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Pseudo-differential operators with a parameter and their
applications to singular hyperbolic systems

By Hidetoshi TAHARA

(Communicated by H. Komatsu)

In our previous paper [6], we have established the existence, the unigueness
and the differentiability of solutions for a certain class of singular hyperbolic
systems of type (o, p) with respect to t. However, these theorems are stated
in a rather abstract form and no explanations of their assumptions are given
there. For the application of these results to concrete partial differential equa-
tions, we must prepare some new classes of pseudo-differential operators so that
we can deal with operators with some degeneracy at f==0. Once such a new
class is well introduced, the application is straightforward. Hence, in this
paper we want to discuss the following two problems:

(1) Introduce a good class of pseudo-differential operators,

(2) Apply the results to concrete partial differential equations.

In Section 1, we define a class of pseudo-differential operators such that
their symbols are estimated by a quadratic form with a parameter ¢ and in-
vestigate basic properties of pseudo-differential operators in this class. In Sec-
tion 2, we introduce a certain class of quadratic forms with a parameter %,
which we call basic quadratic forms, to measure the degree of the degeneracy
at +=0 of pseudo-differential operators. Using the results in Sections 1 and 2,
we establish in Section 3 the symmetrizability in the sense of [6] for first
order systems of pseudo-differential operators in our class. These three sec-
tions answer the problem (1). The problem (2) is treated in Sections 4,5 and
6, that is, we treat symmetric singular hyperbolic systems in Section 4, non-
symmetric singular hyperbolic systems in Section 5 and single singular hyper-
bolic equations in Section 6. These are easy applications of the problem @)
and the results in [6]. Thus, our program of this paper is as follows:

1. Pseudo-differential operators with a parameter {,

Basic quadratic form,
Symmetrization,

W

Symmetric singular hyperbolic systems,

[22]

Singular hyperbolic systems,
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6. Singular hyperbolic equations.

This paper is the second part of a series of my papers and the results in
this paper will be applied to the study of the Cauchy problem for a certain
class of weakly hyperbolic equations with variable multiplicity and with non-
smooth characteristic roots. A part of its study is announced in Tahara [5].
The systematic discussion will be done in Part IIL

Part I. PSEUDO-DIFFERENTIAL OPERATORS

1. Pseudo-differential operators with a parameter ?

Let Q(f, &)= i}l a;(t)€:£; be a quadratic form of & satisfying the following :
i, j=

(G-1) a;(HeC([0, TD, a;(t)=a;(t) and a;(?) is a real valued function.
(G-2) Q(z, £=0 holds for any (¢, )0, T]xXR™
Then we have

PROPOSITION 1.1, Put g(¢, E=(14Q(¢, &)V2 Then for any « the estimate
(-2) tt, O] Autett, @720, (1, =10, TIxR® Ly

1s valid for some constant A,.

ProOF. Take any t=[0, T] and fix it. Then by an orthogonal transforma-
tion »=T¢, we can transform Q(¢, &) into a diagonal form Q(#, p)=2,(t)ni+ -
+2,(8)n3, where 2,(£)=0 for 1=i<n. Since the elements of T are bounded, we
have

l <%)a2@<t’ S)l éjwl,m;m

B
o) A = 2t

for some constant M, which is independant of 7. Since it is well known that
AE=(1-+1&|%)Y? gatisfies (1.1) for some constant C,, we obtain

l(%>a2Q(t’ E)t SAM B AP Zo(8)FnC el A2, €)1

This immediately leads us to (1.1). Q.E.D.

Since 1=2,(¢, )< A(141£]5HY? is valid for some constant 4, (1.1) means that
Aq(t, &) is a basic weight function of £ in the sense of Kumano-go [3]. There-
fore we can follow the argument in [3] to define a class of pseudo-differential
operators with a parameter ¢ corresponding to this basic weight function.
Thus we obtain

DeFINITION 1.2. Let m be a real number and let
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p(t, x, £)€C(0, TIXR"XR").

We say that p(¢, x, &) belongs to a class S3([0, TD), if p(7, x, &) satisfies the
following conditions :
(i) plt, x, & is of C* class with respect to (x, &),

(ii) for any « and j, (—aaT>a(~a%— ﬂp(t, x, §)eCY[0, TIXR"XR™),

(iiiy for any « and B, the estimate
() (G Vot » 0] =C et (L2)

is valid on [0, TIXR"XR" for some constant C,, g.
For such a function p(f, x, &), we define the corresponding operator by

p(t, 7, Dut, D= Ot x, Oalt, Hd, 13)

u(t, x)=C[0, TJ, S(R™),

where S(R™) is the Schwartz space of all rapidly decreasing functions. If
Q(t, &) =8+ -+ +&, we write S™[0, TJ) instead of S0, TD.

Clearly, the linear map (1.3) is a continuous mapping from C°([0, T, S(R™))
into C[0, 77, S(R™). The operator P(1)=p(t, x, D,) defined by (1.3) is called
a pseudo-differential operator with a parameter t in the class S0, T1) and
the function p(¢, x, & is called the symbol of P(#) and denoted by o(P(D).
The convenience to introduce this symbol class lies in the next proposition.

PROPOSITION 1.3. (1) Assume that Q(t, )<AQy(¢, &) for some constant A.
If m=0, we have SB,0, THCSHL0, TD. (2) Let Alt) be a nXn matrix with
coefficients in C°([0, TD. If p(t, x, £SO, T, we have p{(t, x, A(D)E)e
S0, TT) with R(t, &=Q(, A(1E). (B) Let p=0 and let mz0. If p(t, x, &
S3(L0, TD), we have t*™p(t, x, §)eSE({0, TJ) with R(t, &=, t°8).

Proor. Easy from the definition. Q.E.D.

The following theorem is the most fundamental results in the theory of
pseudo-differential operators.

THEOREM 14. (1) (Product). Let P{t)e8%[0, T]) (=1, 2). Then the pro-
duct P()=P,(8)P{t) belongs to SF™2([0, T and salisfies g (P(1)—a(P{1)
X o(Pyt)yeSgrm ([0, TD.

(@) (Adjoint). Let P(t)e8%([0, T]). Then the operator P(#)* defined by
(P(Hu, v)=(u, P(t)*v) for u, vESR"™) belongs to SF([0, T]) and salisfies a(P(t)*)
—i6(P(1)= S0, TD.

(3) (L*-boundedness). Let P(1)eSY[0, T1). Then there exists a posilive con-
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stant C such that
1P(ul 2=Cllulire

is valid for 0=t<T and any usS(R*), hence for any u< LAR™.
PrROOF. See Kumano-go [3]. Q.E.D.

Now, we will study some more properties in connection with the assump-
tions supposed in Tahara [6]. Let A#)eSy([0, T]) and let A, and A be
pseudo-differential operators defined by the symbols A4(z, &) and A(&)=(1-| &[22
respectively. Then the operator Ay (£)=A({)A* belongs to S0, 77) and the
following

Af)=INg A;oDI=NgA;-(D—A; (D Ng, j=1

can be defined inductively on j. Clearly, A;(t)8%[0, T]) holds. However,
since A does not belong to $4[0, TJ) in general, we can not apply Theorem 1.4
to define the commutator [ A, Ay(£)] in $X[0, T1). This commutator is justified
in the following way.

PROPOSITION 1.5 (Commutator with A). Let P(t)e8Y[0, T1). Then the
commutator Py(t)=AP(t)—P()A also belongs to $Y[0, TI).

Proor. Clearly, the mappings
AP@), P(OA 2 C(L0, T, S(R™) —> CY[0, TT, S(R™)

are well defined. Therefore, combining the Taylor expansion of ¢(P(¢)) with
Fourier’s inversion formula, we have

o(Pi)= 3 | rnat, %, 9db, (L)

where .
oty 7 O=0~[[(1) " (G Y a+0p( 2 Y e, x4, 8y dn,
Pt % O=0(P(t) and AE=(L+]¢]97.

Since [7]=1, we have (%)72(5)650(15%([0, TJ). Therefore (1.4) means that
<

o(P ()= SYL0, TT), that is, P,(t) belongs to 860, Th. Q.E.D.
Thus, we can define the commutators
A=A, A (O)]=A4;0(0— AL (DA, j=1 (1.5)

for any A (#)e8Y[0, TJ) inductively on j. From Proposition 1.5, we have
A)eSYL0, TD) for any j. Next, we will show the continuity in the param-
eter f.
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PropoSITION 1.6 (Continuity in 1). Let P(t)eSy[0, T]. Then P(t)ue
CY[0, T, LXR™) holds for any ue L*R"™). Further, the linear map P(1):
CY[0, T, LXR™)— CY[0, T1, LXR™) 1s a continuous mapping.

ProoF. From Theorem 1.4, we have P(Hiucs L¥R") for 0=:=<T and ue
L¥R™). For 0=t t'=<T and ue L R"), we have

l|P(f)u—P(i’ﬁtHwéZ(OS;ZlgTH PO u—wll 2o P(Dw— P()w] e

for any weS(R™). Since S(R™) is dense in L*R"), we can choose w so that
the first term of the right hand side is sufficiently small. For a fixed weS(R"),
P(tHweCY[0, T], LYR™) is obtained by Lebesgue’s convergence theorem. There-
fore we have |P{(t)u—P(tu| — 0 as t'— t. Thus P(HusC(0, T, LXR") is
proved. On the other hand, from Theorem 1.4 we have

sup | P(Ou(D)]2=( sup | P sup (D))

for any u($)eCY[0, T], L*R"™). Hence, P(¢) is a continuous mapping from
CY[0, T1, LAR™) into C*[0, T, L¥R™). Q.E.D.

Thus, A(DusCY[0, T1, LXR™) holds for any ue L*R"*) for the operator
At) defined by (1.5). Further, from Theorem 1.4 and the definition (1.5) we
have

At u=N~A;(Hu—A; (HAu

for any us HY(R"), where H(R"™) is Sobolev’s space. Since the domain of A
in L%R™ coincides with HY(R™), we can conclude that our pseudo-differential
operator with a parameter ¢ satisfles the condition (C-1) in Section 3 of [6].
As for the differentiability in #, the next proposition is prepared.

PrROPOSITION 1.7 (Differentiability in ). Let p(t, x, £ eCY[0, TIXR*XR")
and assume that p(t, x, &) and pi(t, x, &) belong to SY[0, T1). Then the corre-
sponding operators P(t) and Pi(t) satisfy the following: P(t)u=CY[0, T], L}(R™)

holds for any u<sL¥R™ and 1its derivative —é%(P(t)u) in CY([0, T1, L*R™)
coincides with Pi(Du.

Proor. If u=S(R™), by use of Lebesgue’s convergence theocrem we have
PHueCY0, T, L*R™)) and ~§;(P(t)u):P{(z‘)u. Therefore the proof of this

proposition is reduced to the following lemma.

LemMa 1.8, Let X be a Hilbert space and let P(1) be a bounded operator in
X for 0<t<T. We assume the following conditions on P(¢): (1) 1P is uni-
formly bounded jor 0St=T, (i) there exists a dense subspace D in X such that
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P(t)xeC‘([O T3, X) for any xe D, (iii) the operator —d~P(t) defined by
( P(t))x———(P(z‘)x) for x€D can be extended to a bounded operator Pit)
in X, and (iv) | PO is also uniformly bounded for 0=t<T. Then we have
PxeCH[0, T, X) and ga;f(P(t)x):P{(t)x for any xeX.

Proor. Take any x&X and fix it. By the same argument as in the proof
of Proposition 1.6, we have P(#)x, P(t)x=C[0, T, X). Since D is dense in
X, we can choose a sequence {x,} in D such that x, converges to x in X as
n —co. Then we have

Pi(#)x=lim PY(t)z,= lim %(P(rm) (16)

for 0=t=T. Take any y€X and put A, (8)=(PUt)x,, y)——m— (P(t)x,, y) and

h{(t)=(P{t)x, y). These functions are complex valued continuous functions on
[0, T] and (1.6) means that lim h,(f)=h(#) for a fixed ¢. Therefore using

Lebesgue’s convergence theorem we have

hmg ho(2)de= S h(c) de . amn
Since %—(P(t)x,,), Pty x=CY[0, T], X) holds, (1.7) implies

lim (g:dirw(f)xn)dz, y):(gZP;(r)x dz, 3).

n-co

Since P(t)x,=CH[0, T], X) and v is an arbitrary element in X, we obtain

P(t)x—P0)x= }}ﬁr& (P(t)xn—P(O)xn):S:P'r(r)x dr.

This means that P(£)x=CY[0, T], X) and dit(P(t)x):Pz’(t)x . Q.E.D.

Thus, the differentiability in ¢ is established. The assumption in Theorem
3.5 of [6] can be translated into the following.

CoroOLLARY 1.9. Let a(t, x, £)eCY[0, TIXR*XR")NC™(0, TIXR*XR™) and
assume that t"”(va;> a(t, x, £=SYL0, T for k=0, 1, ---, m, where 6=1. Then
the corresponding operator A(t) satisfies the following conditions: (i) £°%A(t)u
eCH[0, TJ, LXR™) for any us LYR") and k=0,1,---, m, and (ii) (—(%—)k(t”/l(t))
is a bounded operator in X for k=0,1, -, m

Proor. Clear. Q.E.D.
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2. Basic quadratic form
Let ¢ be a real number =1 and let Q,(¢, &)= Zn a;(t)&:&; be a quadratic
i,j=1

form of & satisfying the following:
(H-1) aij(t) satisfles (G-1) and a;,(#)=CY[0, T]) for 151, j=n.
(H-2) Q.,(¢, £>0 holds for any (t, £&(0, TIX(R™0).

(H-3) max ( w)log 0.(t, 5)1_ (- 4) as { — +0.

Then we say that Q,(¢, &) is a basic quadratic form of class o. In the case
with ¢=1, this ig introduced in Tahara [5] and is applied to the Cauchy prob-
lem. From the definition, we immediately have

PROPOSITION 2.1. Let Q,(t, &) and R,(t, & be basic quadratic forms of class
o. Then we have the following. (1) Q,(t, & is of class o’ for any o’'Zo. 2)
Q.(t, +R,(t, & is of class 0. (3) Let a(z‘)eCl([O T be a real valued function

such that a(£)>0 for t>0 and i( >1og a(t)l—O(J '4) as t— 0. Then

a(H)Q,(t, &) is of class 6. (4) Let A(E) be a quadratic form satisfying A§)=0 for
any EeR*. Then AE)+Q.(t, & 1s of class o.

Proor. Clear. Q.E.D.

First, we will give typical examples to illustrate the conditions (H-1), (H-2)
and (H-3).

ExAMPLE 2.2. (1) Let x; be an integer =0 for 1=i=n. Then Qt, &=1t"&
L& i of class 1. (2) Let o, and m, be real numbers such that ¢;>1
and m;>0 for 1<i<n. Then QU, &)=en,. o,(DE+ -+ +en, 0, (1) (Where eq, o(2)
=¢ ™t Y ig of class o=max{o;; 1=i<n}. (3) Let m be an integer=0. Then

Q(t, E)— Z} S@—'—t"‘ZE; is of class 1. {Apply Proposition 2.1) (4) Let o be
a real number such that ¢>1. Then Q(i, E)—tm Z 5 E;Fe T ! ZE“ is of class

. (B) QUt, &=e V¥sin (1/1)+2)&* is of class 2. (6) Q(t, :)—e‘”‘(sm (1/13)+2)&
is of class 3. (7) Let ¢ and & be real numbers such that ¢>1 and £>0. Then
Qt, =e V" Hsin (1/1° 1)+ e"*)E* is of class o+« And so on--

From the above examples, we can understand that (H-3) is closely related
to the degree of the degeneracy of Q(t, &) at t=0. Roughly speaking, we may
say that Q(t, & has the degeneracy at most of finite order in the case =1
and that of infinite order in the case o>1.

Now, we will study some properties of basic quadratic forms. Let Q.(¢, g
be as above and let S% ([0, 7]) be the corresponding class of pseudo-differential
operators.
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PROPOSITION 2.3. There exists a positive constant C such that the estimates

(G2 )au o= 0.0, o @
te %)(-%)Qm, 8| =C Qu(t, & 22)

hold for any (t, §)€[0, TIXR" and 1< j<n. Hence, Q,(t, & and t"(—;f—)@a(t, &
belong to S3 ([0, TD).

ProOOF. First, we will show (2.1). Put ¢;=(0, -, J1, -+, 0). Then we have
0=Q,(2, &+se))

b YRR
=Qult, O+ (g7) @t & s () Qult, &5
for any s=R. Since (%)ZQU(L &)=2Q,(t, ¢;)=0 holds, we have

[(GE)eu o] ~10.t, 2.1, ep=0. 23

Hence, (2.3) immediately leads us to (2.1). Thus (2.1) is proved. Next we will
show (2.2). From the condition (H-3), we have

i
t()Qut O] M Q1. § (2.4

for some constant M. Put R(¢, &) =M Q,(1, E)—t‘"(r ;;)QAt, &). Clearly R(¢, &

=0 holds for any (¢, §<[0, T]xR". Therefore, by the same argument as in
the proof of (2.1) we have

](G%)R(z, 9| =N R(t, o (25)

for some constant N. From (2.1), (2.4) and (2.5), we have

!
!

(e of <o

(Lo 6 (2 o]
=2(MPCQ (8, -+-N2R(2, &)

<2[MQ.t, 9+ N (101, o+ | 1(-2- ).t o))

ot

IA

2APCHNMENMQ (¢, ).
This is (2.2). Q.E.D.
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PROPOSITION 24. Put 2,(t, § =1+Q,(t, ©))2 Then 1q,(t, & and
to -%—)2%(1‘, &) belong to S, ([0, T

Proor. Clear from Proposition 1.1 and Proposition 2.3. Q.E.D.

PROPOSITION 2.5. Let p(2)eC*(R) such that p(t)=0 for t=1, 0=p(5)=1 for
1=t=2 and p(t)=1 for t=2. Put

ps(t, E=p(l—s+Q.(, )

for s=1. Then pdt, & satisfies the following: (1) if Q.(¢, =5 ps(t, £)=0
holds, (i) if Q,(t, &= (s+1? p.(t, =1 holds, and (iii) p.(t, § and

l‘"(—aa-t—)os(l‘, £) belong to Sy, ([0, T).
PrROOF. (i) and (ii) are clear. (iii) is obtained by an easy but rather tedious
calculation. We omit the details. Q.E.D.
ProproSITION 2.6. Lel p(t) be as above and pul
0,(t, ©=pd—Q,(t, )+ Q,(t, )% p(Q.(t, £V .
Then O,(t, &) satisfies the following: (i) @,(t, & =1 for any (¢, §<[0, TIXR",
() if Qut, §29, 0,01, 9=Qult, £ holds, (i) 6,1, &) and 17(5-),t, &

belong to Sy, ([0, TD), and (iv) O, ™ and t"( c'?t )(@g(t, &Y belong to
Soi ([0, 7).

ProoF. (i) and (ii) are clear. (iii) and (iv) are obtained by easy but rather
tedious calculations. We omit the details. Q.E.D.

The operators defined by the symbols Ag,(f, &), oi(t, &) and 6,4, §) will
play important roles in the later sections.

3. Symmetrization

In this section, we establish the symmetrizability for the first order system
of pseudo-differential operators with a parameter 7.

Let Q,(¢, & be a basic quadratic form of class o(=1) and let H(¢, x, &)
=(h;{, %, ENigi. jsm DE an mXm matrix with coefficients in CY[0, TIXR"XR")
such that it satisfies the following:

(I-1)  hyt, x, & is a real valued function for 1=z, j=m.

(I-2) At %, & and t”(—aa—t~)hij(t, x, & belong to S} ([0, T for 1=4, j=m.

(1-8) Let (¢, x, & (1=i=<m) be eigen-values of H(¢, x, §). Then At x, &
is a real valued function on [0, TIXR*XR"* for 1=i=m.
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(I-4) There exists a positive constant ¢ such that the estimate
128, x, E)—A(¢, x, §)|=c

holds for any (¢, x, S)E.@:{(t, x, 80, TIXR*XR"; Q.(t, =9} and I=<
1+ j=m.
Then we have the following theorem.

THEOREM 3.1 (Symmetrizability). For the above H(t, x, &), we can find mXm
matrices N(t, x, &=t x, s, jems ML, x, &=(m;,(1, x, Eisi jsm and D(t, x, &)
=(dift, %, Eis1,5em SUuch that they satisfy the following: (i) nit, x, &),
mi{t, x, &) and di(t, x, &) belong to Cl([O TIXR*XR™ for 1Zi, j<m, (ii)

ekt 5O, mult, 5,8 dt 5,9, (T ety % 8, 15(L et 5, &) and
[ ( a7 )d”(t x, &) belong to S, ([0, T1) for 1=1, j<m, (iil) ‘D(¢, x, &)=D(t, x, &),
(iv) N(t, x, H(t, x, §)=D(t, x, )N(t, x, 8), and (v) N(t, x, M, x, §=
M, x, E)N(t, x, E=p.t, £°, where p,t, & is defined in Proposition 2.5.

Before the proof of this theorem, we prepare some lemmas.

LEMMA 3.2, A(t, x, &) in (I-3) safisfies the following conditions on O: (i)
At, x, &) s of C' class with respect to t and of C™ class with respect to (x, &),
and (ii) for any a and 3 there exists a positive constant C, p such that the
estimates

(LY (2 a5 0] it o,

( < ) ( aag Ailt, x, E)Iéca.ﬂg,,(l‘, £)-18

hold for any (t, x, )€ Q. Here @ is the same as in (I-4).

Proor. Put P(: ¢, x, &)=det A I—H(t, x, &). Then 2(t, x, & is a root of
the equation P(1: ¢, x, £=0 with respect to A Since the coefficients of
P(2: 1, x, &) are bounded continuous functions on [0, T]XR*XR" the root
A{1, x, &) is also a bounded continuous function on [0, TJXR*XR". Further,
(i) is easily obtained from the condition (I-4). Next we will show (ii). By use
of the theorem of implicit functions, we have

(ar>7_ ((5 )P/<8Z>P>z;
(oo =3P 50P),
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(5%)21: <(agk) (az P s,

sinee [((5)7)...,

(o

wt, % 9|56, (o), = 9]=C

S’

and

(2, 5 9| 5Cho 1, 207

on £ for some constant C. Considering successive derivative with respect to

(x, &), we can easily see the condition (ii). Q.E.D.

LEMMA 3.3. There exists an mXm matrix N(t, x, E=(;,(t, x, E)1x1, jsm defined
on O such that it satisfies the following : (i) N, x, &H(t, x, E)zﬁ(t, x, ON, x, &)
holds on @, where

A, %, 8)
ﬁ(t: X, E)"—: N 4
Aa(t, %, )

(i) #:,(t, x, ) satisfies the same conditions asin Lemma 3.2, and (iii) there exists
a positive constant 8 such that |det N(t, x, &)|=d holds for any (2, x, sed.

PrOOF. Note that £ has the same homotopy structure as [0, 7] X R X (R™\0).
Therefore, the argument in the proof of Proposition 6.4 of Mizohata [4] is
also valid in this case. Hence the proof is easy. Q.E.D.

PrOOF OF THEOREM 3.1. By the above lemmas, we can define N(¢, x, &),
M(t, x, & and D(¢, x, &) by

N(t, x, O=pdt, ON(, x, &),
M, x, =pJt, N, x, &),
D(t, x, =pit, D, x, &).
Then, it is clear that they satisfy the conditions in Theorem 3.1 Q.E.D.

COROLLARY 34. Let B(t) be a pseudo-differential opervator defined by the
symbol B(t, x, &=+~ —1H(1, x, £)0,(t, §). Then B(t) satisfies the symmetrizability
condition (D-3) in Tahara [6].
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Proor. Let N(t), M(t) and D(t) be pseudo-differential operators defined by
N(t, x, &), M(t, xz, £ and v/—1 D(¢, x, £8,(¢, . Then we have N(t), t°NLt),
M), 1° M), D)*+-D(8), N@)B(t)—D(t)N(t)= 8y,([0, T]). Therefore we can
put S(O)=D()*+D(¢t) and T()=N(1)B(t)—D()N(t). Let A(¢) be a pseudo-dif-
ferential operator defined by 1o,(¢, £)"*. Then we have A(#)e 831 ([0, T1). Since
B(t)e$y,([0, T1), we have A(1)B(:)e83,({0, TJ). Therefore we can conclude
that N(z), D(t), S(t), T(t) and A(¢) satisfy the conditions (i), (ii) and (iii) in
(D-3). The condition (iv) in (D-3) is verified as follows. Since I-M(#)N(t)=
(I—p{))+{p () —M()N()<= S ([0, T]) holds, we have

lul S IMONOul+ 1T~ MOND)ull
=IMON-RNOul+ 1T —MONE)AD - 1ADu]
=ML - INOI T —MEONE) A - A D] u -
Therefore we can find positive constants §, ¢; and ¢, such that ¢, jul| S IN(Duf

+BilA()ul=c.lul holds for any ue L¥R™) and 0=¢<T. This is (iv).
Q.E.D.

REMARK 3.5. Since the conditions (I-1)~(I-4) are valid for the matrix
—TH(t, x, &), we can also obtain the symmetrizability of B(f)* in the sense of
(D-4) in Tahara [6].

Part II. APPLICATIONS

In the next three sections, we will apply the results in Part 1 to concrete
singular hyperbolic partial differential equations and establish the existence and
uniqueness theorem.

4. Symmetric singular hyperbolic systems

Let us consider a symmetric singular hyperbolic system of type (o, p) of
the form

) to aai FA(, Du—1° 2 Bt x)ji =ft, x)
Jj=1

A =
0X;

on 2=[0, TIXR", where A({, x)=(as(t, X))ic1, 4sm and By(t, X)=0bP(E, 2Dz, b5m
(1=<j<n) are mXm matrices on £. We assume the following conditions on (J):
(J-1) ¢21 and p—o+1>0.
(J-2) (Coefficients). a;:(t, x)and b'(¢, x)are of C°class with respect to ¢ and
O Yott, x)

=
oxX

of C* class with respect to x. Further, (—a%—)aaik(t, x) and(
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belong to @%Q) for any e, i, j and k, where B%£) is the space of all
bounded continuous functions on . '
(J-3) (Positivity). Let p(¢, x) (1=i=<m) be eigen-values of the matrix (A(z, x)
--YA(f, x)). Then there exists a positive constant ¢ such that (¢, x)=a
holds for any (f, x)€ £ and 1=i=m.
(J-4) (Symmetric hyperbolicity). B(t, x) (1=j=<n) are Hermitian matrices,
that is, B9 (¢, x)=b(¢, x) holds for any i, j and k.

Under these assumptions, we have the following theorem.

THEOREM 4.1. Let [ be an integer=1. Then, for an arbitrary f(£)eCY[0, T],
HY(R™), there exists a unique solution u(t)eC([0, TJ, HY(R™)NCHO, T],
HYYR™) of the equation (J) such that it satisfies the following conditions: (i)

t"(—%—)u(z‘)eC"([O, T3, HY(R™) holds, and (i1) the energy inequality

JuO1=C{ e U fG Lt lads

holds for 0=t=T and k=0, 1, -+, I, where C, and a, are positive constants and
&4(t, s) is defined by

te”®, when =1,

Jlo~1)
! )1 ' , when ¢>1.

(1, 5):{
f( o =1)sto 1 b1

The norm |-, means the Sobolev norm in the usual sense.

Proor. Let A(t) be a bounded operator in L*(R"™) defined by A(Hu=A(f, x)u
and let B(#) be a closed operator in L¥R"™) defined by B(H)u= i Bj(t, x)fgiia
j=1 7

Then (J) is rewritten into the form

du
dt

i +A(Du—t* B(Hu=f(1), 0<t=T.
Therefore, from Theorem 3.1 and Theorem 3.8 in Tahara [6] we can easily
obtain this theorem. Q.E.D.

To have the differentiability in f, we assume the following condition (J-5)
in addition to (J-1)~(J-4).

(J-5) (Coefficients (2)). @ (¢, x) and b (¢, x) are of C'"' class with

respect to t (for 0<t=<T) and of C” class with respect to x. Further.
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a R a @ a L3 a a
[ . . ghf _~ T [#2] 0
t ( 5 ) < 6x> ax(t, x) and ¢ ( o ) ( ax) b(t, x) belong to #%(2) for
0=h=[—1 and any «a.
Then we have

COROLLARY 4.2. If t°*f(1)eC*[0, T7, H'"*"*(R™) holds for k=0, 1, -+, [—1,
then the solution u(t) in Theorem 4.1 satisfies 1°*u(t)eC*[0, T], H' *(R™) for
k=0, 1, -, L

ProoF. Clear from Theorem 3.5 in [6]. Q.E.D.

Thus, we have established the existence, uniqueness and differentiability
theorem.

REMARK 4.3. Note that the equation (J) is nothing but a symmetric positive
system of differential equations in the sense of Friedrichs [1]. Therefore, we
can treat this equation from the standpoint of Friedrichs. We will sketch this
treatment in brief. Note that the argument below is local.

(1) Let £ be a bounded open subset of (0, T)XR"* and let
ait, %):t”-%-+A(t, x)azf”;n1 BAt, %)

3

P(t, X, 3z,

be a system of differential operators such that it satisfies the following:
(i) o=z=1 and p=x0.
(i) A(, x) and Bft, x) (1=7=n) are mXm matrices with coefficients in
c@).
(iiiy B¢, x) (1=j=<n) are Hermitian matrices.
(iv) Let g (f, x) (1=i=<m) be eigen-values of the matrix J(¢, x):

aaBL(t, x)+ A, x)+HPAL, x).
Xj

¥
J(t, x)=—cgte 1412 >
=1

Then there exists a positive constant a such that p(¢, x)=a holds
for any (¢, x)e R and 1=i<m.
(v) 2 is a lens domain with 82=S,US,, where Se=02M{t=0} and S,
=00\S,.
Under these assumptions, we can follow the argument in Friedrichs [1].
(2) (A priori estimate). There exists a positive constant y such that the
inequality

luliet | Huw do=plPulise
+

holds for any u=CYQ2), where do means Lebesgue’s measure on Siand His a
matrix function on S, defined by
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Ht, x):z‘”nol—tp'nEl n B, %), (1, X)ES, .
2

Here (nq, ny, -+, n,) is the outer normal unit vector of S..

(3) (Existence). Using the same a priori estimate for P* we can easily
obtain the existence of a weak solution in a suitable sense.

(4) (Uniqueness). Assume that H(¢, x)&-E=0 holds for any (f, x)&S. and
£=C Then, if ueCY2) and Pu=0, we have u=0 on 2. Further, combining
this result with the argument of John [2] we can discuss the dependence domain.

5. Singular hyperbolie¢ systems
Let us consider a singular hyperbolic system of type (o, p) of the form

ou
—~
U.Xj

, ou

H(sHA 2u—t? 3Bt 1)~ =ft, 2)
on £2=[0, TIXR", where s is a real parameter and A(f, x)=(a:s{(f, *)ici, rem»
Bit, )=, izt p=m(1=j=<n) are mxXm matrices on 2. We assume the
following conditions on (K),:

(K-1) ¢=1 and p—o+1>0.

(K-2) (Coefficients of lower order part). a;:(¢, x) is of C® class with respect

to ¢ and of C™ class with respect to x. Further, (—%—)aaik(z‘, x) belongs
to B%(2) for any «, 1 and k.

(K-3) (Coefficients of principal part). b(f, x) is of C* class with respect
to # and of C~ class with respect to x. Further, <~aa;>ab§{;’(z‘, x) and

z“’(—aag—><79%>ab§f(z‘, x) belong to 8°(2) for any a, i, 7 and k.

(K-4) (Hyperbolicity). The following two conditions are satisfied.
(1) 69(t, x) is a real valued function on £ for any ¢, j and k.

(i) Let At x, & (1=i<m) be eigen-values of the matrix i}lBj(i, x)&;.
£

Then 2,(¢, x, &) is a real valued function on £2X(R™\0) for 1=i<m.
(K-5) (Distinctness). There exist a positive constant ¢ and a basic quadratic
form Q,(t, &) of class ¢ such that the estimate

!2i<t7 X $>—X](t, X, E)lgc Qa(t} 5)1/2

holds for any (¢, z, £) = 2X(R™\0) and 1< 75 m.
(K-6) (Estimates). For any « there exists a positive constant C, such that
the estimates
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(
|

v )5e) B %

) 2 Bt 08| 2.0, 0,

j=1

QD
><l°’

SCaQu(t, E°

hold for any (1, x, &)= 2X(R™\0).
Under these assumptions (K-1)~(K-6), we have the following theorem.

THEOREM 5.1. There exists a positive constant s, which satisfies the following.
Let [ be an integer =1 and let s be a real number>s,. Then, for an arbitrary
AyeC ([0, T, H(R™), there exists a unique solution u(t)eC[0, T, H{R™)N
CH(0, T1, H*(R™) of the equation (K), such that it satisfies the following con-
ditions :

(1) t"(—%)u(t)eC"([O, T7, HY(R™) holds, and (ii) the energy inequality

[OIZCH | e v gt D ads
holds for 0=t<T and k=0, 1, ---, [, where C, and a, are positive constants.

PrROOF. To prove this, we have only to apply Theorem 4.4 in Tahara [6].
Let A(#) be a bounded operator in L¥R") defined by A(Bu=A(t, x)u and let
B(t) be a closed operator in L¥R") defined by B(H)u= anBj(t, x) —;:—. Then,

~ .

J
(K), is rewritten into the form

1S (s A 1 B(Ou=A(0), 0<EST .

From the conditions (K-1)~(K-6), we have the following:
(1) Put B, x,8)=+/—1 _anlBj(z‘, x)¢;. Then B(t, x,£) and t”(—%)B(t, x, &)
=

belong to S§ ([0, TD.

(2) Put H(, x, £ =—~/—1 B(t, x, £8,(t, . Then H(t, x, &) satisfies the
conditions (I-1)~(I-4) in Section 3.
Therefore, from Corollary 3.4 and Remark 3.5 we have the symmetrizabilities of
B(t) and B(#)*. Thus, we can apply Theorem 4.4 in [6). Q.E.D.

COROLLARY 5.2. Assume the same condition as (J-5). If t°*AH)eCH[0, T7,
HUYR™) holds for k=0, 1, -+, I—1, then the solution u(t) in Theorem 5.1.
satisfies t7*u(t)=C*{[0, T, H*R™) for £=0, 1, ---, L

Proor. C(lear from Theorem 4.3 in [6]. Q.E.D.
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REMARK 5.3. The advantage of the above formulation will be illustrated as
follows. Assume that the equation

ou n ou
c 1 £ — X —m——— ==
¢ 57 H(s+ A, x)u—t ;}1 Byt, x) 5x, f(t, x)
satisfies our conditions with a basic quadratic form Q,(¢, &) of class ¢. Then,
for any integers £,=20 (1=<;7=<n) the following equation

L & e Ou__
*ét——*‘(s-f*f{l(f, X))u”“t‘DJZ:lf ]B]‘(t, x) a.x]‘ —f(ty X)

also satisfies our conditions with a basic quadratic form
R<f’ é)ZQa(t) tnSl: Tty finén)-

When o>1, for any integers £;=0 (1=/j=/) and for any real numbers o; such
that 1<o;=0 ([-+1=<j=<n), the following equation

¢

, ou ‘ Lo ou
¢ ?—!—(STA(Z‘, x))u—t"{ ;1 17 B(t, x)vax.

J j

+ 3 e (OBt -2 =11,

VS 0 ]’xaxj_ »*
{where e (f)=e ")

also satisfies our conditions with a basic quadratic form

R(ty ;:):Qo‘(t: t“sly Uty t“&l) eal+1(t>sl+l: Tt eo‘n(t)én)°

See also Proposition 1.3 and Proposition 2.1.

6. Singular hyperbolic equations

Let us consider a singular hyperbolic equation of type (o, p) of the form

(L) (z“’%—;—s)mu+ﬁ;) a; (2, x)(tf’ aax )a(t“—a@f+s>ju:f(t, x)

alsm
<m

on £2=[0, T]XR", where s is a real parameter and

0 \« 0 \2 0 @ 0 Xy
(tpﬂ.> __—Zprm(_a_x,) ___(tp_a_;l_> T (vaa»;: .
We assume the following conditions on (L),:

(L-1) o=1 and p—o-+1>0.
(L-2) (Coefficients of principal part). a; (¢, x) (j+la|=m)is of C* class with

. 0 \?2
respect to £ and of C* class with respect to x. Further, (—5;> a; (t, x)

0 0 \?
and t”( r )<W) a;. .(t, x) belong to 8%LQ) for any B.
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(L-3) (Coefficients of lower order part). a;.(¢, x) (j+lal<m) is of C°
class with respect to ¢ and of C= class with respect to x. Further,

8
(-(%—) a; (¢, x) belongs to #°(82) for any S.
(L-4) (Hyperbolicity). Let a.f, x, &) (1=i=m) be roots of the eguation

P+E( D e, 080,

J=0 lai=m

Then 2,(t, x, &) is a real valued function on £ xX(R™\0) for 1=i=Zm.
(L-5) (Distinctness). There exist a positive constant ¢ and a basic quadratic
form Q,(f, & of class ¢ such that the estimate

(8, x, =L, x, Oz Q. §'°

holds for any (¢, x, ) e 2X(R™\0) and 1<i+#j<m.
(L-6) (Estimates of principal part). For any § and 7y (0=|7|<m—j), there
exists a positive constant Cp,, such that the estimates

}(%)ﬁ(*aag—)r,mg_jaj,au, x)&

tal=m—-j

=Cy.,Q,(2, IO,

=Cp.rQ,(2, Hmrimiivre

hold for any (¢, x, e L2X(R™\0) and 0= j<m—1.
(L-7) (Estimates of lower order part). For any 8 and y (0= |y| <m—}), there
exists a positive constant Cgz, , such that the estimate

R O L B

tei<m—Jj

holds for any (¢, x, £) € 2X(R™0) and 0=j=m—1.
Under these assumptions (L-1)~(L-7), we have the following theorem.

THEOREM 6.1. There exists a positive constant s, which satisfies the following.
Let [ be an integer =1 and let s be a real number >s,. Then, for an arbifrary
AHeCN[0, T1, H(R™), there exists a unique solution u(t) of the equation (L),
such that it satisfies the following conditions:

(1) 5= (A o ult), Mgy o712 Yut), =, (1-2) ut)
e CY[0, T7, HY(R™"HNCY(O, T], H"{(R™)

holds, (ii) (Z“’-%*>ﬁ(t)EC°([O, T, HUYR™Y) holds, and (iii) the energy inequality

[OI=CA| e 17(@at, sDlads
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holds for 0=t<T and k=0, 1, - I, where C, and a, are positive constants and
I Z m-~J o a i1
OIESS VIO G o8 BRTOIN

Here, we denote by g, ,(t) a pseudo-differeniial operator defined by (1+
12°Q,(t, E)'.

Proor. To prove this, first we transform the equation (L); into a singular
hyperbolic system of the first order and next we apply the results of singular
hyperbolic systems. To do so, we introduce unknown functions

uj(t):(x/:rlf)m‘j(l—l-ZP@O(Z‘))m‘j<t"—aa—t-—l—s)j_lu(z‘), j=1, -, m,

where ©,(1) is a pseudo-differential operator defined by 8,(t, &) in Proposition
2.6. Since the relation

(t" z?t +S>uj(t)=(m—j){<tv_aat—)<tp@"(m}(Htﬂ@“u»—]u’(t)

44/ =1 (14120 (1)U j+1(1)

holds for 1< j=<m~1, we can rewrite the equation (L) into the form

(tﬂ aat —!—s)um:~\/ff Elkj(t)(l‘f‘tp@d(t>>uj+1+f(t),
j=0
where f()=f(t, x) and k {t) is a pseudo-differential operator defined by
‘T(ka‘w):(\/:f)‘m”m;}n_jaj,a(t, W =T 108)5(1+120,(t, ).

Therefore, (L), is equivalent to the following first order system

(zﬂ——a@t—+s)Z:M<z)a’+«/-—'1K<t)(1+t«’@,,(t))mf(z), 6.1)
where
m—1
M(t)= C R et e,
1
0
0, 1, Uy 0
. . N Uy o .
K(t)= . . Lu={ . |, f=
_koO); _k1<t), Tty _km—1<i> J Uiy f
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Here, we divide the term ¢°%,(#)@,(¢) into the following three parts:

1R ()=t h ()0 (D)4 sD+r,1),
where

O'(hj(t»: 2 'Clj,a(t, x)Ea@g(t, E)~m+j’
tat=m~j

t°0,(t, & )‘)

osit)==( 3 _asult 0800, 9N E (1 T s

Then, we can rewrite the equation (6.1) into the form

(z‘f%+ s)Z:(M(z‘H«/?l‘K(t)Jr«/—“fR(t)+¢—TS(t))ZZ

. (6.2)
+/ =1 HHO (D + A1),
where
0 0
R(t)=— , S(t)=—
70(t>’ ri1), -, Vm-1(1) so(t), si(t), -+, Sm—x(t)
0, 1,
Hi)= 1

—ho(D), —hi(), o, —Rpmoa(B)

From the conditions (L-1)~(L-7), we have the following :
(1) M(2), K(t), R(1) and S(t) belong to $%[0, T7) with R(t, £=Q,(¢, teg).
(2) H(t) satisfies the conditions (I-1)~(I-4) in Section 3.
Therefore, we can apply Theorem 4.4 in [6] to the equation (6.2). Thus, the
existence of the solution is proved. Since the estimate

e(1+Q. (1, t2OP P =(1+1°0,(t, H)=c(1+Q,(2, 18"

holds for some constants ¢; and ¢, the rest part of the theorem is easy.
Q.E.D.

COROLLARY 6.2. If I=m, the solution u(t) in Theorem 6.1 satisfies t°*u(t)
=CHI0, T3, H*R™) for k=0, 1, -+, m.

Proor. From the conditions (i) and (ii) in Theorem 6.1, we have

Naw oK1 2) TutnysCuro, 71, HFR,
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m-k a k ¢ -k n
Aaa, (O™ H(1°—2) W ECCO, T, H-R™)

for k=0, 1, ---, m. Therefore, we have (t”%)ku(t)e@([(), T, H*R™) for
k=0, 1, ---, m. This means the above corollary. Q.E.D.

To have the differentiability in ¢ more precisely, we assume the following
condition in addition to (L~-1)~(L-7). Let [ be an integer =m.

(L-8) (Coefficients (2)). a,.(t, x) is of C'™™ class with respect to f

(such that 0<t=T7T) and of C~ class with respect to x. Further,

a a j-a\ts g an: .
I llen we ha Ve

COROLLARY 6.3, If t°¥f()eCHLO0, T, H™"*R™) holds for k=0, 1, -, 1
—im, then the solution u(t) in Theorem 6.1 satisfies t°*u(t)eC*[0, T, H'"*R™)
Jor B=0,1, -+, [.

ProOF. Let 9=1°

aat +s and let A and £,-,(f) be pseudo-differential op-

erators defined by

o(N)=2H=1+£]92,

o)== T asalt, V=T 1002
We define the commutator A% (f) by

RE D=L, hF=p(0)], R (t)=hy-(t)

inductively on p. Then we have the following conditions: (i) 12 ()80, T,
(1) 9% hP (DueCHL0, T, LXR™) for any ue L¥(R™) and k=0, 1, ---, [--m, and
i) (%)k(t"kh;flj(t)) is a bounded operator in LXR™) for k=0, 1, -, [—m.
(See Theorem 35 and Remark 3.6 in Tahara [6]). Since the condition #°*u(?)

=CH[0, T1, H*R™) is proved for k=0, 1, ---, m in Corollary 6.2, we have the
following differential equation
m AT __m~1 s r @ m=jtr-1% Fay L AT
™A u—g{g](}(i)hm_](t)/\ CEING(©)
for 0<t<T and r==0, 1, ---, [—m. Therefore, to prove the condition ¢7*u(?)
=CH[0, T, H-¥R"Y) for k=m-+1, -, 1, we have only to apply the same
argument as in the proof of Theorem 3.5 in [6]. Therefore, the proof is easy.
Q.E.D.
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