Spectral and scattering theory for Schrodinger
operators with Stark-effect

By Kenji YAJIMA™®

1. Introduction, Assumption and Theorem

The purpose of the present paper is to study the spectral and scattering
theory for Schrédinger operators related to the Stark-effect.

The Hamiltonian which governs the motion of a quantum mechanical
particle (with mass m and charge ¢) moving in a homogeneous electrostatic
field E can be written as

1D Hy=—1/2m)A+eE-x.

Here A is the n-dimensional Laplacian and H, is considered to be an operator
acting on the Hilbert space §=L%R"). Let us suppose that the motion of
such a particle is perturbed by some external force given by potential V(x).
Then the Hamiltonian is changed to

(1.2) H=H+YV.

We shall study the spectral properties of H and the scattering theory between
H and H,.

1
We take the coordinate such that E=(1, 0, -+, 0) and the units m=1 e=1

and we assume that the potential V satisfies the following condition.

Assumption (A). V(x) is a real-valued function and V(x) can be decom-

posed as
(1.3) V(x)= Fx)14 x5 2 (x )L+ 2DV (0)+ Vialx) -

Here ¢ is a positive constant such that

(1.4) oc>1/2
and functions %, ¥, V, and V, satisfy:
(1.5) 7=C>(RY) such that
1, x1>_l y
K x)=
07 x1<_2 5

*) Partly supported by F@jt-kai Foundation.
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(1.6) We)=u(—x1);
(1.7 VieL=(R™) and  lim Vy(x)=0;

(1.8) V,= L} (R™ and there exists a constant 4> x>0 such that

tm Q| VOl ey =0.

fr—yi

We write as p(x)=X(x )(1+x) " 24x(x Y14 xD)V2.

H, defined on S(R™) is essentially selfadjoint and under Assumption (A), V
is Hy,-compact (Theorems 2.4 and 2.5). Hence H=H,+V with D(H)=D(H,) is
selfadjoint. The main theorem of this paper is the following theorem.

THEOREM 1.1. Let V{(x) satisfy Assumption (A). Then the following state-
ments hold.

1) o(H)=0 () Vo, [H)=R' and o (H)=p.

2) o(H) is discrete, that is, each A€o ,(H) is of finite multiplicity and o ,(H)
has no accummulation points except possibly 4-oo,
3) The limits of the following formulas

W.=s-lim e**Hpg-tHo

toxoo

exist and ave isometries. Moveover
R(Wi)zgac(H) >

where ©,(H) is the spectrally absolutely continuous subspace of © with respect
to H,

4) HaczHI@acm) s unitarily equivalent to H, via the operators W, : W*H, W.
:Ho.

We shall prove the theorem in the subsequent sections, using the abstract
stationary method of Kato-Kuroda [7]. In the course of the proof, an essential
role will be played by an integral operator of Fourier type with a highly
oscillating kernel.

The study of the spectral and scattering theory for the operators of type
H has a long history and there are many references. We mention here, among
others, the work of Titchmarsh [12], Kato [6], Conley-Rejto [4], Avron-Herbst
[2], Veselic-Weidmann [13] and Herbst [5]. Titchmarsch [12] first pointed out
that ¢(H)=R", suggesting that H should be considered to be a perturbed oper-
ator of H, by V rather than the one of —A+V{(x) by E-x, while the latter
point of view had been taken by most physicists (see, for instance, Landau-
Lifschitz [97). Kato [6] and Conley-Rejto [4] studied the asymptotic behavior



Spectral and scatiering theory 379

of the spectral projection of H in the case where E tends to zero. The scat-
tering theory for H and H, was begun by Avron-Herbst [2] and Veselic-
Weidmann [13]. They proved the existence of the wave operator under a
condition similar to Assumption (A). Herbst [5] prove the completeness of the
wave operators R(W.)=9.,.(H) under the condition that, roughly speaking,
| V()| SCHa )12 2+ Cox(aey) (4 2D VA

Our results and method are new in the following two respects: (1) We
prove the completeness of the wave operators under the assumption that V{(x)
may growth in the direction of E with order o(E- x), weakening the assumption
of Herbst [5]; (2) we use the integral operator with highly oscillating kernel
for studying the properties of the resolvent R,(z)=(H,—z)"'. By virtue of this
methed (2) our results can be readily extended to more general cases: Replac-
ing —A and V(x) by a constant coefficient, elliptic, formally selfadjoint, dif-
ferential operator P,(D) of degree 2m and a perturbation by a differential
operator VD:Za)Va(x)D“, with coefficients | V (x)| <CA+|x,])"9% ¢>1/m (rough-

ly speaking), we can prove the results similar to Theerem 1.1. However, we
shall not go into details in this direction here.

We list here the notation and conventions used in the following sections.
x=(x1, xa, -+, xn)=(x;, ") stands for a generic point of R", x’=R"™'. p
=(py, p)Y=(ps, Ps, ---, D) denotes the conjugate variable of x.

x| =it a3+ e a2,

For multi-index a={(a,, -+, )N, x%=x71---x% and D*=D{1... D&n,

Dy=——. lal= 3 lal.
% is the Fourier transform:
®NP=F D)=y e fodx.

&-1f=7f. L:R") is the Hilbert space of all square integrable functions on R”

with the inner product (f, g)zgmf(x)g(—x)dx and norm |} fi=(f, f)'%

Ly (R™) is the space of all locally square integrable functions. S{R™) is the
space of all rapidly decreasing functions and S(R") is the space of all tempered
distributions. H*(R"™) is the Sobolev space:

HiRYH={feS'(RY): | f1,=11+p¥2f <0}

HYR™=L*R"). For 7, =R, we set
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X, o= {fe Li{R"):
170z, 5= e YA+ 272 2(x )1+ 23272 £ < o0},
X5=%55.
For these space we have from the interpolation theorem that for 0<r<1

[%y,a, %r',5']c:x,wL+<1—c)7,5'z+<1—t>5)

where [, 7, is the intermediate space (Lions [10]). For any pair of Banach
spaces X and Y, B(X, V) stands for the set of all linear bounded operators
from X to ¥, B.(X, Y) the set of all compact operators. B(X)=B(X, X) and
B.(X)=B.(X, X).

For the operator T in a Hilbert space X, D(T) and R(T) stand for the
domain of T and the range of 7. For a selfadjoint T, 0(T), Oos(T), 05(T),
o,(T) and p(T) are the spectrum, the essential spectrum, the singular continuous
spectrum, the point spectrum and the resolvent set of 7. For zep(T), R(z)
=(T—z)". II*={z€C": Im2=0}. For any pair of intervals I, and I, we write
as [,&l, if the closure I, of I, is compact and I, is contained in the interior
of I,.

The composition of the paper is as follows. In section 2, the essential self-
adjointness of H, and H on S(R™ is studied. In section 3, we analyze the
property of the resolvents R (2)=(H,—z)™' and R(z)=(H—2)"! when z is near
the real line, and the so called limiting absorption principie is proved for H,
and H. In section 4, the main theorem is proved by use of the materials
developed in the previous sections. Section 5 is an appendix and the proof of
Lemma 2.1 is given.

The paper was completed while the author was visiting ETH-Ziirich. It
is a pleasure of him to express his sincere thanks to Professor B. Eckmann,
W. Hunziker and the members of Institut fiir Theoretische Physik, ETH-Ziirich
for their hospitality to him.

2. The essential selfadjointness

Here we shall discuss the construction of the Hamiltonians, that is, we shall
prove the essential selfadjointness of H and H, defined on S(R®). However,
since the integral operators U and U#* defined below play essential role in the
subsequent sections, we first record some important properties of U and U%,
postponing the proof till the end of the paper.

Let G(p)=(1/3)pi+p(p3-+ - +p2). We define as

@D WUA=@m)y e e=r-eofipap,

e
RT
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@2 (U*f)(x}Z(Zﬂ)‘"’ngei"'“”mf@)dp ,  JeSR).

LEMMA 2.1. The operators U and U* satisfy the following properties.

1) U and U* are isomorphisms on S(R™) and U*=U"",

2) For any seR, WUf\s=1U*fls=|flls. In particular, U and U* can be
extended to by continuity and are unitary operators: U¥=U"1

3) If f=S(R™) has support in the half space {x=R": x,>a} (resp. {x=R":
x:<a}), then (Uf)(x) (resp. (U*f)(x)) is real analytic. Moveover for any [, seR?,
q;<0 (resp. q,>0) and integer m=0, theve exists a constant ¢ independent of f
such that

@3 3 e n D UR| Sl s,
(resp. 35 e D U*f| <1+ f]) -

4) For any integer m=0, any s, [€eR" with 0=<s=<m, there exists a constant
¢ mdependent of | such that

24 2 N DU e Sl 2D

jals2m-2s—

2 AP U 2o oo Sl 2)™ -0

P
leis2m-28—

5) Let m be non-negative integer and | R'. Then therve exists a constant
¢>0 independent of [ such that

(25) 25 1) D Uf s el
2 3 I+ DU Sl a)™ S i

COROLLARY 2.2. 1) p(xpU*eB(X,, ¥..0) -
2 Ux)+A+a) P (x)U*e BE,, ,, H(R™) .

3) For ¢g=C(RY), let @ be the multiplication operator by ¢(x,).
iy If ¢ has support in the left half line, then

(2.6) @-Ues B, ; H¥(R"),
2.7 U*-@eB(H(R"), X_; _;),

Jor any r=0, d& R
ity If ¢ has compact support, then

2.8) {t(xess +(1+xD)" P U*- 0= B(H™(R™), HXR™))

for any 7=0, s=0.
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PrOOF. 1) Setting m=s=1 and /=0 in (2.4), we have

lo(xDU*flrecz > Scli(T+2DMEf) .
By Lemma 2.1,1),
FA4+xD2o(x DU reca o S| U ll=cli /1.

Combining these two inequalities, we get 1).

2) Set m=1 and [=0 in (24) and (2.5). Combine them.

3.) First we note that (24) and a simple interpolation theorem ([107])
imply that

(2.9 0-Ue B, ,, H'(R")), r=0.
Hence by (2.3) and (2.9), we get for any /€ R?,
19-Ufly =110 UX(x ) Ny + 19 UL—2x)) [ s
<cl fls, -

This proves (2.6). (2.7) is the adjoint of (2.6).
3.i) To prove (2.8) it suffices to prove that

U*-@= B(H ¥(R"), H»~4D(R™),
where for &R, H**(R"™) is the Hilbert space
H*YR™)={fe L} (R"): IaE [A4+xD2Def 2= f 3 5< 0}

52
By an interpolation theorem ([107),
[H”(R"), Hz‘p(Rn)]0:H2’<l"9)5+3‘", 0§_0§1 A

Hence it suffices to prove (2.8) for y natural numbers. Setting [=—27 and m
=y+1 in (25), we get

(142D~ P2 DEU*Qf )|y =l f] s -

151s27+2 -

However the left side is greater than a constant times

2 X NDAA4x) DU O S -

1fiser talse
which is again greater than a constant times

> 1+ xp) DU .

fals2

This proves (2.8). (Q.E.D)
LEMMA 2.3, Let V satisfy Assumption (A). Then VU € B(%, ,, X5/0.0)-
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PROOF. VU*=V,p(x)U*+ V,p(x)U* By Corollary 2.2,1) and 2), and
Assumption (A), (1.7), Vip(x)U*& Bu{%, 1, X540.0) (Rellich’s compactness theorem).
By Corollary 2.2,2) and Assumption (A), (1.8), for proving

P )V U= p(x ) Va(2)Ux )+ (L4 2D~ )7 (e )+ (L 2D ) U
€ B(%1,1, X0/2.0)>

it suffices to prove that if We L{(R") and

umg |x—y | "™ W(y) | 2dy=0
lz-ylsl

jxi—>o

for some 0< u<4, the multiplication operator by W(x) is a compact operator
from H¥R™ to L*R®). However this fact is proved by Schechter [11].
(Q.E.D.)
THEOREM 2.4. H, with D(H)=S(R"™) is esseniially selfadjoint on © (we wrile
the closure by the same symbol H,). If T, is the maximal operator defined by the
multiplication by x,

(2.10) H=U*T,U.
PrOOF. If feS(R™), a simple calculation shows that
(U*T Uf Xx)=(—A+x) f(x)=Ho f(x) .

Since T, is selfadjoint and S(R™) is a core of T, statements 1) and 2) of
Lemma 2.1 imply that H,|swn is essentially selfadjoint. (2.10) is obvious.
(Q.E.D)

THEOREM 2.5. Let V satisfy Assumption (A). Then V(x) is Hy-compact. H
=H,~+V with D(H)=D(H,) is selfadjoint.

Proor. The selfadjointness of H=H,+V with D(H)=D(H,) is a consequence
of H,-compactness of V (see Combes [3]). For proving the H,-compactness of V,
it is sufficient to prove VR ()€ Bu(D). Since R\)=U*T,—1)"'U and (T,—*
= B(®, %,..), VR (i) B($) is an immediate consequence of Lemma 2.3.

(Q.E.D)
3. Limiting absorption principles

In this section we shall prove the so called limiting absorption principle
for H and H,, which we shall use for proving the main theorem.

LEMMA 3.1. Let 7>1/2. Then the B(H'(R™), H7(R™)-valued analytic func-
tion (Ty—2z)"% on II* can be extended to IT=\UR as a Hélder continuous function.

Lemma 3.1 is well-known and the proof is omitted here.



384 Kenji Yajima

PROPOSITION 3.2. 1) Let y>1/4. Then the B(¥,,, X-, )-valued analytic func-
tion Ryz) on I[* can be extended to II*\JR' as a locally Holder continuous
function.

iil) Let V(x) satisfy Assumption (A). Then VRy(z) is a B(X,s.)-valued
analytic function on II* and can be extended to II*\JR' as a locally Hilder

continuous function.

Proor. Let us take a compact interval /CR' Then it suffices to prove
that Ry (z) (or VR,(2)) can be extended to II*\JU] as a Holder-continuous func-
tion. We take ¢(x)eCy(RY) and @ (x)eC”(R") such that ¢,(x)*+e.{x)*=1
and ¢,(x,)=1 on some [’, I&I". We write the multiplication operator by ¢,
and ¢, as @, and @,. Then

3.1 Ry(2)=U*0,(x: To—2)" :s(x)U
-+ U*wz(xleo—Z)‘l@z(xl) U.

1) Setting 6=0, y=0¢/2 in (2.6) and (2.7), we have @, U= B(%, ., H°(R™)
and U*@,=B(H °(R"™), X_,/5,,). Hence Lemma 3.1 implies that the first summand
of (3.1) satisfies the statement i). The second of (3.1) obviously satisfies i),
since @,(T,—2)"'@, is a B(L¥R™)-valued analytic function on (C\RHUI".

2) VRW2)=V:0(x)U*O(To—2) 'O, U+ V,0(x YU (Ty—2)" @, U
VU To—z)"'®,U .

By 27) (r=9/2,6=—1) and (1.7), Vip(x)U*®,<€ B(H 7(R"), ¥,/2.0); by (2.8)
(r=0/2, s>0) and (1.8), V,p(x,)U*®@,= B(H °(R"), X,/2.0). Hence by Lemma 3.1,
the first two members satisfy ii). Since (To—2) '@, U is a B(X,/s.0, ¥, )-valued
analytic function on (C\R"“)\JI, Lemma 2.3 implies that the last member also
satisfies ii). (Q.E.D)

PROPOSITION 3.3. Let V satisfy Assumption (A). Then there exists closed
null set e. such that B(X,s e X_/s 0)-valued analyiic function R(z) on II* can be
extended to IT*\J(R'\e.) as a locally Hélder continuous function.

Proor. Since V is H,-compact, the resolvent equation gives R(z)=R,(2)
X(1+VRy(z))™! for Im 2#0. Since Ry(z) and VR, (z) satisfy Proposition 3.2 and
VR(2)E Bul¥5/0,0) for Imz+0 by Lemma 2.3, the proposition follows from the
theorem of Kato and Kuroda [7]. (Q.E.D)

4. Proof of the theorem

4.1. Proof of statement 3) and 4)
Since statement 4) is an obvious consequence of 3), it suffices to prove 3).
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For this purpose we use a following simple version of the theorem of Kato-
Kuroda [7].

THEOREM (Kato-Kuroda). Let H, and H, be selfadjoint operators in a
Hilbert space 9. Suppose that there exists a dense linear manifold X of © such
that

1) X is a Hilbert space with its own structure and is continuously embedd
n H;

2) therve exist closed null sets e. of R' such that Rz)=(H;—z)™" (resp.
VR(2) (j=1, 2) can be extended to IT*\I(R"\e.) as a B(¥, ¥*)-valued (resp. B(X)-
valued) continuous function, where ¥* is the dual space of X with respect lo the
inner product of 9. Then the limits in the following formulas

(4.1 W.=s-lim ¢*#2e™ "1 P, (H)

{—>+too
exist and are isometries. Moreover
(42) R(Wt>:‘g)ac(H2> -

Continuation of the proof of 3).

We apply the theorem to our problem. We take as X=¥,,,,. Then condi-
tion 1) is obvious. Since ¥*=X ,,, . condition 2) is an immediate consequence
of Proposition 3.2 and Proposition 3.3. Hence statement 3) follows.

4.2. Proof of statement 1)

In this subsection we assume that V,=0 for simplicity. The case that
V,#0 can be treated by a modification of the following argument. By a stand-
ard argument we have o, (H)Ce., and R\e.Co,(H). We prove e, Co,(H).
We prove only e¢,Ca,(H). The other case can be proved similarly.

For proving this, we need the following lemma, the proof of which can be
found in Agmon [1] and Yajima [14].

LEMMA 4.1. Let 8 be separable Hilbert space and H(R; &) be the Sobolev
space of R-valued functions on R'. Suppose that f& H(R'; ®) (s>1/2) and f(1)
=0. Then A— ) f(DSHYR"; ®), and there exists a constant C independent of
such fe H(R"™; &) and p such that

fA= DN =Cl s -

Continuation of the proof.

Let l=e,. Then there exists a function f€¥X, ., such that f4-VR,(A+10)f
=0. We put g=R,(A1+:0)f. It is obvious that (—A+x,+V(x))g=0 in the gener-
alized sense. Hence it is sufficient to prove that g D(H)=D(H,). Since f,
VR(A+i0)f€X,,, by Proposition 3.2,
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4.3) {fy RA4+-10)/5+<VRAZA+10)f, R(A+i0)f>=0.

Here and hereafter {, > is the natural coupling between X,,5, and X_,/5,,. Tak-
ing the imaginary parts of (4.3), remembering that V(x) is real-valued, we have

4.4) Im {f, R(A+10)f>=0.
On the other hand
(4.5) 0=Im <, R0(2+i0)f>:li;£1 Im<f, R{(A+is)f>

:11{13 Im(Uf, (T y—2A—ie)'USf)

=—(z/2)lim (s/n)Sm% dx

==/, UG, )Pdx .
Here we used the fact that Ufe HL,(R")NL¥R") (¢>1/2) and the embedding
theorem for the Sobolev spaces. Therefore using Lemma 4.1 for
(To—Q+0) " Uf=¢(x)(To—A—10)72US
: + () (To—~2—10)7US,

we have O x (T o—A—10) Ufe H " (BHYQ LH(R™ )
and
(4.6) O x)H(To—A—10)*UfeX,,,

with corresponding estimates which are uniform as long as 4 runs over a com-
pact subset of the reals. Then by Corollary 2.2.1) and (2.7), we get

J=—VR+i0)f=~—VU*@(x,XTo—2A—10) "o xDUS
—VU*¢(x:)(To—2—10)""@o(x ) US
EXmino. o124 o-1/23),0 -
Repeating the foregoing arguement n-times, we have
FE€Xminto, o2tnto~1120.0

Thus if we take n sufficiently large such that o/2+n(c—1/2)> ¢, we get fX, o
Then we have by Lemma 4.1 that

(To—2—i0)"$u(x)UfE H* H{RHQLAR"HCTLXR™).

Therefore (Ty—2—i0)Uf€X, ,=D(T,), hence g=Ry(A+10)f=U*T,—2—0)"*Uf
e U*D(T,)=D(H). This proves the statement.
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4.3. Proof of statement 2)

Let 1= R! be the eigenvalue and let g be the corresponding eigenfunction
of H. Let us put f=(H,—2A)g. Then it can be easily seen that R,(1-+i0)f=g
and f+VR(A+i0)f=0. Since g=—{—DR)g—RD)Vg, —Vg=7fc¥,p.0 and
1%,/ ,=C.ligll. Here C, can be taken uniformly as long as 1 runs over a
compact subset of the real line. Now let us assume that the eigenvalues {2}
with corresponding normalized eigenfunctions {g;} converge to 1. It suffices to
prove that {g;} forms a precompact subset of . By virtue of the foregoing
argument and the remark following (4.6) it suffices to prove that the functions
{f;+ corresponding to {g;} by f;=—Vg; forms a precompact subset of Xs/2.0-
Since VR(2+i0)& Bu%,/2.0) by Proposition 3.3, we can find a subsequence of
{f;} (which we write as {f;} again) such that {VR(A+10)f,} is convergent in
X0 Since

Fi=Fe=(VRA;4+10) f;— VRo(2+10) f )+ (VR4 +10)/ s — VRo(A+10) S )
+VR(A+10)(S— 1)

and VR (p+10) is B(¥X,/s0)-valued locally Hélder continuous function, {fs} ob--
viously forms a convergent sequence in X,,,, This is the desired result.

(Q.E.D)
5. Appendix
Here we give a proof of Lemma 2.1.
5.1. Proof of statement 1) and 2)
Since the Fourier transform and the multiplication by ¢ *¢® (resp. ¢*°®’) are

isomorphisms on S(R®). U (resp. U¥) is isomorphism. Trivial relation ¢*¢®e ¢
=1 implies U*=U"'. Statement 2) is an obvious consequence of the relation

A+ p 1 OAD) 2=+ p*) e P f(p) =1+ p* | /(D) -

5.2. Proof of statement 3)

We give the proof for U only. The other case can be proved similarly.
Since supp fC {x€R®, x,>a}, flzi, ps, -, Pn) is analytic in z,=p;+ig, on the
region ¢;<0. Hence by the change of the integral region R" to R™+i(g;, 0, ---, 0),
we get

6D (UH(=edimry | ores-imotardime ar f(p,irigy p)dp

Note here that f(p,+iq;, p)=("%1f)"(p) and e2*:(1+ x)? is uniformly bounded
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on {x,>a}, since ¢;<0. Thus from the expression (5.1), we can easily see that
Uf(x) is real analytic and satisfies the inequality (2.3).

5.3. Proof of Statement 4)
By differentiating (2.1), we have

D“Uf<x>:<2n>-m§ Qi P IOD G Py i p)d p .

R
Using the relation (3/i0p,)e™™ P~ 6P =(x,— p*)ei= P~ we get, for x,<—1, by

partial integration that

DeUf)=my ], (g 2 ) ool ipe sy

x—pt 0P
2 tx-p-1 a l " 37
—@ry ] ot G<p>(_;p_lom) {Goyf () dp

=}§0(2r)‘"”sme”"’am,k,a,z(xl, »)

-1 - a LN
xemtoe i+ py a5 Fp)} do
Here we can easily see that for 0=<s<m, |a]<2m—2s—1,
R ns '
sup | (57) (5) TR DA+ D0 1.0, 9] <00

for any multi-index 7 and 8. Hence by the L®-boundedness theorem for pseudo-
differential operators (Kumano-go [81), we see that

>

)
lais2m-2s-1

(1t () Rt 2 U

s & [eerar (o) o zdar i,

which obviously implies the desired estimate.

5.4. Proof of statement 5)

We first observe that the norm [[(1+x})¥%(1—A)"%f| is equivalent to the
norm [[(1—A)*(1+x1)**f|| for any s, t<R’. This can be seen exactly the same
way as the equivalence of the norms [(14x%)¥*(1—-A)*f and [(1—A)2
X1+ x22f) ;. (1—A)? commutes with D*U for any multi-index a«. Hence it
suffices to prove only the case [=0. We only prove the case m=1, since the
other cases can be proved similarly. Let us take functions ¢,(p) and o,(p) such
that @ (p)+e(p)=1, ¢{p)=1 near p=0 and ¢,, ¢©,C(R™). Then
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(U =@m) e e 2 0P )/ (p)dp
—ix(2m) e e ot () {(p)d p
+2i@r) [P0 (.- prio BN BIAD

) o d 2
—l(27r)“”’de”p‘w(p)p_z'*a‘p’; (o YF (PN D .

Hence the statement is an obvious consequence of the Parseval relation.

(Q.E.D)
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