p>dim X+2 and n<oco. Define F:(—6, 1+9)
S L Xx[a, @]) to be F(w)=f(u, , ). If we can say that F is continuous, we
will obtain Lemma 2 in the following way;

“D?D'gf(u) s )_ngD‘?cf(U, > )|IL°°(Xx[a,w])

gc”f(u’ > )"‘f(?], ; )HL%’O‘+“ﬁ}[+1(Xan,wDﬁ0 as u—v.

We prove the continuity of F by induction on n in increments 3/4. Note that
it is known when n=2. The proof is a modification of the proof of Theorem
in [3], p. 111. Hereafter we write f, for f(u, , )and L:la, o] for L XX [, w])
in short. A priori estimates (refer to [3], p. 96) shows that if 0<z <« then
we have

urulo wSC| (5 —4) 1)

12 tmei TCH fu—Soll otz ai -

We know that the second term on the right hand side tends to 0 as u tends
to ». Thus we have only to estimate

(G-a)siso)

=e

Choose a partition of unity {¢;} subordinate to a finite covering by coordinate

neighborhood of XX[z, w]. We estimate i {P(fu)—P(f»)} where P(f)=
upr(f)af _Bﬁ
oxt ox7

First we consider the case when the support of ¢; does not meet the

boundary of XXx[r, w]. We write ¢ for ;. Let pcR\Z be n—2<p<n—3/4

Let A2 be the Besov space (refer to [3], p. 25). There exists an inclusion

n oz Wl

AL A AN FSLAR LY

1 P [mwls
L‘n—-2 @
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A2 —Lz_,. Thus we have only to estimate II;OP(fu)—y?P(fv)ll,,gp- We write x»*1
for t and put Tyg(s', -, x**)=g(x', -, ¥/+w, -, ") and 4¥=T¥—I. By
the definition of the Besov norm it is sufficient to show

1D P(fu)—@P(f))]1? —0 as u—v
and
14y D(@P(fu)—@P(fo))liz» =0 as u—v

for p—1<|7ll<p when j<n-1 and for p—2<]rl<p when j=n+1. Since we
can write DU (pP(f)=3cp,.4,(f)DFf = DPf with max |BI=lrl+1, SIBl=
lrl+2, and CorBy has a compact support, we can write 4¥D7(pP(f)) as a sum
of terms of the form 4%c(f)-TyDPf - T¥DF2f or c(f)-DPif - DPi-1f. o Dbif

XT¥DFisif - TLDPef. Let g be p(p+2)<q<n~%> and p; be slightly less than
3 . .
q(n—z>/}|[3ill for 1=<i=yu. We can take p;>1since q(n—z—)/llﬂilbq(n——%)/p

+2>p>1. We can also make Zig% since 2%>Z{I|ﬁiii/q<n—%)} and

E{Ilﬁill/q(n——%>}<—é—. Thus we can use Holder’s inequality since ¢ has a fixed

compact support. Thus we have
le(fu): DPafy -« DPufy—c(fy)- DPif, o DE2F
=Cle(f)—c(flll i 1 D*1full oy -+ | DP21 7,
FCENe(fll o 1DP3 ol por -+ IDFe 1Sl i

X DPify—DPifoll ypi IDPAf )l sy - | DB2F 2,

Since f is continuous, Jc(fu)—c(f)ll ,«~—0 as u—v. Using Lemma in [3], p. 110,
we have

LR

| D83 fu—= DA f | i SCllfu—Follya o * —>0  as u—w
n—‘é‘

by the induction hypothesis.
Using the same argument and the fact that the integration is invariant

under translation 7%, we can show
I d5e(fu)-TyDPify - TYDPfu—A3c(f2)- TYD# Sy - TYDPA,| 1o
—>0 as u—v,
le(fu) D#3fy -+ DPs=ify- A3 DPif - TYDFissf, oo TDPA,
—c(fo)- DPsfy o DFisifye Ay DPif- TY D1 fy oo TYDFAS |

—> 0 as u—v.
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When the support of ¢; meets the boundary of Mx[a, ], we have only to use
the extension operator in [3], p. 32. This completes the proof.

§4. Proof of Propesition 4

orf
Tk
and that the time and space derivatives DfD

In this section we show that is C* on {u} X Xx(0, oo) for each ue[0, 1]

ka
In the notation of section 2, H-F is C® and H-F(u)=0 for all u<[0, 1.
Thus taking Fréchet derivatives of H-F we obtain the following lemma.

are continuous in u.

LEMMA 3. In LP(XX[0, ®]) the following equality holds for every k=1

ﬁakf orf L olE(f) 9ff° afF of"
s out danE T8 oy ouF bxt ax

2180 (e ) 5

0=

ax

of 8, i B oty
07 Ze G 5 (5 e ()

where G, is a polynomial with coefficients in derivatives of g and I For exam-
ple, G,=0.

is C= for every uei0, 1], and DD —f

of
Ou T du

LEMMA 4. On {u} X XX(0, oo},
is continuous in u for every a and f.

PROOF. Let «, w, p and n be 0<a<w<oo, p<co, n<oo. We shall show
af—eLP({u}xXx[a, ]) for every u<[0, 1] by induction on n. We know
that it is true for n=2. We write XX[a, o] for {u} X XX[ea, o] in short.

of

Suppose —a;eLg_l(XX[a, ]) for every p, « and @. Let w be 0<z<a. Then

we have %{L —0on XX [x, @], gﬁ e L%(XX[x, o). Since f is C on Xx (0, o),

af eL? (Xx[r, ]) and G,=0 in Lemma 3,

0 NOf® SOTE(f) of P af7 of° : off o 8f"
(51‘- A) ou * ’ 9y° 0x® 0x’ du +e )= ox 0x >

belongs to L2Z_J(XX[z, w]). Hence by a priori estimate we have —af_e

ou
L Xx[a, o]). Thus —2]:7 is €= on {u} x Xx(0, o0) for every uc[0, 1].
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0 . .
Next we shall show that D;"D~J3§~L are continuous in . We have only to

10fu _ 3y ] o A
show that — = —0 as u—v. We prove it by induction on n and
b ou  Ou lz2iem
the case n=2 is known. By a priori estimate we have

| Ofu _ Ofs |

Ko v T

I(9 Ofu _ 9]  0fu _ Ofv
<Cl(at )( ou ou )ILn " +C(( ou Ou Pz ar’

It suffices to estimate the first term on the right hand side. By Lemma 3 we
obtain

1Ln 207 w)

3 ofe  ofs
Gr =950 %

“ v_ Of%
(5 )

— | 1
=TS

2g (T o 3k~ a0 UE) 08

T8 058 artar a3

T80 92t 90\ ou 9w
(0L fu) OF 4 OfL  OLG(f.) afé o5\ ardy

<4 gt ( — ~ - = -
he 0y°®  ox* 0x’ dy®  0x' ox'/ du

ILn olz, w]

For peC~, f=L% we have H(Df”Lp<”90”Ck“f”Lg if k£ is even. Using the inter-
polation theorem we can show that H(pflle<H(pIICHIIIfHLp if B is odd. Thus
the right hand side tends to 0 as u tends to v by Lemma 2 and the induction
hypothesis, completing the proof.

LEMMA 5. On {u} X Xx{(0, 00) f 1s C* for every us[0, 1] and k=0. And
D"‘Dﬁg s are coniinuous in u.

PrROOF. We prove by induction on k. It is true when k=1 by the previous

3 /8% 17
i th t t s A
emma. Suppose the statement is true up to kkful then G (f , ax(auk’l))

P - & L a, w] for every us[0,17,
lakfu 0%fy

is €= on {u} X Xx(0, c0). We can prove that

dut|

p<oo, n<<oo and 0<a<w<oo and that —0 as u—v just an in

Pla, wl
\Ln

Lemma 4. Thus Lemma 5 follows.
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§6. Proof of Theorem 1

LeMMA 6. Let Y be a compact Riemannian manifold with convex boundary.
Then there exists a positive number 6 such that for every y€Y any two poinis in
B(y, 8)=1{z2€Y|d(y, 2)<d} can be joined by the unique minimal geodesic.

Proor. Let ¥ be the double of ¥ whose metric is the one extended from
Y. Then there exist a positive number &, such that for any yef’ any two
points of the open ball V(y, §,) of radius §, centered at y can be joined by
the unique minimal geodesic in ¥. Let (3% -, ¥®) be a coordinate near the
boundary such that y*=0 on 3Y and that for ye )Nf\Y, y™ is the geodesic dis-
tance to Y. Then the second fundamental form of Y is (/%) where a and b
run from 1 through n—1. Let c¢:{(—e¢, )Y be a geodesic with ¢(0)=y€dY

de d?c™ de® dc?

= — n_ -7 Pt 73 +
and T (0)eT,dY. Then e O)=—145 T, (0) a1 (0)<0. Without loss of
generality we may assume that —%»(O):—fail. When yelnt{yedY|I7=0}, ¢

does not get out from 3Y in a neighborhood of 0. When ye{yedY|/%>0, ¢
does not enter into the interior of Y. Since dY is compact there exists a posi-
tive number &, such that ¢*(¢) is non increasing on {f|]¢]<d;}. Let d be 0<é

1 . ..
<7m1n (0, 8,). We see that § is a number that we want. If V(y,0) isin ¥

then nothing need be done since 0<8,. When V{(y, HNY\Y+@ suppose that
the minimal geodesic between p and ¢ in V(y, §) got out from Y at r&dY.
Let H be the hyperplane exp{(T.0Y)"V(y, §). Then H does not meet IntY
since d(s, P)<d(s, y)+d(y, N<d, for scHNV(y,d). If p or ¢ is in IntY then
¢ is not tangent to H, otherwise ¢ is wholly in H and neither p nor ¢ can be
in Int Y. Thus ¢ intersects H transversely and ¢ must intersect H at some
point t=H again. This is a contradiction since » and ¢ can be jointed by two
geodesics in V(y, 8). In the same way we can lead a contradiction when p and
g is in 0Y. This completes the proof.

LEMMA 7. Let f and g be C* maps from X to Y and 8 be as in Lemma 6.
We suppose d(f, g)=suPzexd(f(x), g(x)). Let F:[0, IIXX—=Y be a homotopy
between f and g such that for each x€ X, F(, x): [0, 11=Y is the unique minimal
geodesic between f{x) and g(x), then F is C=.

Proor. Let ¥ be the double of Y and U be the neighborhood {(x, v.)€
|v,| <8} of the zero section in f‘lT)N/. We define ¢: U—XxY by o(x, vz)=
(%, €XPserVz), then maps U diffeomorphically onto ¢(U). On the other hand
the map g’: X—XX YOG XXY defined by g/(x)=(x, g(x)) is C* and its image is

in (U). Thus ¢ teg’ is also C*. Since %f‘-}s:o(x):ga‘l(x, g(x)), F(0, x) and
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oF . .
W(O’ x) is C=. Hence F is C=.
LEMMA 8. In the notation of Proposition 4, we put n{u, x, t):—;—haevuf“

XV fE  Then
or

ey "W:Aﬂ_gijhaﬁvivufa'vjvufﬁ_l_ginaﬁr&vifa'vufﬁ'vjfr'vufa
on [0, ITXXx(0, o),
@) %f—:o on [0, 1]X9XX(0, o0)
i .. Of¢ . OE dﬁﬁ ofr . .
where VN, fe= I Vi fe= FPRE ViV, fe= PP +I'g 527 ou and v is the unit

outer normal on 0X.

The proof is done by direct calculation, or refer to [4] for (1). By the
curvature condition and the maximal principle for parabolic inequalities, we
obtain the following lemma;

LEMMA 9. In the notation of Lemma 8, if we set D(t)=supsex =lu, x, 1),
weEro, 11
then D(t) is non increasing in t.

Since supzexd(f(u, x, t), g, x, 1)SD(E) | u—v|ZD(O)|u—v|, we obtain the
following lemma;

LEMMA 10. If we set flu, x)=lim,.f(u, x, t), then [ is uniformly Lipschitz
continuous i u.

Now we are in position to prove Theorem 1. Let f.., and f., be two
harmonic maps in the same connected component of My(X, ¥),and f,:[0, 1IX
X—Y be a C* homotopy between f..,and f.. Let f{u, x, t) be as in Proposi-
tion 4 for f, taken above, then f(0, x, t)=fw o{x) and f(1, x, {)=Ffw(x). We put
Jfolu, 2)=1m,.f(u, x, t), then f.. is a Lipschitz continuous homotopy through
harmonic maps between fu , and f. .. Take a subdivision 0=u,<u,< -+ <u,=1
of [0, 1] so that supexd(fo{uj x), fulttje, x))<é for j=0, -, k—1. Let F:
[0, 11X X—Y be the homotopy between fu(u;, ) and fu(u;5,, ) obtained asin Lemma
7. Then F is C* and F|.x=¢ for all s€[0, 1]. Since F(0, ) and F(1, ) are

harmonic, -a%E(F(s, )) is 0 at s=0 and s=1. On the other hand by a direct

computation,

& .
S BEG, )= g ko TR F
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+§Xg“haﬁviv3F-vjvsF
—nginaﬁﬁviFa * vsFﬁ . ijr' VSF5

P p+1
where V: I'(QT*MQQF'TY)-»I'(Q T*MRF'TY) is the connection defined by
V=VERQI+1QF V¥, M=[0, 17x X. Since F(, x):[0, 1]J—Y is a geodesic, V,V.F
=0. From this and the curvature condition of Y we obtain

pp iy
sy EF(s, D2 g9hesTVF-T,9,F20.

2
But —aas—zE(F(s, )) must be identically 0 since the first variation is 0 at s=0

and s=1. Thus V;V,F=0. Thus V,F is parallel on {s} X X. Since V,F=0 on
{s} XX we obtain V,F=0. Thus f(u;, )=f(u;.:, ). Hence we have fo =[x

§7. Proof of Corollaries 1 and 2

Let MY(X, Y) be a connected component of My (X, V). For each f,ecM*X, V)
let f be the solution of (1.1) with the initial value f,. We define @:MJX, YV)

%[0, 1T-MYX, ¥) as O(f,, ):f< , tan —”2—&). Clearly @(f,, 0)=f, and @(f,, 1)

=f., where f is the unigue harmonic map in MY X, Y). To prove that M} X, Y)
is contractible, we show that @ is continuous. Let U.(f,) be the set of all
elements g in MY X, Y) with d(f,, g)<e. For arbitrary (ho, )= @ (ULf,)) we

put {=0@(h,, §) and take &, such that 0<e,<max {%[e—d(fo, o, 5}. We set
U, (ho)={n,e M (X, ¥) t d(ho, 1o)<es}

V. (0={z=0, 11]a(h( , tan 0), A( , tan Fo))<s}.

Then for n,sU.,(hy) and 7€V, (0), we have

d(fo, 77( , tan %r))
gd(fo, h( , tan %ﬁ>>+d<h< , tan %6), h( , tan —g—f))

—{—d(h( , tan %r) , 77< , tan —Z—r))
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=d(fo, OF-eitd(ho, 70)
=d(fy, O+2e:<e

where in the second inequality Lemma 9 was used. Thus O@-XU.(f,) is open
and @ is continuous.

Now we shall prove Corollary 2. Let Y be a topological space with the
base point y, and £V be the space of continuous loops with the base point
Cvo] where [y,] is the constant map and £Y be endowed with the compact
open topology. Then 7 (Y, vo)==,(RY, [v,]) for i=1. This isomorphism is
given as follows. For [plern, (27, [y,]) can be regarded as a map from the
reduced suspension (S%, )X (5%, 0)/S*X {0} \US*X {p} to (Y, y,) which is an ele-
ment in 7;(Y, 3). Note that when Y is a metric space the compact open
topology coincides with the C° topology. In Theorem 1, we take X=[0, 1] and
P0)=¢(1)=y,&€Y. By the C~ approximation theorem there exists a C* map f,
from (S?%, p)X(S%, o) to ¥ homotopic to ¢ fixing STX {0}\JS*X {p}. Then f can
be regarded as a map from (S% p) to MYX, ¥) which is a subspace of 27.
By Corollary 1 f can be deformed to the constant map [y,]. Thus 7:(QY, [y,
=0 for i=1.
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