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§1. Introduction.

In [4] Feynman introduced the notion of path integrals and gave a refor-
mulation of the quantum mechanics. Mathematically, the notion of the path
integral was first formulated by K. Ito [7] as a certain kind of improper integrals.
Albeverio and Hgegh-Krohn [17 also gave a mathematical formulation equiva-
lent to Ito’s. Following the formulation by Albeverio and Hgegh-Krohn, we
may state Feynman’s idea as follows permitting some abuse of terminology:
first to assign a measure-like quantity to each classical path 7 and then to
represent a solution of Schrédinger equation
% dp
G oot
by “integrating” e *S®@g¢(y(s)) with respect to that quantity. Here S(y) is the
classical action along the path 7 starting from the position 7(s) at the time s;
# is the Planck constant, A=h/2x, 0<A=1; and ¢ is the initial state.

In arriving at his idea, Feynman considered a successive integral
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(13) Exh, t, 960=(5275)  Jan® o(3)dy,
and then took a limit when 8(4)= xlréa%w,-—tj-ll—»O. Here 4 is a subdivision of
j=
the interval [s, £] or [t, s]: to=s=1,= - 2#,,=1,=t, and 7{¢, s, x, ) denotes
the classical path passing through the position x and v at the time ¢ and s,
respectively.

*) This research was partially supported by Grant-in-Aid for Scientific Research, Ministry
of Education.
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Recently, instead of considering improper integrals, D. Fujiwara [5] directly
proved the convergence of the integral (1.2) when d(4)—0 in the operator norm
in L*R™) and proved that the limit is actually the solution of Schrédinger
equation (1.1). The purpose of the present note is to show that the construc-
tion procedure of Fujiwara [5] works well even when we replace E(#%, f, s) by

(14) B, t, Su(n)=| et e n @) §)de,

which has the same form as the operator used by Kumano-go, Taniguchi and
Tozaki [12] in constructing the fundamental solution for hyperbolic operators.
Here ¢(t, s, x, &) is the generating function of a certain canonical diffeomor-
phism of R®" (see Propositions 3.2 and 3.5) and is related with the classical
action along the classical path 7(¢, s, x, &) passing through the position x at
time ¢ and having the momentum & at time s (see the remark just before Prop-
osition 3.5). And & denotes the usual Fourier transformation

(15) (FNO=0@=@m) | e e(ndy.

Thus the main problem we shall consider is the convergence of the successive
integral
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Our choice of E(#, ¢, s) makes the treatment of the problem somewhat sim-
pler and more straightforward than that in Fujiwara [5]. Moreover it allows
us to deal with the pseudo differential equation of Schrodinger’s type

1 0

X , B 1
) g (6 DFHE, 2 8Dk, D=0,  De=—-s—,

@z, s)=¢(x),

which is somewhat more general than (L.1). The precise conditions imposed on
the Hamiltonian H(f, x, §) will be stated below. As a corollary we can also
prove the essential self-adjointness of H(Z, x, AD,) in L*R™).

To take into account the dependency on % of the convergence of successive
integrals, we shall also consider E(#, ¢, s) (N=1) defined by

A8 BN 1 )= et 0 0, 1 s, 5, BE)BE)E,

e
JR%



Fundamental solution for Schrodinger equations 195
where the function ¢’ has the form
=, N . .
(1.9) e, t, s, x, E)= 2 @A) M at, s, x, &),
j=1

aft, s, x, &) being a solution of the transport equation defined in section 3. For
the sake of convenience, we shall write E(#, £, s) in (14) as E©(®, 1, s).
—iht e g - .

In [4] Feynman called <%%>n i8IS 2 1) the probability amplitude
for the path 7(¢, s, x, y). Corresponding to this our ¢ ¢ =55 may be called
the probability amplitude for the path (¢, s, x, &). In this sense our formula-
tion might give an alternate point of view to the theory of Feynman path
integrals (see section 7).

Our assumption on the Hamiltonian H{Z, x, &) is as follows.

ASSUMPTION.

i) For each teRY, H(i, x, &) is a real-valued C=-function of (x, &) R"XR".

ii) The derivative 0%04H(¢, x, &) is continuous in (4, x, §)ER'XR"X K" for
any «, B.

iii) For any T>0 and any multi-indices «, B satisfying |el-|5]22,

(1.10) sup [0208H(¢, x, &)| <oo.

(x,EER
[OsT

Here 08,=(3/9x,, ---, 0/0x,) and 0;=(0/0&,, -+, 8/9&y).
iv) For any t=R! and ¢, ¢S,
(L1ib CH(t, x, &), e g(x)@E)=<H(t, x, 1), e = Te(x)g(7) .

Here H(t, x, &) is regarded as a tempered distribution in (x, £); S is the Schwartz
space; ¢ denotes the complex conjugate; and ¢ denotes the usual Fourier trans-
form defined by (1.5).

The last condition iv) can be rewritten at least formally as

(1.12) (FH(E, -, ENp—O=(FH(, -, Pn—E&)  in S'(REXK3).

Here FH(t, -, £) denotes the Fourier transform of H(¢, x, §) with respect to x
with 7, € fixed as the tempered distribution in x. :
We shall assume the above Assumption throughout this note.

REMARK 1.1. Under the above Assumption, H(Z, x, §) satisfies

(113) sup |908H(t, x, )] =Cr ||+ E|F 1107

for T>0 and |a]-+|8|<1, where Cr .3 is independent of x, £&€R" This is
easily proved by using the mean-value theorem. '



196 Hitoshi Kitapa

Example 1.2. The Hamiltonian operator with a constant vector potential

(1.19) H(t, x, #D)=— Zn) (A0 —ib (1)) + VI8, ), ak:;a—,
k=1 Oxeg
or more generally
H(t, x, D)
(1.15) =3 #a(ODDut 3 (D, Dat B hb(ODA WU, ),
itk
Dk:_iak H

satisfy our assumption, when 5,(¢), a;x(t) and b;,(¢) are real-valued continuous
functions of t€R? and V(¢, x) is continuous in (¢, x); C* in x with ¢ fixed;
and satisfies for any T>0 and |a|=2,

(1.16) sup |05 V(t, x)| <co.
(7F87)
This example covers the essential part of the Hamiltonians considered by
Fuiiwara [5].
Before stating our main theorem, we make some preparation.

DEFINITION 1.3. For any ¢<S, t&R?, 0<4<1, and x€R", define
(1.17) (Ho(#, t)go)(X)Eane”'fH(t, x, RE)PE)dE .

PROPOSITION 14. H (%, t) is a symmetric operator in H=LAR") with the
domain S.

Proof is immediate from iv) of Assumption.

DEFINITION 1.5. We denote by H(#, t) the minimal closed .extension of
Hy#, t) in $=L¥R™).

DEFINITION 1.6. For any integer =0, we put

(1.18) Yi={feLR") | Ifl:<oo},
where
(1.19) =T 3 I L9508 FC0) Becam T

Y, is a Hilbert space with respect to the norm || [[,. Moreover we have
Y, CY, (densely embedded for 2=0),

(L.20) V1PV P
Y,=L*R"™).
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Now we can state our main theorem.

THEOREM. Let Assumption above be satisfied. Let 0<#A=1 and let N=0 be
an integev. Then for any T>0 and t, se[—T, T, E{4, t, s) defined by (1.6)
with E(h, t, s) replaced by E™(#, t, s) converges to a unitary operator U(h, t, s)
(which does not depend on N) when 6(4)—0 in the uniform operator topology in
H=L3*R™). More precisely we have

(1.21) LU, t, s)—EP(#, t, sHIZ7bAY [t—s |tV 1i-51125(4)

for any subdivision 4 of the interval [s, t] or [t, s such that 6(4) is sufficiently
small. Here y=4(e+2logse); b is some positive constant independent of 4, A<
(0, 13, and t, se€[—T, T] (b is taken the same constant as b in (5.30) (see Theorem
2.1)); and in (1.21), | | denotes the operator norm in 9.

The family {U(#, t, s)| t, s€RY} of unitary operators thus constructed and
H(#, 1) satisfy the following properties 1)~vi):

1y U, t, )=I (identity operator) for any t<R.

iiy For any us$, the mapping

(1.22) R2=(t, s)—— UA, t, syusd

1S continuous.
iii) For any t, v, SERY,

(1.23) Uk, t, VUG, 7, $)=Ulh, t, s).

iv) For any t, sERY,

(1.24) Y. CO(H#, 1))
and
(1.25) Uk, t, 8)Y,=Y,.

vy For any f, s€R' and f€Y,, there exist the derivatives J%—U(h, t, s)f and

dt
—dd?U(h, t, 8)f in $=LYR™) and they satisfy

(1.26) %U{h, t, S)F+iHE DU, t, s)f=0,
(1.27) %U(h, t, $)f—iUGh, t, s)H(#, $)f=0.

vi) For any t<RY H#, t) is self-adjoint in ©=L*R"), in other words,
Hy(h, t) is essentially self-adjoint in 9.
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The equation (1.26) corresponds to the pseudo differential equation (1.7) with
initial condition ¢(-, s)=1.

REMARK 1.7. The family {U#, t, s) | t, se[—T, T} of bounded operators
satisfying i)~v) above is usually called the evolution operator. There are
various ways of construction of the evolution operator satisfying i)~v). Among
them, we refer to the abstract approach by T. Kato {&], [9] and others through
the so-called product integral of resolvents, which are applicable to the present
problem under certain circumstances.

REMARK 1.8. It is well-known that the Schrodinger operator Hy(#, t)=
—#24-+V(t, x) is essentially self-adjoint under our Assumption (see e.g. T. Kato

[10D).

REMARK 1.9. The convergence property (1.21) for N=1 may be useful in
considering the quasi-classical limit as A—0 for (1.7) (see K. Yajima [147, [15]).

The following sections are devoted to proving the above theorem. In sec-
tion 2, we shall state two fundamental theorems which summarize a construc-
tion procedure of the solution for (1.26), in a rather general context. In section
3, we shall construct an operator E“(%, t, s) which exactly corresponds to
(1.8) and gives an approximate solution for (1.26) when [f—s]| is sufficiently
small (see (4.25), (4.26), and ii) of Theorem 5.1). Some of the elementary prop-
erties of E¥(#, t, s) will then be considered in section 4. In sections 5 and
6, we shall investigate most important properties of E“(#, ¢, s) and other
operators for the construction of the solution for (1.26). In these sections, the
L*boundedness theorem for a certain kind of integral transformations proved
in the Appendix, will play a crucial role. In the last section 7, we shall make
some remarks on our formulation.

§ 2. Fundamental theorems.

To construct the family {U(¢, s) | f, s€ R} of unitary operators in $= L% R™)
satisfying i)~iii) of our Theorem, we shall use the following theorem which
summarizes the Fujiwara’s construction.

THEOREM 2.1. (due to Fujiwara [5]). Let  be a Hilbert space and let T >0,
a>0, b>0, 1>3>0, and d=0 be fixed as bé**9<1/2. Let {E(t, s)| |t], |s|<T,
|t—s| <8} be a family of bounded operators in © which satisfies the following
conditions a)~d):

a) E(s, s)=I for |s]=T.

b) E(t, sl <a for |t], |s|=T, [t—si<o.

c) There exists a dense subset D of § such that the mapping
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2.1 [T, T3, s)— E(t, S)ucH

is continuous when |t—s|<d and usd.
d) Foranyt,r, s satisfying | t], |r], |sI=T, [t—s| <8, |r—s|<d, and {t—r|
<4,

22) { E(t, r)*E(t, s)—E(r, s)|=b({t—r|***+{r—s|**9),
A IE(t, VE(r, s)—E(t, s)i=b(|t—r|***+|r—s|**9).
(In the above | || denotes the operator norm in ©. We shall also use the notation

B(®) as the Banach space of bounded operators in O equipped with this norm.)
Let [s, t1CI—T, T] (s<t) and let 4 be a subdivision of [s, t]:

4: fo=8s<t; < - <t;=t.

Put ()= §na>§[tj—tj_1| and define Ey4 for 4 satisfying 8(4)<0 as follows:
zjs

EA(s, )=E(t,, ty - E(ti-1, ),
(2.3) {

E (t, sy=E(ty, ti-1) - E(ty, o).
Then the following assertions 1)~iii) hold:
) E®, e for [t], [s| ST, [t—s|<a.
i) There exist the limils
Uls, t)y= lim E4(s, t),
(2.4) ocd>-0
U(t, s)= lim E4t, s)
s¢dr-0

in B(D). More precisely we have
{ 1UGs, )—E (s, DI=7blt—sle™ 254",

(2.5)
1UCt, s)—EA(t, SHI=rblt—sle™t125(4)H,

where r=4(e+2 log.e).
i) If we put U(s, s)=I for |s|<T, then:
1) the mapping: [—T, TE=2(t, s)=U(t, s)usD is continuous for any u€9;
2) Ult, s) is an unitary operator in § for |tl, |s|=<T; and
3) Ult, NU(r, s)=U(t, s) for any |t], 7], |sI=T.

REMARK 2.2. If the assumptions of Theorem 2.1 hold with T replaced by
another T’ as well as for the original 7T, then U(Z, s) obviously remains the
same as long as [{], [s|<min(T, T').

REMARK 2.3. E(t, s) and E4(s, t) are abstract successive integrals corre-
sponding to (1.2) or (1.6) in section 1.

To prove the assertions iv)~vi) of our Theorem we shall use the following
theorem.
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THEOREM 2.4. Let all assumptions of Theorem 2.1 be satisfied and let U(t, s)
be the unitary opervator constructed in Theorem 2.1. Let {H(i)| [t| ST} be a
Samily of symmetric operators in O and denote by H(t) the minimal closed exten-
sion of Hy(t) in . Suppose further that there exisis a subset Y of 9 satisfying
the following properiies a)~c):

a) YCDH(L) for |t]=T.

by U(t, s)YCY for |t], |s|<T.

c) For any f€Y and |t|<T, theve exists the derivative %E(t, $)f|sy in
9 and satisfies

d .
(2.6) WE(T, $)f ls=e=—1H(t)f .
Then the following assertions i) and ii) hold :

1) For any f€Y and t, se€[—T, T, there exist the derivatives %U(t, $f
and —;S—U(t, s)f in O and we have

_dét_Ug, sf=—iHOU, s)f
@.7) d
—5 UG, =i, H(s)f -

ii) When Hyt) is independent of t<[—T, T] and Y is dense in , Hy=H,(t)
18 essentially self-adjoint in 9.

Proor. i) Let f€Y and ¢, s€e[—T, T]. Then by iii), 3) of Theorem 2.1,
we have

|5 Wh, 9= UG, sHFHHOU, o]
(28) é”%(U(tJrh, H—E(t+h, UG, )|

|5 B b, D=DUG, S +HEOUG, 5.

The first term on the right-hand side is bounded by |A|~7b| k|| k| *%e"5/2 from
(2.5), which converges to zero as A—0. The second term also converges to
zero by b) and c).

The second part of (2.7) is easily proved by the following inequality, if we
use the first part and iii), 1) of Theorem 2.1:

29) [, s+t Hr—itt, Y]
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< | s+ Ay )= DF+HHET [T Uls+h, HHES

ii) We have only to show Ker(H*+i)={0}. For example let e (H*)
satisfy H*p=ip. Following page 267 of Reed and Simon [13], consider F((2, )

=(U(¢, s)f, @) for feY and ¢, s€[—T, TJ]. Then using i), we obtain —dquf(t,s)

=—F(t, s). Thus (U(t, s)f, )=(f, @le~ ¢ ®. Because ¥ is dense in  we get
from this (U(t, s)o, @)=|¢l?e ¢ and hence e"“~Vol*<|lpl* for ¢, sef—T, T1.
Taking t<s, we have proved ¢=0. Q.E.D.

Thus in order to prove our main Theorem we have to prove that all
assumptions of Theorems 2.1 and 2.4 are satisfied for some T>0 which we
shall fix throughout the rest of this note and for a suitably defined EW(#, ¢, s)
in accordance with Hy(#, ¢) in Definition 1.3. In the next section, we shall
define E¥M (%, ¢, s) for ¢, se[—T, T which yields E§"(%, ¢, s) that corresponds
to the successive integral (1.6).

§3. Definition of E“V (%, t, s).

In this section we shall construct E¥(#4, ¢, s) for t, se[—7, T] under the
Assumption stated in section 1. To do this we shall first investigate some
properties of the classical orbit corresponding to the Hamiltonian H(t, x, &).
Hereafter the time parameters ¢, s, 7, etc. are confined to the interval [—T, T1.

Let ¢(t, s, x, & and p(t, s, x, &) be the solution of the Hamilton equation

%m:aﬁu, g(t), (1)),
€h)) J
ﬁﬁ_@:_aszu, g(t), p(1)

with inijtial condition
(3:2) os)y=x, ps)=¢.
(¢(t, s, x, &), p(t, s, x, §)) is the classical orbit in the phase space.

PROPOSITION 3.1. The solution of (3.1) and (3.2) exists and C' in (i, s, x, &)
and C= in (x, &) with t, s fixed, and satisfies the following estimates i)~iii) for
lt—s|<1:

i)

{ IQ(t, S, X, S)”‘X!§CO(‘X‘+§€i+1>lt“—S],
(3.3

|p(t, s, %, =1 =Co(lx |+ E1+D]E—s].
ii)
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{ [@sq)(t, s, 2, E)40:H(s, x, I =Co(l x|+ [E]+ D)t —5],
3.4

1@:pXt, s, %, E)—0:H(s, x, I =Co(l x|+ 1E[+D |1 —s5].

The constant C, in (3.3) and (3.4) is independent of x, &, t, s.
iif) For laj+|8lz1,

{ ]agag(q(ty S, X, E)_x)] éclal,lﬁlit—sl;
laiaﬁ@(l‘, s, x, £)—8&)1 gclm,lﬁilt_s‘-

The constant Ciq, 5 15 independent of x, &, ¢, s.

(3.5)

Proof is easily done by successive approximation as in [5] hence is omitted.

PROPOSITION 3.2. Let 0, be fixed as 0<56,=1 and n-max (Cy,o, Co.1)0,<1/2,
where Cy, and C,,, are the constants in (3.5). Let |t—s|<8. Then:
i) For any fixed t, s, &, the mapping

(36) R*2y— x=q(t, 5, 3, HER"
is a C* dyfeomorphism. We write the inverse C* diffeomorphism as
3.7) R*sx—— y(t, s, x, §)eR™.

This mapping is C* in (t, s, x, &) and C* in (x, &) with 1, s fixed.
ii) For any fixed t, s, x, the mapping

(3.8) R'ap——E=p(t, s, x, p)ER"

is a C~ diffeomorphism. We write the inverse C* diffeomorphism as
(3.9) R*5&—— (1, s, x, E)ER™.

This mapping is C* in (t, s, x, &) and C= in (x, &) with t, s fixed.

PROOF. i) Because of (3.5) with |@|=1 and |8|=0, we have only to prove
the bijectiveness of the mapping (3.6). Following Kumano-go [11], put T.(y)=
x+y—q(t, s, y, & for fixed ¢, s, x, & Then T, is a contraction mapping from
R™ into R™ by (3.5). Thus T, has a unique fixed point, from which the bijec-
tiveness of (3.6) follows. ii) is similarly proved. Q.E.D.

The mappings y and 7 defined above satisfy the following properties.

PROPOSITION 3.3. Let |t—s|<8,. Then:

1
<3.1o>) { 6t s, b, s, %, 8), H=1,
B, s, 2, q(t, s, %, E)=¢€.
(3.11) { ot s, x, 9t s, 5 E)=3(s, 1, x. 2.
p(t, s, ¥t s, x, 8, E)=n(s, t, x, &,
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ify For lal+8]=l,
|050%( (¢, s, x, )= =Ciarpl t—sl,
135072, 5, % =) =Crarim| 151
The constant Ciqi, g 1S independent of x, &, t, s.

iii)

(3.13) {

(3.12) {

l3(¢, s, x, ©— x| =C(1x |+ [E1+D]1—sl,
In(t, s, x, §)—EISCI x|+ &I +Df=s].

The constant C, is independent of x, &, t, s.

Proor. i) is obvious by definition. ii) is proved by differentiating the
relation (3.10) and then by using induction. We shall prove iii) using ii). We
can write

y(t, s, x, E)—x=€-g 8:y(t, s, x, v&)dr

1
0
- Bartt, s, 72, = Ddr+3(2, 5, 0, 0),

where I denotes the nxn identity matrix. Hence by ii)
[3(t, s, 2, §)— x| SCIEI+HxDIt—sl+[3(, s, 0, 0)]
for some constant C. By (3.11) and (3.3) we get
|9(t, s, 0, O1=1g(s, £, 0, 5(s, £, 0, 0))—0]
=C(I0]+19(s, t, 0, OI+Dit—s]
=Clt—sl,

since 7(s, t, 0, 0) is continuous in ¢, s. This proves the first inequality of (3.13).
The second is proved similarly. Q.E.D.

Next we shall construct the phase function ¢(, s, x, &) for our approximate
solutions (1.4) and (1.8). The following definition is due to Kumano-go [117].

DEFINITION 3.4. Let |i—s|<§.. Put

¢
(1) utt, s, 3, D=+ EOH-H)E a5 s, 3, ), 2l 5 3, e
and

(3.15) ¢, s, x, E)=ull, s, y(t, s, x, 6, &)

The second term on the right-hand side of (3.14) is the classical action
along the classical path starting from the position x at time s with the
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momentum 7. Thus the corresponding term of ¢ is exactly the classical action
along the path 7(¢, s, x, &) passing through the position x at time ¢ and having
the momentum & at time s. For later argument, however, the fact that @ is
the solution of the Hamilton-Jacobi equation with initial condition &(s, s, x, &)
=x-§ (which we shall state in the next proposition) will play the crucial role
in constructing the solution of (1.7) or (1.26).

PROPOSITION 3.5. Let |t—s|<d,. Then:
B g(s, s, x, H=x-E
il) at¢(t> S, X, E)_I_H(ty X, ax¢<ty S, X, E)):O

iii)
9:4(¢, s, x, §)=7(s, t, x, &),
(3.16) { o(t, s, x, E)=n(s, t, x, &
0:6(t, s, x, &)=u(t, s, x, &).
iv)
(8.17) (', s, x, E)—o(t, s, x, OIZC x| +HIEH12(1 ' — ¢t +]5'—s])

Jor [t'—sl, |s'"—sl|, |t'—s"| <8, where the constant C, is wndependent of x, &, V',
s’ t, s,

PROOF. 1) is obvious by definition. ii) and iii) are easily proved by direct
calculation (or see Kumano-go [11]). iv) is directly proved by using the expres-
sion (3.15) and (3.4), (3.10) and Remark 1.1, we omit the details. Q.E.D.

Next we shall construct the amplitude function a™ (%, 1, s, x, &. For this
purpose we consider the following transport equation for j=1:

ataj(t> S, X, E)_'— }él<a€kH)(t, X, 7](5, tr X, S))(axka])(t; S, X, E)

(3.18) +%kél(askaszH)(t, %, (s, £, %, E))02,0,9)t, s, x, E)at, s, x, &)

+Bj(t: S, X, E):O,

with the initial condition ay(s, s, x, §)=1 and ays, s, x, £=0 for j=2. Here
B:=0, and for j=2 B¢, s, x, &) is defined inductively as follows:

Byt s, x, &)

=3, LG, 2 0,000, 5. 5, )00ty 5, 5, ©)

- esiaisi
(3.19) 131
+ 3 @FHX, x, 0:6(¢, 5, x, &)
B T (i
i 1 )
XL =@ 9N, 5, 5, Oyt 5. 1, Y,

i=1 k1
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where 82*'H and 9%*'¢ denote one of the derivatives of H and ¢ of order
|a]41 and k;+1. The solution of the transport equation (3.18) is given by the
classical theory of a first order differential equation as follows:

(620 alt, s, x O=exp{—5] 2 @I X@, 96, X, )

X (02,0, 8)e, 5, X(z), O)de]

and for j=2
¢ Bj(T) S, X<T)) 5)

(3.21) aft, s, 1, =—ayt, s, x, E)Ss e CN kA
where
(3.22) X(D)=q(z, s, ¥, s, x, 6), &).

These solutions satisfy the following estimates.

PROPOSITION 3.6. Let |[t—s|<d;.
iy For any a, B,

(3.23) 10204 ay(t, s, x, §)— D] =Chpl t—s!*
and for j=2
(324) |020%a,(t, 5, x, &)1 SCaplt—s1".

where the constant C,g is independent of 1, s, x, &.
ity For any a, B and j=1,

(3.25) [(05080,a,)(t, s, x, )| =Cap,

where Cap 1s independent of t,s, x, &.

Proof is clear.
Put a®(#, t, s, x, £)=1 and for N=1,

(3.26) e 1, s, % O= 5 (h )L, s, 1, ).
Jj=1

Now we can define the approximate solution for (1.7).

DEFINITION 3.7. Let [f—s} <3, and 0<&=1. Put 9= (CH(R™) (CS). For
ue @ and an integer N=0, we define

(3.27) EM(, ¢, S>u(X)ES inlgcsnnmh g N(p ¢ s, x, BE)UE)E .

e
R



206 Hitoshi KiTapa

§4. Elementary properties of £(%, ¢, s).

In this section we shall investigate some of the properties of E¥(%, ¢, s)
which does not concern its L2 property.

PROPOSITION 4.1. Let |t—s| <0, 0<AZL, and usD. Then EWF, ¢, s)ulx)
is Ctin (1, s, x), and C= in x with t, s fixed, and satisfies the following properties:
) EM(h, s, syulx)=u(x).
% 0

il) 75? E(N)(h, t, S)u(x)

e tecnnnnt Lo a00nm, 1,5, x, 48)

—H(t, %, (s, 1, x, BN, 1, 5, x, HE)}A(E)dE

(Heve we omitted the integration region R™ for no confusion arises. In whai
Jollows we also follow this convention.)

Proof is immediate by Propositions 3.5 and 3.6.

Let J, be fixed in the following as 0<§,<6, and C,6,<1/2, where C, is the
constant in (3.13) of Proposition 3.3. The next lemma will be useful in study-
ing regularity and the decaying property of E“(#, ¢, s)u(x).

LEMMA 4.2. Let veal numbers A>0 and K=0 be fixed. Let a C* function
F(x, & satisfy

(4.1 sup |0§F(x, )l San(l+]1xD*
(1€54)

laism

for any x€R™ and any integer m=0. Here a, is a constant independent of
XER™ For |t—s|<8,, 0<AZ], and uc D such that supp 4 {€ | |E| S A}, define

(4.2) T(h, t, s)u(x)fge“"“"S’I"“‘)Fo«, KE)a(E)dE . -
Then T(h, t, syu(x) satisfies the following properties:

i) For any integer m=0, there exists a constant Cn>0 such that for any
XER?, 0<AL], and ¢, s satisfying |i—s| <4,

“3) TG £, () ZCan(lit | )E "l
Here
(44 fulla= 3 | 105001 de.

i) We have
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(4.5) tulti’rE%IIT(h, v, sHu—T®, t, syull=0.
Proor. i) From the first estimate of (3.13) in Proposition 3.3, we have
(46) 3eglt, s, & OI=13(t, 5, x, O 251 —~(A+1)
when |&]<A and |t—s|<J,. Thus for x such that |x|=2(A+41), we get
@7 856t 5, 3, D12 5 | 2] ZH(ATD>0.

In the following we always assume that |x|=2(A+1), |&[£4, 0<A=], and
[t—s]| <0, Then

Bs,(t, 5, %, HE) D 1

(48) L= 2 T o, s, %, B 65, daglE 9%

is well-defined and satisfies

(4.9) L(eth 19t 8,2 88z pin =16l 5, 208
The formal adjoint L* of L is given by

(4.10) L¥=ilal(t, s, x, hE)-0e+H U(¢, s, x, HE)]

where ¢ and b satisfy

411 { 10 alt, s, x, BN =Crlx] ™,

]ai;(b(t: S: X, h5)>1§C7|x1_1
for any 7 by Proposition 3.3 and (4.6). Integrating by parts we get

(4.12) Tk 1, Sulx)=[er oo O LA(F(x, AA(ENE
The integrand is majorized by
(413 Canlx1%™ 3 |380(8)]

uniformly in | x| =2(4+1), 6] <4, 0<A=1, and |t—s|<J,, by using (4.11). Hence
we obtain

(4.14) T, ¢, syu()l=Canl x| * ™ ulln

for |x|=2(A-+1), 0<AZ], and [f—s]| <0,
ii) By iv) of Proposition 3.5, we have

1T, t/, sHu(x)—T#, t, sHu(x)|

415 §cgh—1§<1x|+ B L[t —t 4| s'—s DI F(x, AE)aE)] dE
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ngﬁ_lao(lX[+l)2+K<lt,_tl+IS,_Sl)S(|E‘+1)2Iﬁ(é>Idé;
which converges to zero as t'—#, s’—s for each x. On the other hand from i)
we obtain
(4.16) [T, t, sHulx)—T@®, t, ulx)| SC({ x|+1)-"-1.
Therefore Lebesgue’s dominated convergence theorem proves ii). Q.E.D.

PRrROPOSITION 4.3. Let {i—s| <8, 0<A=Z1, N=0, and uc9. Then:
) EM@#, t, s\ueSCL: Furthermore for any a, B,

4.17) sup |x%EEM(A, 1, sHu(x)|<oo,
<|g§?£§2)
(4.18) sup |E*OUFEN (A, ¢, sHul@l<oo.

(£5%5.)
ity For any «, B,

(4.19) sup | x*08(Hy(A, HYEW (A, ¢, s)u)(x)| <o,
(Iizesllzl(?z)

In particular

(4.20) sup | Ho(#, HEY#, t, s)ul<oo.
1t =-581<dg

iiliy The mappings
(4.21) L—T, TP3s(t, s)—— EY(4, t, s)u, Hih, DEN (%, t, slus
are continuous.

ProoF. i) We have only to prove (4.17). When |8|=0 (4.17) follows from
Lemma 4.2 and Proposition 3.6 if we take F(x, &/ =a"™(#, t, s, x, £). For | S|
=1, we have

OEEN (A, ¢, sHu(x)

(4.22) = 3 3 » (ih-l)zgein—lgs(t.s,x,ns)

Crsts i (klzj";;leﬁlrr)
X LA, s, x, BEXBEA™)h, 1, s, x, ADUENE .
2

By Propositions 3.5, 3.3 and 3.6, F(x, &= f[laf;fgb(t, s, x, EXAa‘NA, 8, 8, x, &)
=

satisfies (4.1). Thus by Lemma 4.2 we obtain (4.17).
ii) We have by direct calculation,
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x%0(Hy(h, HE (B, t, s)u)x)

(4.23) A
= 3 ol @, x, WHETED B, 1, HulE)dé.

Thus by (4.18) we obtain (4.19).

iii) For EY(#, t, s)u, the result follows from iii) of Lemma 4.2 if we take
F=a" there. For Hya, YE™ (%, t, s)u, by (4.19) and Lebesgue’s theorem, we
have only to prove that Hy(#, {)EY>(#, t, s)u(x) is continuous in ¢, s for each
fixed x€R*. We have

Hyh, tYEN(h, 1/, s"Yu(x)—Hyh, 1) EN (R, t, shu(x)

(420 zge”‘f(H(t’, x, BE)—H(t, x, BENFEN (A, 1/, s"u(&)dé

+§e”'5H(t, x, BEF(EN (A, 7, sHu—E(®H, 1, syu)&)dE.

The first term on the right-hand side converges to zero as ¢'—1, s’—s by (4.18)
and the continuity of H(¢, x, &) in f. For the second term, the same thing is
proved from (4.18), (4.17), and (4.15) with F=a"¥, by using Lebesgue’s theorem
twice. Q.E.D.

DEFINITION 4.4. For |t—s|<6, 0<A=1, N=0, and u<9, define

(4.25) F(, ¢, s)u(x)z—?%E‘m(h, t, syu(x)
and
(4.26) G, t, SSu(x)=Hh, DEWY@, t, s)ulx)—F M (#, &, syu(x).

PROPOSITION 4.5. Let [t—s{ <0, 0<AS1, N20, and uc 9. Then the follow-
ing assertions hold:

1Yy GW(a, s, s)u(x)=0.

ii)
(4.27) sup |F@, t, sjull<oo,

sup G, t, sjull<co,
1t-81<5g 1t-51<8g
and the mappings
(4.28) [—T, T1*=(t, 5)—> FN (4, t, s)u, G, t, S)ush

are Continuous.
iii) For any rveal number r between t and s, we have

(4.29) EO(, 1, syu—EG, 7, s)u:'—ig’Fm(h, o, u dr,
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where the integral on the right-hand side is the Bochner integral in H=L¥R").

. L. d .
In other words, there exists the derivaiive —zl,—t—E“’V)(fz, t, s)u in O and we have

(4.30) ﬁ—j?E““(ﬁ, t, Shu=—iF D, 1, $u
=UGY (&, t, syu—Hyh, HE(%, t, s)u).

PROOF. i) is obvious from F™(#, s, s)u(x)=Hy#%, s)u(x) which follows from
ii) of Proposition 4.1 and the transport equation (3.18) and (3.19). ii) follows
from Lemma 4.2, ii) of Proposition 3.6, and Proposition 4.3. We next prove iii).
Take the inner product of the right-hand side of (4.29) with ¢$ECP(R™). Then
using the definition (4.25) and Fubini’s theorem, we can easily see the inner
product is equal to (E(%, £, s\lu—E (%, 7, s)u, ¢). Since C(R™) is dense in
L*R™), this proves iii). Q.E.D.

§5. Construction of the unitary operator U, ¢, s).

In this section we shall investigate the Lproperties of the operators
EN@, t,8), GV, t, s), F¥ (4, ¢, s) defined in the previous sections, using
Theorem A.3 in the Appendix, and prove all assumptions of Theorem 2.1 and
hence (1.21) and i)~iii) of our main Theorem.

In the following we shall fix §; as 0<J,<3, and nCy,40:<1/2, where C, , is
the constant in (3.12) of Proposition 3.3.

THEOREM 5.1. Let |t—5|<8, 0<AZ1, N=0, and us®d. Then:

D EDNG, ¢, Sul =Cllul.

i)y NG, t, su)| <CAY t—s]full.

i)y JF@&, t, siul <Cllul,.

iv) [Hy®, )ul=Cluls. In particular we have Y,CDHG, 1) for |t <T.
Here the constant C is independent of t, s, #, and u. Y, and the norm il are
defined in Definition 1.6.

PrOOF. We use Theorem A.3 in the Appendix. First we note that 4, x, &
=¢(t, s, x, §) satisfles the condition (A¢) in the Appendix by Propositions 3.5
and 3.3, if we take 2=(¢, s)eA={(¢, s) |1 ¢, se[—T, T, |t—s|<d;}, and that
the function x(Z, s) corresponding to x(1) of (A5) satisfles the estimate

(GRY) [x(2, )1 =Colt—5]1<Cods,

since from the definition and (3.10) we have x(¢, s)=¢(t, s, 0, 0). Thus i) fol-
lows immediately from Theorem A3 if we take k=1, [=0, a(x, &)=
a(#, t, s, x, BE), and v=*# there, by using Proposition 3.6.
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ii) Take A>0 and XS such that suppaC{§ | [§]=A} and 2(0)=1. Then
we have using Fubini’s Theorem

Hyh, YEM (A, t, s)u(x)

(5.2) ] - _
=lim Se”‘ s e mdg (B otos, x, HAEME,
)

where

adt, t, s, x, 5):(2ﬂ)_n5§ei[<x-y).v—h*luﬁu,s,x,n5>—¢<t,s,y,n§)>1
(5.3)

X H(t, x, ain)a™(h, t, s, y, BEM(eney)dy dy .

Putting

b, t, s, x, ¥, =00k, x, 3, &)
(5.4)

=i 0,001, 5, yhr(e—), B)dr=1{0(s, 1, y+rx—), Ky,

and making a change of variables, we obtain

(55) 0t 1, s, x, O=@a) | p.th, 2, 648, x4z, Odldz,
where

56) bk, x, m, y, =0t 1, s, %, 7, 3, E)
=H(t, x, W(n—E+00%, x, 3, ENa ™, 1, 5, 3, B —E+0(h, x, 3, ON(ey) -
By Taylor’s formula we get

A, x, E+E, x+2, 6

57) = 3 S0 5 & 1+ D

Mcaﬁa—a)'a'-%agps)(h %, §+0C, x+z £)d0.

jei=ve ol

Thus by integration by parts we obtain

a.(#, t, s, x, &)

—en 3 O tim (o< gmmp000, 2, 6, w2 O OCe Dz

lalsN al

(58)
+@o 3 2Ly

1=+ al

x(ia—oyer= tim [{ o550 0008, x, €40, 542 O OUe DdLdzd0 .
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The first term on the right-hand side is equal to

59 s EO Graenon, % 6 %, 9

latsN

by Fourier’s inversion formula. For each fixed #, ¢, s, x, this is uniformiy
bounded in [£€]<A and ¢>0, and has the following limit when ¢ [ 0:

al(ﬁy t: S) X, E)
=H(t, x, 0.4(t, s, x, #)a™ @, t, s, x, hE)

+) B @D, %, D9(t, 5, 2, BN Oaya ™) 1, 5, %, )
(5.10) +% ij; (005, H X1, %, 0:9(2, s, x, h)N02,02, 9L, 5, %, BE)a (A, £, 5, x, hE)}

" “h—al)"i[@ HYE, %, 02801, 5, %, BEN@La™)H, 1, 5, %, HE)

+rZ X E )(G?HH)(L %, 0.9(L, s, x, AE))

TaONA, 1, s, x, hé)].

Denoting the second summand of (5.8) by b.(4, t, s, x, &) and using the rela-
tion <L Dy =(2) W (D) e b= (2>=+/1+[z|? , we obtain by
integration by parts

b.#, t, s, x, )
(.11 ]0([

TaifEer al

o fa-oein Sﬁg(h x,& 2,8, 0)dzdldo,

where g. ... 1.. Satisfies
(5‘12) ige,e’,l,l',a<ﬁy X, Sy z, C} 0)1 §C<Z>—2(l'—1)<é>—2(l—l)

for some constant C independent of 0<e<]1, 0<e’<1, 0«8, |§|=ZA4, z and {,
but depends on a, I, I/, ¢, s, x, and #. Further the following limit exists and

we have

gl,l',a(ﬁ; X, E; Z, C; 0)5 Ihm ge,e',l,l',a(ﬁ: X, Sy Z, C: 6)
(513) €+0,8" 30

=(27) e 2 DO D KD 0505 0) By x, E4OC, x+2, 8),
where p(&, x, 7, 3, §)=p#, x, 1, ¥, ). Thus for each fixed 4, ¢, s, and x,
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b#, t, s, x, &) is uniformly bounded in |£] <A, and the next limit exists and we
have
b, ¢, s, x, E)=lim b, t, s, x, &)

(5.14)

s+ @l

= » S yala—om(lgn..t x e 2 L odzdcas,

when [ and [’ are sufficiently large.
Summing up, we have proved that for each fixed #, ¢, s, x,

(5.15) sup ladh, t, s, x, £)|<oo
D)
and
(5.16) lim ah, t, s, x, E=ah, t, s, x, E)Fb(h, t, s, x,8).

From this we get for each fixed 4, ¢, s, x that

(5.17) H#, HYE (B, 1, s)u(x)

:gem—lws’r’ﬁ@am t s, x, HaE)de

t{etntsan s nonn, 1, 5, x, ORE)E

Therefore we obtain from (4.26), (4.25), ii) of Proposition 4.1, and the transport
equation (3.18) and (3.19),

GO, t, HHulx)

(5.18
) :Selﬁ_1¢(t,3’x’ﬁ$)(b<ﬁ) Z" S’ ‘x’ §)+C(h) t) s) x’ S))ﬁ(s)dé}

where ¢ is the remainder term which does not cancel out with a; by the trans-
port equation.
So we have now only to prove

(5.19) sup |0508(b+c)(h, t, s, x, )| =Caph™ |15,
(74555,
since from this and (5.1), ii) follows by Theorem A.3 with k=1, [=0, and v="%.
But (5.19) is not difficult to prove by using (5.14), (5.13), and the expansion
formula for 0295p similar to (5.10), where we also use iii) of Assumption, (3.12),
and i) of Proposition 3.6.
iii) By definition we have
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FOH 1, s)ulx)

:Se“”"“”’”f%H(t, x, 9(s, t, x, BEN—H(t, x, %))

Xa(h, 1, s, x, BEWE)AE

(5.20) ,
e SO R, , B)a B, ¢, 5, x, KON

A
— Lleniscan o0y, 1, s, 5, BAEEE

=F(4, t, s)u(x)+Fyh, t, s)u(x)+F#, t, s)ulx).
We have to prove
(6.21) 1F4h, t, syu =Cllul, (=12, 3).

By ii) of Proposition 3.6 and Theorem A.3 with £=1, [=0 and v=4, F;
clearly satisfies (5.21).
We next treat F,. The amplitude of F; is written as

(H(t} X, 77(5, t; X, ﬁS))"H(t; X, hg))a(N)<h» t) S, %, hg)

1
(6.22) =(n(s, t, x, ﬁé)—hé)-go(ash’)(i, x, WE+r(n(s, t, x, hE)—RE)dr
xa (@, t, s, x, #E)
=a,(x, Halx, alx, §).
We shall apply Theorem A.3 with 2=3, [=(1, 1, 0), and yv=%. We get by Prop-

osition 3.3

(5.23) { [0%02a,(x, )| £Chplt—s]  for |al+[Bl21,

14,0, 01 =Cilt—sl,

where C,p and C; are independent of £, s, x, &, 4. Thus A, corresponding to a,
in (A.11) of Theorem A.3 is bounded as

(5.24) sup A,=Clt—s].
0<hs1

On the other hand g, is estimated by using Assumption and Remark 1.1 as

follows :
[0%02ay(x, )| =Cas  for {al+|BlZ1,

(5.25)
a0, )| =C.

Thus

(5.26) sup A,<oco.
(858830
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By Proposition 3.6 A, clearly satisfies (5.26) with A, replaced by A;. Therefore
noting (5.1) we obtain by Theorem A.3

(6.27) 1Fu#, &, sul=Clt—sl{ul.,

where C is independent of ?, s, 4.
Finally we consider F,. In Theorem A.3 let k=2, [=(2, 0), and y=4. Then
by iii) of Assumption and Proposition 3.6, we have

5.28) sup sup A;<co,

R ()
hence we get for some constant C independent of ¢, s, #,
(5.29) 1 F(, 2, shull=Cllull.,

which proves iii).
iv) is now obvious by iii) and Hy(%, H)=F®(4, t, t). Q.E.D.

ProPOSITION 5.2. Let 0<#A=1, N=0, [t—s|<8,, |r—s|<0, and |t—r]|<d,.
Then we have

VEX(h, t, r)*ES#, t, s)y— EY(, v, s <bAY([t—r]*+|r—s|?),

(5.30) {
IEY(h, ¢, NEX(R, 7, )—EN(h, 1, )| SbAY(|t—r|*4|r—s?),

where constant b is independent of t, r, s, 4.

Proof is done quite similarly to that of Propositions 5.1 and 5.2 of Fujiwara
[5] by using ii) of Theorem 5.1 and (4.30) hence is omitted.

Now we have proved all assumptions of Theorem 2.1. In fact a) of Theorem
2.1 follows from i) of Proposition 4.1 and i) of Theorem 5.1. b) was proved in
Theorem 5.1. ¢) holds by Proposition 4.3 with 9= "Y(Cs(R™)). Finally d) holds
with d=0 by Proposition 5.2 just above. Thus we have constructed a family
{UN(h, t, s)| t, se[—T, T]} of unitary operators satisfying i)~iii) of our
Theorem.

From Proposition 3.6 and Theorem A.3, we can easily obtain

(5.31) NES (R, t, )—EM(h, t, sIECylt—s|*

for |t—s|<d,, N, M=0, 0<A=<1. Thus we have proved the following proposi-
tion.

Prorosition 5.3.  The family (U (4, t, s) | t, se[—T, T} of unitary opera-
tors thus constructed does not depend on the choice of the integer N=0. We shall
denote it by {Uh, t, s)| t, se[—T, T]}.

This proposition completes the proof of (1.21), and moreover shows that
for the discussion of the property of U(#, ¢, s), it suffices to study EY(#, ¢, s)
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for a particular integer N=0. This we shall do in the next section with N=0
to prove the strong differentiability of U(#, ¢, s), though even for N=1, we
can develop an argument similar to the one in the next section.

§6. Strong differentiability of U(%, ¢, s) and the self-adjointness of H(#%, ).

In this section we shall study the L2-properties of E®(4, ¢, s) more closely
and prove all assumptions of Theorem 2.4 and hence iv)~vi) of our main theo-
rem. In the following we fix # as 0<#A=1 and write EY(4, ¢, s), H(A, 1) and
Fo, ¢, s) as E(2, s), H(t) and F(t, s), respectively.

PROPOSITION 6.1. Let |t—s|<0; and usD. Then:

i) For any a, B and j satisfying 1=j=n, we have
©.1) { Hxaai[axj, E(t, sy ul =Caglt—slluliairiprers
' Ix°Lx; ECt sIul=Colt—siiulliaes»

where constants C,p and C, are independent of t, s, and u, and [A, B]=AB—BA.

ity For any a, B, we have
62) [ x208E(t, syull I E(t, s)x®05ull+Caplt—slluliasip
' <=2 528Ul +-Cagl t—s || uliaisp s

where b is the constant appeared in (5.30) with N=0 and C,3 is a constant inde-
pendent of t, s, u.
Proor. i) We have

- [0z, E(, $)]u(x)

(6.3) L
:ih"lge”'l?“’s'”'ﬁ@(m(s, t, x, BE)—HENAUE)E .

By direct calculation we obtain
x%03[04,, E(¢, s)Ju(x)
;
Xge”"l‘m’s’z’”a {xe0f1¢ - 010U (s, T, x, HE)—hEN} A(E)dE .
Let, in Theorem A.3, k=|a|+Ii+1 (<|a|-+|81+1), [,=1, v=4, and
a(x, &) aialx, E=x% (afx, &) is first order in x),
(6.5) Qe fx, E)=0810(t, 5, x, BE)=057"(s, t, x, hE) (1=j=D),
Giarsira(x, =07 s, £, x, HE)—4E;).
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Then we have from (3.12)

AEC (ASjslal+D.

(6.6) {
Ala!+l+1§_c] t'—‘S|>

where C is a constant independent of #, s. Therefore by Theorem A.3 and (5.1)
we get the first part of (6.1).
Next we consider the second part of (6.1). We have

6.7) x[x,, EGt, s)]u(x):ge”_lmt's’ 20 xa(x —y (1, s, x, ENAE)E .

Thus in Theorem A.3, taking k=/|a|+1, ;=1 and v=4#, and putting

68) { ax, & aialx, E=x* (afx, & is first order in x),
’ G, =2~ {1, 5, x, HE),
we get
A=C (1=j=lal),
(6.9 {
AIaHIécit—S‘:

from which we obtain the second part of (6.1).

ii) When k=]a|+|p]=0, (6.2) is a consequence of the results obtained in
section 5 by Theorem 2.1, i). When 2=1 assume (6.2) holds for |a|-+|B8{=k—1.
For the case |8|=0, using the second part of (6.1) we obtain

| xE(t, syull <l x5 EQt, s)xull+lx*Lx; E(2, s)]ul
(6.10) SNEG, syx=ull-+-Cli—silxulia-1+Clt—s|lullia
SHEG, s)x*ull+Chlt—silulliar,

where ¢; is the multi-index whose j-th component is 1 and others are zero.
For |Bl=1, similarly we have from the first part of (6.1)

6.10) [x%32E(t, s)ul £\ x*04-9E(, $)0, ul+1x*05 %0, E(, s)lull
' <IEQ, $)x@ul+Capl t—s 11l arsip -
Thus by induction we have proved ii). Q.E.D.

COROLLARY 6.2. Let k=0 be an integer and let |t—s|<0; and u€D. Then
we have

(6.12) 1ECt, syulle=e "~ ull,
for some positive constant by.

Proor. First note that
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Il= = 10+ x 19087 0)°

tel

(6.13) l
B Dol

I+ials

for some constants ¢s=0. Thus by (6.2)

1, suli= 2 3(1) 2 calx?amEd, sulf

<D B0 B s ezl 1 Cogl t—s  ful

y

[

(614 <o (1), 2, col Pzl

+Clt—s|(eo 4| = Dul}
< +C s - ul}
Ser g Q E.D.

THEOREM 6.3. Let k=0 be an integer and let |t], |s|<T and ucsQD. Then
we have

(6.15) NUG, syullp=e®* = ul,,
Jfor the same constant b, as in (6.12).

Proof is quite similar to that of Theorem 4 of Fujiwara [5] hence is
omitted.

COROLLARY 6.4. Let k=0 be an integer. Then
(6.16) U(t, s)Y,,=Y,.
PrOOF. From (6.15) we have U(¢, s)Y,CY, and U(z, )Y ,=U(s, 1)Y,.CY,.

PROPOSITION 6.5. Letf {t—s| <8, and feY, Then Jor any r between t and s,
we have

6.17) E(t, $)f—E(r, s)f:—iStF(z-, Sfde in H=L¥R".

In other words, there exists the derivative -afiTE(z‘, ) i 9 and we have
d .

(6.18) TirE(t, s)f=—1iF(t, s)f.

In particular we have



Fundamental solution for Schridinger equations 219

3

(6.19) %E(t, | =—iHW) -

Proor. Take a sequence {un}o-.CD so that Uum—f in Y, as m—oo. Then
by iii) of Theorem 5., F(z, Hum—F(z, s)f in § as m—oo for each 7. Since
r—F(z, s)unsD is strongly continuous by ii) of Proposition 4.5, it follows from
this and iii) of Theorem 5.1 that the mapping w—F(z, s)f€9 is strongly meas-
urable and uniformly bounded. Thus the right-hand side of (6.17) is well-defined
as the Bochner integral in 9.

Now (6.17) follows from (4.29) if we take u=u,, and let m—oo there. Q.E.D.

Now we have proved all assumptions of Theorem 2.4 with Y=Y,. Infact,
a) of Theorem 2.4 was proved as iv) of Theorem 5.1. b) was proved as Corol-
lary 6.4 and c) as Proposition 6.5. Therefore we have completed the proof of

our Theorem.

§7. Conecluding remarks.

We first remark on the relation of our EW(h, t, sy with Fujiwara’s. For
our E®(#, t, s) for (1.1) and Fujiwara’s E#{(%, {, 5), we can prove the following

estimate
(7.1 |Ex#, t, s)—E®®, t, HI=Clt—si*,

when |t—s]| is sufficiently small. Proof is done quite similarly to the proof of
(5.11) of [5] by using Proposition 4.18 of [5] and our (4.26) and ii) of Theorem
5.1. From (7.1) we can easily prove that our U(#, 1, s) coincides with UGh™, t, s)

Ealjm Eglh, t, t;-1) - Ep(ty, 5) of Fujiwara [5], though this fact is also a corol-
4y-0

lary of Theorem 5 of [5] and our main Theorem.

Secondly we consider the meaning of our formulation from the physical
point of view. As was noted by Feynman [4], in quantum mechanics, the law
of superposition of probability amplitude is given by goac:Zb‘,goabgobc and Pi=

[@ocl? where P denotes the quantum mechanical probability that a measure-
ment A which follows the measurement C giving ¢ results in q, and @ap, Qoes Lac
are some complex numbers giving the probability amplitudes for such measure-
ments. Under the above preparation, Feynman gave two postulates which
gives the formula expressing the probability amplitude that a particle will be
found in a certain region in space-time (see (12) of [4]), which leads us to (1.2).
His postulates concern only with the measurement of the position of the particle,
that is A, B, C above are the position measurements in [47], and it is in fact
sufficient in itself. However, his postulates are not the unique one. We may
think the measurement A as the position measurement while the B as the



220 Hitoshi Krtapa

momentum measurement in considering ¢,,. What we have shown in the pre-
sent note is that this is in fact possible and the treatment becomes somewhat
simpler than that of Feynman’s integral (1.2), e.g. in the analysis of the L%
properties of E(#, ¢, s), etc.,, with the operator norm convergence of E§V(#4, 1, s)
in L*R™) being preserved, though the physical meaning is not so easy to get
acquainted with as that of Feynman.

Finally we remark on our Assumption. Although we have assumed that
H(t, x,6) is C* in (x, €) and its derivatives of order=2 are bounded, this
assumption is redundant. It suffices to assume this up to a certain finite order,
since in Theorem A.3 we only need the estimates for finite order derivatives
of ¢ and a;.

Appendix
L*-boundedness of some integral transformations.

In this appendix we shall consider the integral transformations of the form
(A1) T(, y>u<x>55 TR E0 g (5, £) - ay(x, AE)E,

R

and prove the L*boundedness of 7(Z, v) under certain assumptions, where A
and y are parameters such that 0<y<1 and Ae, A being some fixed set.

Let £=1 and let [=(/,, ---, I,) be multi-index and put M=2([n/2]+[5n/41+2)
+2”|+I§;‘E§ l;, We impose on the functions ¢ and a; (1=/=F) the following

conditions :

(Ag) 1) ¢, x, & is real-valued and &4, -, YSCHTR*X R") for any 1< .
ii) pE( S}éﬁ [0:0:0(2, x, &)—I|<1.

z,EE€R

vAg
iii) 154,3%152371 A |0%086(2, x, &)] < co.
(3§|tx)+lﬁl§M+2
1518

(Aay) 1) a(-, -)€CH(R*X R™).
i) sup  [0%02a,(x, §)| <oo.

(zjgfixﬁl,elgm
Before stating our main theorem, we prepare the following two lemmas.

LeMMA AL Let i) and ii) of (Ag) be satisfied. Put

(A2) 64, %, x, 1, 9= G:pA, x, sl +rE—n)dr

for 2e 4, 0<v<l, and x, 7, §€R"™ Then
(AB) laxg(xy v, X, 7, S)»—]] §0(<1)
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for any A€, 0<v=l, and x, 5, EER™ Thus R"2x—02, v, x, 7, §)ER™ is a
C¥*' diffeomorphism for any fixed 2, v, 7, & We write the inverse CH+ diffeo-
morphism as

(AL R*20+—— x(2, v, 0, 9, §)ER™.
Then x(1, v, 0, 0, 0) is independent of 0<v=1. We write this as
(A5) 2D=x12, »,0,0,0).

ProOOF. We have by ii) of (Ag),

18002, v, %, 7, O—T1=| 0.0, 2, 5+ rE—n )11 dr

=p<l.

From this we can prove that x—#(4, v, x, 5, & is a C¥*! diffeomorphism in the
same way as in the proof of Proposition 3.2.
x(2, v, 0, 0, 0) is uniquely determined by
62, v, x(2, v, 0, 0, 0), 0, 0)=0,
which is rewritten as
0:0(, x(2, v, 0, 0, 0), 0)=0

by (A.2). This shows that x(2, v, 0, 0, 0) is independent of v. Q.E.D.
LEMMA A2, Let (A¢) be satisfied. Then

(AB) sup |0§080kx(4, v, 8, 5, §)] <oo
Cxa=a

for any a, B, v satisfying 1=<lal+|Bl+IrI=M+1.
ProOOF. x(4, v, 6, 7, &) is defined by
(A7) 02, v, x(A, v, 8,7, 8), 1, E=0.
Differentiating this with respect to ¢ we have
@004, v, x(2, v, 0, 7, &), 1, §)-0sx)2%, v, 0, 1, =1,

from which and (A.3) we get (A.6) for {a|=1 and [B{=]|r|=0. For other q,
8, v satisfying 1=|a|+|B] 4|71 =M+1, operating 03050% to (A.7), we obtain

O:(axﬁx)‘; Y, X(X, Y, 0: 7 E); 7, 5)(63858295)(27 Y, (9; 75 é)
(A8) +3 (05 08 3LON2, v, x4 v, 0, 7, &), 1, &)

i) AR
X 11 (877827057 )2, v, 6, 7, &),
j=1
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where the summation ranges over those systems of multi-indices o/, 8, 7', «;,
8, 75 such that 2< |a&/|+ | §'| + 7' | EM+1and 1= ||+ 1 G5+ 175 <lal+{ Bl +17]
(1=j=17’|), and the constant ¢ depends on them. By iii) of (A¢) and (A.2),
(95 02 a5 04, v, x, , &)] is uniformly bounded in 2, v, x, 3, § since 0<p=l
Thus from (A.8) we obtain (A.6) by induction. Q.E.D.
Now we can state and prove our main theorem.
THEOREM A.3Y. Let k=1, and [=(,, -, [,) be a multi-index. Put M=
2([%}{%”} c2)+20il+ maxl. Let (Ag) and (Aaj) for 1Sj=k be satisfied.
1s7j=<
Then for any usD=F"YC7(R™), 0<v=1, and 2= A, we have
(A.9) 1T vul 2 Kllullu,

where | | is defined by (1.19). The constant K, is given by

(A10) K=C, k,ljlf{ A (1|

where x(2) 1s defined by (A5); Cy. 5,1 1s independent of 2 and v ; and A; is defined
by
(A1) A= sup |0%0%a,(x, &)1+ sup [050%a,0, 0)]

cRT ta+ 1<y

J
sl aspiEM
for 1=j<k.
PrROOF. For w=CH(R") satisfying «(x)=0 on R", define
(A.12) (B4, v)a)(n)

= {Jenrocmsomsacom 11 ax, GafE Pulxa@)deds

Then we have

(A.13) SIT(Z, v)u(x) lgw(X)dXZS(Kw(Z, v)a)n)a(y)dy .
Using Taylor’s formula we write

(A.14) afn O= B (e, alx =3 (1P
Here for |al, |81 <!,

(A15) = Opa)0,0),  bp= T 0,

and for la|=|81=I,,

1) When /=0 and v=1, this theorem is almost included in the results of Fujiwara [6]
or Asada and Fujiwara {2], [3].
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| ap=apte, =2 0y G 0 X, By,
al
(A.16) |
VP =P, 77>~*§,§<1 I o o P
Thus we get
iv—1 Lz, V8~ LT, v & aj i
R e E et R

X aFPbFP ol x)i€dédz ,

where the summation 3, ranges over the indices a;, §; such that |a;l, | 8,1 =1,
(I=j=h).

Writing v %@, x, v6)—@(4, x, vp))=(E—9)-0(, v, 7, x, &) for O, v, 5, x, &)
:ﬁagqs(l, x, w(p-+rE—n))dr of (A2), and making a change of variable #=

02, v, 3, x, &), we obtain
(K4, v)a)7)

(A.18) o

=S [ere 0 {1 440, 1, ©)1det 30200, 7, &)1lx(0, 7, NGz,
where x(0, n, )=x(, v, 6, 5, §) of (A4). Here
(A.19) Af8, 7, =(x(0, 7, &), E)*(x(0, n, &), n)PiafrbEr,
and for |a|=|I=l;
(A.20) aP=a(x(0, 7, &), &),  bP=bP(x(0, 9, &), 7).

Using Taylor’s formula again we have

(A.21) x(6, 1, £=x(0, 0, O)erE:l @, 9, &'x7@, 1, &),
where
(A.22) x90, 5, E):g:(azﬁ,,y,@x)(rﬁ, ry, r&)dr

and x(0, 0, 0)==x(2) by (A.5). Then substituting (A.21) into (A.19) we obtain

(A.23) A0, 7, &= 3 0, 9, &0, 1, EaFrbf?
tulg j

for some d¥(0, 5, §)=d¥Q, v, 0, 5, §) ECY satisfying |0go50Ld ™ (6, 5, O <
Ca+ 1 x(DH)# for |a+B+7|=M. Then we have
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(Kul, »)8)0r)
3 ik
(A.24) =SSl e 0, 5, 9 11 tapo 6, 5, Dapobps)
X |det 96x(6, 7, &)l ax(6, 7, )a(@)déds,

where the summation 3, ranges over the indices p; such that |pu,| <2, (1=<j
=k%). Thus using the identities

£e' -1 0=yt )10 |
(A5 et I gy e,
0 -0 =Gy(o?¢ -1 0)=—7 (o?¢-10)
we obtain by an appropriate series of integration by parts
(Ko, v)a)(n)
(A.26) ZZJIEgEga%]ﬁ“e“f"7*‘98316,‘;2833{ﬁ(@uﬁ(@ 7, E)aEPbED)
X |det g x(6, 1, §)l(x(0, 7, E)}EBEAE)dEAD,

where the summation ¥, ranges over those systems of multi-indices a, 5,7 oy
P2 ps such that [a+Bl, [r+8]=1I| and |p,+p.tp.| <2]1].
Now by Lemma A2 we obtain for «, 8, 7 satisfying la+B+rl=

n 5n
5]+ ]+2).
053508 50302 1 (4520, 7, Darobp2)
(A27) X |det 95 x(0, 5, &) (20, 5, N} |

<Co i AP+ XD sup (3700,

imisyM

where | o+ 0.+ 051 2111, lajl, 1 B;1=1; (1=j=k). Thus by Calderén-Vaillancourt
theorem we obtain

JIT@ u e =0, v,

TR 3 0 L R
=SSRy [t oo N1 (dp6, 1, ©

X afFPbEr)|detpx(l, 1, )lw(x(@, 1, O} ERA(E)dEdOdy

(A.28)

S TTBCo T AP+ D™ sup 1350(0)]- i

imisy
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Take a sequence {wy}%-.CC3(R™ so that 0Zex(x)=1; wy(x)=1 (Ix]|£N);
o) 2oy (x); and su}13|ang<x>1 <o for any «, and replace w by wy in (A28).

Then we get (A.9) by letting N—oo. Q.E.D.
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