Multi-dimensional wave equation and an associated

group of operators on the boundary

Dedicated to the memory of the late Professor William Feller
By Tadashi UENO

Let D be a bounded open domain in R¥ with smooth boundary. The first
problem in this paper is to solve the wave equation
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on D with boundary condition:

Lu(x)=0, x€0D
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where {a;;(x)} is symmetric, non-negative definite, 7(x), 8(x)=0, p(x)=0 and

{&5(y), 1Si<N} is a local coordinate near x=0D and defined on D as a set
of functions in y. v(x, -) is a measure on D such that u(x, D—U,) and

gU m_){%}:(é%(;»)?%—](5§,(y)i}v(x, dy) are finite for each neighbourhood U, of x.

This boundary condition was obtained by A.D. Wentzell [14] as a partial
extension of the well known result of Feller [1, 3] in one dimension, and is
the most general boundary condition for the diffusion equation

(0.3) g—?u, x)=Au(t, x)

in the following sense. If {T,, t=0} is a strongly continuous semigroup of
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non-negative linear operators on C(D)” with a contraction of A as the gener-
ator®, then each smooth function » in the domain of the generator necessarily
satisfies (0.2). For the diffusion equation, there are some works to prove the
existence of solution which satisfies this boundary condition.

The motivation of this paper is to know whether this type of boundary
condition is also possible for the wave equation, or not. The answer is in the
affirmative under some auxiliary conditions.

As to the boundary condition of this kind, Feller [4] already solved the
one dimensional wave equation of type.

0%u
ot?

(i, x)=0Lu(t, x), r<x<lr,,
0.4)
Fat, r+0.0ult, r)t—ult, =0,  i=1,2,

by using Fourier series and discussed the intuitive meanings of the generator
d

dm
rivative of the second order discoverd by Feller PARS

Here, we first assume some auxiliary conditions on 4 and L, and prepare
certain Hilbert spaces depending on A and L in §1. Then, we define a closed
extension A; of A relative to L, and prove that there is a semigroup
{T:, t=0} with generator A, in §3. Thus, the equation, an operator-theoreti-
cal version of (0.3)-(0.2),

.
and the boundary condition, where 2(x)= —5? f(x) is the generalized de-

d

—Efz‘—ut:ALu“ u,—~f as t>0,

is solved by u,=T,f for given initial data 7. The main tool for the proof is
a bilinear form, an extension of

Bi(f, @=Q—A), g)—<Lf, &>
for smooth f and g in §2. Here,

1) C(D) and C(@D) are the space of continuous functions on D and 4D with norms
max|f(x)| and max|f(x)]|, respectively.
zeD xE9D

2) A is the closure in C(D) of A which is defined for twice continuously differentiable
functions on D.
3) This is the intrinsic form of the one-dimensional diffusion generator discovered by

Feller “27. Here, %f is the right-derivative of f andz% is the Radon-Nikodym

derivative with respect to the measure .
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(f, =] foe@aet| fmglamids, < o={, f0e@dzx,

where 8(x) is a coefficient of L, and dx denotes the volume element for the
integral on D, and denotes the surface element for the integral on aD.

In §4, we first prove a fundamental lemma (Lemma 4.1), and then prove
that there is a group of linear operators {U;, —oco<i<co} on a vector valued

. . N_( & :
function space with generator & such that @(g>*<ALf>' Hence, the equation

42
w,=Aruy, U~f, U=

PIE u,—g as 1—0,

a4
dt
7

£
extension of K. Yosida [15], where the wave equation with free boundary in

RY is solved. But, Lemma 4.1 applies also for a wider class of operators than
that of differential operators of type A, as we see in §5.

a version of (0.1)-(0.2), is solved by (:t>:U¢< ) This method is an abstract
£

As to the differentiability, there are versions of u, in (Z‘)zU,((J;) and
13

w,=T,f which satisfy (0.1) and (0.3) in the strict sense, under the condition
that the mass of u(x, ) is concentrated on D, the coefficients of A are in
C™D), and f and g belong to Ci(D) for sufficiently large n®. Moreover, if the
coefficients of A, f and g are infinitely differentiable, so are the solutions on
(—c0, o)X D and (0, co) X D, respectively.

The second problem in this paper is to construct a group of linear oper-
ators {ljt, —oo< <o}l on a space of vector valued functions on the boundary
in §5, which is supposed to describe the wave propagation on the boundary.

Let u=H¢ be the solution of the Dirichlet problem

Au{x)=0, xeD,
w(x)=¢(xy, =x<dD,
for ¢=C(@D). We define LH for smooth functions ¢ on dD by
o—(LH)g(x)= L(Hp)x), x€dD.

Then, a closed extension LH of LH is the generator of a semigroup (T, t=0}
of linear operators on a space of functions on ¢D. The group of operators
{ﬁt, —oco<t<oo} on the boundary is obtained out of {T,} by Lemma 4.1, just

4y C™(D) and C(ﬁ) are the space of n-times continuously differentiable functions on
2D and some neighbourhood of D, respectively. C§(D) is the space of n-times
continuously differentiable functions with supports in D. C(learly, a function in

C%(D)y can be considered as an element in cn(Dy.
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as {U,} is obtained from {7,}. Hence,

d2
(05) W@ZZLHQDL) QDK-)QD,' ¢c: d 502_’90, as t-——>0,

is solved by (g‘):ﬁ(;) As for the nature of LH, it can be proved that LH
&

is an integro-differential operator of elliptic character for smooth ¢ on 4D.

Finally, intuitive interpretations of {{/,} and the terms of Lu(x) are dis-
cussed in §6. For the case of diffusion equation (0.3)-(0.2), the semigroup with
generator LH, in the setup of [12], corresponds to the Markov process on the
boundary of the diffusion, which is the trace on dD of the diffusion, described
on a random time scale on 9D. Here, {U)} is conjectured by analogy to
describe the wave propagation on @D, which is coupled with the wave propa-
gation through the domain D. This is also suggested by (0.1) and (0.5).

As for the terms in Lu(x), it seems natural that the wave can propagate
through 9D according to the term X ay; 882 +Z ,81 +7-u (with absorp-

£ 58,08, a&
tion by the last term), and the boundary has the mass distribution [§(x)|dx
by the term 6(x)Au(x) like a vessel.

But, these interpretations are not yet justified mathematically. It is desir-
able that exact intuitive explanations will be formulated and proved rigorously
on some mathematical setup, as in the case of the diffusion equation.

The author thanks very much to Daisuke Fujiwara for his kind help
during the research of this problem, and also to Kazuhiko Aomoto and Akio
Yamada who answered his questions very kindly.

§1. Preliminaries

First, we assume auxiliary conditions on D, A and L. Let D be a bounded
domain in RY with boundary 9D of class C®. The coefficients of A4 in (0.1)
are in C(D), c(x)=0 and {a;{(x)} is symmetric and uniformly elliptic, that is,
there are positive constants g and a such that, for real numbers »;, 1IN,

N N N
(LD a3 nis 3 a0 se gt xeD.

Let ¢(x) be a function on RY¥ such that ¢(x)=0 characterizes oD, and ¢(x)>0

on D. The normal derivative gi(x) in Lu(x) of (0.2) is defined relative to

{a:(x)} by Z(E a:,(r)%(r))a (x), where (x)~ ( ><2( (x >>z>—m.

As the local coordinate in Lu(x), we take a set of functlons {Sz(y) 1= N}
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defined on a neighbourhood of D for each x=4aD, such that it is a local coordi-
nate of class C* in a neighbourhood U, of x, and {§}(y), 1Si=N—1} is also a
local coordinate on 8D in U,N8D, £5(y)=0 characterizes 8D in U,, §5(y)=0 on
D, and &%(x)=0 for 1<i<N.

We assume, for u(x) and »(x, -) in Lu(x)

1.2) wx)>0, x€adD
w3 e, D-U+], 2 180, dy)<es.

Then, we can rewrite the boundary condition (0.2) to a simpler form

Lu(x)=0,

N-1 o*u N-1 ou s
18 Lu= 5 ) soge O+ S A0 5 (O HTule o) Ao

2 e | -, d3),

by replacing ‘Z’gllgi(x)%(x) in (0.2) by 'jz:{ﬁi(X%Sﬁ(y)”(x’ dy)) g: (x)}, and

then multiplying the both sides of (0.2) by p"*(x) and changing the notations.
Thus, we use this simpler form (1.4) hereafter. We assume

(1‘5) &ij, ‘Sir 7> 5EC2(8D>7 1§l, ]éN-_]-’
(1.6) f—y[f1] maps C¥D) into C@D),
where sLf1(0)={ (F)—/(x, d3).
If f is smooth near x€dD, v[f] clearly exists by (1.3). By (1.5)-(1.6), it is
clear that
an F—Lf maps C¥D) into C@D).
We also assume that the measure »(x, -) is decomposed as
(1.8 w(x, Y=vslx, vz, ), vix, )=vilx, D+es(x, 2,

where vy(x, -) and v5(x, -) have the masses only on oD and have the density
functions vs(x, ¥) and v5(x, ¥) with respect to the surface element on 0D, and
vp(x, -) has the mass only on D and has the density function vp(x, ¥) with
respect to the volume element on D. Moreover, these density functions satisfy

(1.9) Va(-’f, y>:Va(y> x)’ X, yEaD



418 Tadashi Ue~o

(1.10) azzgw{gl)»l,(x, y)zdy—i—gapug(x, yrdyhdx<os.

Finally, we assume the condition
(L) Aaifx)} is uniformly elliptic, or L is formally self-adjoint, that is, at least
one of the following (1.11) and (1.12) holds:

2

N-1 ~ N-
(1.11) a 21 7= ' a; (xS @ 2177%, x€90D, for constants g, @>0,
i= 4 7=1 i=1

14

1\-72‘:1 ag a{(x)— Bi(x)=0, 1<iEN-1, x<dD
i=1 i

(1.12)
w(x, y=vs(x, ) x€0D.

Now, we define, for measurable functions f and g on D,

(5, 9=, Angndx, <, o={ s,

vD

WA=C % W lle=<1, 157,

W1, =41, 47, T~ AN aI=glomalz, »dy
+{ 080w/ (x, Dy,

VR=] R, dy),
when the integrals converge.
PrOPOSITION 1.1. 1) u(f, g) and v'(f) can be defined for f, g=C¥D), and
(L13) GLfD ==/, -+, &
(1.14) <, eI <l fI+I lalgls -
1) If asequence {fy} in CXD) satisfies lim| fullo=0 and Aim w(fn—Fa, fu—fa)

=0, then lm v(f,, f2)=0.

Proor. i) By (1.8) and (1.10), v'(f)(x) exists and (1.14) holds for bounded
fand g:

| 7w, dn|= | Aomet, nay|+{[mwi, ndy
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< A0( patr 2an) 171 paote, 3ds)
<UA+LAR(] o, vrdr+] vix yrar)™

1, 1=\ ]y eds| gl ([ v (n0rdx)"

éD

=o-(IF01-+-1r1algle -

Since v(x, D)=y'(1)(x), v/(x, ) is a bounded measure for almost all x<oD.
For f and g in C¥D), [ f1(x) is continuous by (1.6), and hence <[ f], &
exists. Thus, by

||, @g(0 e, Dydx| <max| A0l | 18z, Dydx

=max| f(x)| - (1), |g]><eo,
and

s ol o= {_(o—fon, dnlatods

:gap{gap(f(”ﬁﬂx))”a(x’ y)dy}g(X)dx

+0/(1), 9| gt (x, Ddx,

aD

the first term on the right side of (1.15) is finite for f, geC¥D). By the sym-
metry of vy{x, y), this term is equal to

[ For—romats, Ddshetda
:Sap{gap(f ()= Fwalx, y)dx}e(3)dy

=—{_dx|_ ()= FngGmx, ndy.

Hence, it is equal to the mean of this and the original expression in (1.15),
that is,

— 2 dx] ()= A~ gwatx, .

Thus, v(f, g) exists and (1.13) is clear.
ii) Since | f.ls—0, there is a subsequence {f,,} such that f,,(x)—0 on 8D
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almost everywhere. For each ¢>0, there is an N, such that v(f—fr, fun—1Fn)
<& for m, n=N,. Thus, the assertion is true by

s Fd=|, e )~ Fu(l, v+ f e, DY}
=, axl2 ] M)~ k) Pl Fu)alz,
Hm( Fu ()= Fa D (x, D}
. 1
tim{ de{Z| (Fal) = Fas D)~ Fnl+ Fu0)x, D)k

k~0J 8.

(D)= Fala)/ (x, D)}

i

%mv(fm—fnk, Jn—InySe, for mzN,

completing the proof.
We define, for f and g in C¥D),

f

e, =] B a2k SR IRCHASY

PROPOSITION 1.2%. If a sequence {f,} in C¥D) satisfies hm‘lfnlla—o and
lim D<frn—fu, fu—F>=0, then lim D<f,, fu>=0.

PrROOF. Since a;{x) are in C*0D), it can be proved that there are Lipschitz
continuous functions 8;;(x) such that B;;(x)=pf,(x) and

=3 BBl

by modifying the result of Freidlin [5] or Phillips and Sarason [8]. Thus, for
gni(0)= 5} Bl

(x), 11 N-—-1, x=0D, we have

8(fm fn) S(fm fn>

(%) (x)dx

D fum o FumFd={ | 3 ()

N-1 N-1
=[S @n d0—ga (0rdr="E lgnd§—0, as m, n—co,

by the assumption, and hence {g,  converge to the limits g; 1<i<N—1, in
the Hilbert space H; of the square integrable functions on 9D with inner prod-
uct <f, g>. Thus, {g..; alsc converge to g; in the Sobolev space H (9D).

5) The proof of this proposition owes to Daisuke Fujiwara.
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On the other hand, a{” (x)—0 in H™Y9D) by the assumption || f»l;—0, and
hence =

afn

gn.i(X)= Z ﬁz,(X) (X)ﬂO in H™oD),

since the multiplication by a Lipschitz continuous function is a continuous
mapping in H Y#D). Thus, g,=0 in H*@D), and g, also vanishes in Hj;
implying

A~ N-1 o N-1 9
DS, fav= 2 lgn. o= 2 lellz=
We define, for f and g in C¥D),

f f

X

(s, = ¥

(f, &)s=(/, g)+<f, g-16l>, (f, gh=(f, @+D/, g)
(f, D)=(F, @+ D(F, O+DS, gr+2u(f, &)
1A le=(f OFL VA= O A=W, F)Ve

Let I; and K be the completions of C¥D) with respect to the norms || |s
and | I, respectively. H; is clearly a space of functions on Ds=D\dD;, where
0D; is the support of §(x). The Sobolev space H*(D) is obtained as the com-
pletion of C¥D) with respect to || §,, and each f in HYD) has the square
integrable boundary value on 0D almost everywhere. It is also known that,
for each >0, there is a constant C(e)>0 such that

(1.16) I fiz=eD(f, HNHC@ISNE  for feHY(D).

»
Here, D(f, /) is defined by continuity and coincides with SD Z}l(Dzif(x))de,

L wax, pis o= 8

where D,,f, 1<i<N, are the derivatives in the Schwartz’s sense.
Since HYD) is a space of functions on D as above, so is K by

PROPOSITION 1.3. 1) If a sequence {fn} in CXD) satisfies lim| f.l,=0 and
lim [ frn—fali=0, then lim[ f7[l;=0.

ii) If @ sequence {f:} in CAD) satisfies lim| foll;=0 and lim |Ifrn—/ali=0
then limfl f,}i=0.

Hence, K is tmbedded itn HY(D) and H'(D) is imbedded in H; uniquely.

Proor. 1) The assertion is clear, since | f,I=[ f.lls and it is known that
limf f»=0 and lim |[fn—/al,=0 imply [[/all,—0.
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if) By the assumption | fullf={/al>+D(fn, f2)—0 and (1.16), we have
I falls—=0. By [[fn—rFall—0, we have W(fn—/fr, fa—f2)—0, DY o~ ay F—T>
—0, and hence v(f, f,)—0 and D{f,, f.>—0 by Propositions 1.1 and 1.2 and
I f2lls—0. Moreover, || f2l3=(fa, f2)+<{fns fnl5l><!¥fn|i2+maXl5(X) Il f2ll3—0, and
hence [|fAli—0.

§2. A bilinear form B,(f, g)
For f and g in C*(D) and 220, we define
2.1 Bi(f, @9=((A—~A)f, gs—<Lf, &

PROPOSITION-2.1. For f and g in C¥D) and 1=0,

22) Bif, 9= 3 (01fry 82)+(f, G0, &
+S, T+, )
+ ZZ\Z (béfx-p g>+ ]:§1<18£f5i7 g>“<vl(f)) g> 1

A4 N=-1
where bi= ng (@i)z;~b: and fi= Z]l (a:)z;—B; .

23) Bif, 8= Bi(8, N=2 E (ifep )2 S <Bifey
HEF, TS, &= (), <, v

N N-1 N
where ¢'= 21 (b)z; and 7= 2 (B — 21 bighs .
i= i= i=

ProoF. By Green-Stokes Theorem, we have

2 Qijfosep g)=~i§il(aufzi, 8z g(é (@i9)z; 25 g)—< g

i 7=1

(3 autiey )= 5 austrp 29~ SE @y o ).

i=

\
?g/’

Then, by (1.13),
By(f, @=((A— A, )+<Q—=A), gla|>—<Lf, &>

= 0o 2+ Z((Z @emb)fen )+ G0, 04 (-2, &)}

€, 7=1

+lalf, 9+0AL, )+ (B, ot B((E i —p)fe 2)

k4 1
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11, y=GAS, {4, g JHS D=, B

n

Hence, (2.2) is clear. Thus, (2.3) is obtained by

Bilf, D—Bile, N= 2 (0hfey D= (bige, 1}

+3 KB e £9—CBlgey I = (), D+, 1,

PROPOSITION 2.2. 1) B,(f, g) can be extended fo a bilinear form on K unique-
ly. The extension, written by the same notation, satisfies the following

2.4 |B2(f, ol =k:A7N-Nell, 220, f, g€k,
(2.5) Bi(f, N=RIAE, 124, f€K,
(2.6) Bi(f, N=I513, 1z4,, fEK,

where 2,20, k=0 and k ;>0 are constants, independent of f and g.
ity If & is strictly negative, then there is a constant >0 such that

@7 | Bi(f, ©)—Balg, NI=kIfll-lgls, 220, f g=K.

If A and L are formally self-adjoint, then B (f, g) is symmetric:
(2’8) Bl(fy g>3B1<g; f)} ]‘._2_0: fy gEK'

ProOF. i) By the definition of K, it is sufficient to prove (2.4)-(2.6) for f, g in
c¥D). By (2.2), (1.1) and (1.14), with 5:1r<n_a§ sup |bi{x)] and E:I max  sup | B0,
S1EN 2ep

SisN -1 2€0

Bi(f, Nz 15+ aD(f, N+D, >+, )=~/ NbD(, IV ]
—~NEDF, O f o= A1+ A o

There are two cases of the condition (L). When {a;{x)} is uniformly elliptic,
aD<{f, f>D<S, £y by (1.11). Noting (1.16), we have

D(f, 1Y 2N fli=~m D, DY N WA =0 DU, D+ g5, >0,
DS, Y flo=1/a- DS, I fls=nla- DS, H+1/(a)-1 113
<n/a-DS, Fr+e/lan)-D(f, N+HCE/an)-1 1% >0, >0,
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A+ A Ao A2 FI3=A+20ENI F1-+2eD(S, /), e>0.
Hence, by taking » and ¢, and then 2, so that
E=to— (VN 5[+~ N BC(e)(an)+5(1+2C() 21
ke=a—(WNb/p+~/N Be/lap)+29e)>0,  ks=1—+N fn/a>0,

we have

Bi(f, NZB1(f, N=El FI3+ED(f, DA - DS, o+, 1), A2,

Thus, (2.5) and (2.6) hold for 2=1, and k=min(k,, k., ks, 1).
When L is formally self-adjoint, then F=0=0. Hence, we take » and then
Ao s0 that k,=2—+/Nb/p=1 and ky=a—+/Nby>0, and put k=min(k,, k).
To prove (2.4), let BP(f, g) be the sum of the first five terms of (2.2) and
BP(f, g) be the sum of the remaining terms. Since BP(f, g) is symmetric and
BP(f, HYLaD(f, Hi+Df, r+Q@+e+PIflz+u(f, ),  feC¥D)

with é=sup|c(x)| and 7=sup |7(x)|, we have
z€D €D

[ BP(f, 1< BP(S, 1)* BP(g, g)*=max(d, 2++7, DIFI-llgl .
On the other hand, |BP(f, g)| is also bounded by a constant multiple of
AN Hgll by
| BP(S, &)1 <V NbOD(f, /Y2 g+~ N EDS, £ gls+5 FII+1 flalgls .

ii) When A and L are formally self-adjoint, (2.8) is clear. Otherwise, we
have

29) | Bi(f, ©)—Bilg, NIZ2VNOD(f, /17 lig]
+2v N BDLS, £ gl U f1 - gl +71 Flis- gl
+25(1 A+ A la)lgl -+ gla)
by (2.3), where E’:rfea;dc’(x)l and f’:rxré%gclr’(x)l. Since d(x) is strictly nega-
tive, | gll; is bounded by a constant multiple of |{gf; by
lels=(g, 2)+<g, gldl>=lgl*+ inf |30 -lgl -
When L is Nformally self-adjoint, f=0=0, and when {a,;(x)} is uniformly elliptic,
aD{f, {>ZDSf, f>. Hence, (2.9) is clearly bounded by a constant multiple of
fiFi- gl
REMARK. For fin C¥D), g in K and 2=0,
(2.10) B:(/, 99=(—A)f, g)s—<LJ, g>.
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This is clear by the definition of B;(f, g) and the continuity in g.

§3. The semigroup for the diffusion equation

PROPOSITION 3.1. If {f.} in C¥D) and g in H; satisfy lim[|f,ll=0 and
Um{(Af,—g, Ws+<Lfn, h>}=0 for each h in CAD), then g=0.

ProOOF. Since ||f.ll—0, we have B(f,, h)—0 and (f», h);—0 and hence

OZ}L{{}{(Afn—g, s+ Lfr, h>}:lni§g{(2fn—g, hYs—B(fa, M} =—(g, R)s

for each heC¥D). Since C*D) is dense in H; we have g=0.

DErFNITION 3.1. If, for f in K, there are a sequence {f,} in C¥D) and g in
H; such that lim| f,—fll=0 and

Hm{(Af.—g, h)s+<{Lfn, h>}=0, for each heC¥D),
then we define Ay, by Arf=g. We write D(A) for the domain of Ax.

PROPOSITION 3.2. Let 224, For uw in K and v in H,,
3.1 B(u, /)=, s,
for each f in K, if and only if u is in D(Az) and
(3.2) QA—Apu=v.
ii) The solution of (3.1) or (3.2) is unique for v in Hs and satisfies
(3.3) ' Ellull<lvll5.

ProoF. i) For u in K, there is {u,} in C¥D) such that flu,—ull—0, and
hence Bi(u,, /)— B,(u, f) for feK. Thus, for v in H;

(3.4 (@, o= Bi(u, =, f)s—lim B;(un, f)
=(v, f)—lim {Q—A)n, [s—<Ltin, [}
=lim {(Au,—Au—+v, s+<{Lu,, >}, feC¥D).

F2adood

If u and v satisfy (3.1), we have (3.2) by (3.4). Conversely, if (3.2) holds, then
there is {u,} such that the right hand side of (3.4) vanishes. Thus, we have
(3.1) for f in C¥D), and hence for f in K by continuity

ii) (3.3) is clear by (2.5) and by taking f=u in (3.1):

EMullP= Bi(u, u)=(, wh=ivlhluls=lvisiu.



426 Tadashi Ueno

Since v=0 implies =0 by (3.3), the uniqueness of the solution of (3.1) is clear.

PROPOSITION 3.3. For v in H;s and Az 2y, there is a unique solution of (3.1),
or (3.2). Hence, a linear operator (A—Ag)t is defined on H; which takes values
wn K and satisfies

(35 2—Ap vli= kvl .

PrOOF. First, we take v in K, and define F(f)=Q, f); for feK. Since
VE(OI=1@, Nsl Zlwlls- 1 Fls=Z1vls- AN, F(f) is continuous in f. Hence, there is
w in K such that F(f)=((w, f)) by Riesz Theorem. Then, by (2.4)-(2.5) and
Milgram-Lax Theorem, there is u in K such that (Qw, N=B(u, f). Hence,
(v, F)s=B;(u, f) for each feK. Since u satisfies kfjull<|lv|; and K is dense in
H;, the mapping v—u can be extended over H; so that B;(u, )=, f); holds,
completing the proof.

DEFINITION 3.2. We define a norm I fly for feK by

1A le=B,,f, /)V*.

ProposITION 3.4.

(36) BNI=N S =R AN, JeK.

37 I le=lrlz, feK.

3.8 I/ N2=(f—ALS, Flss Fea(Ay).

(39 A= I5+1F1E=B(1, /), [feK.

(3.10) WALS, @s—(Arg, sl <k flE+IglD, [ g29(A)),

when § is strictly negative, or A and L are formally self-adjoint.
PrROOF. (3.6) and (3.7) are clear by (2.4)-(25). We have (3.8) by taking
A=, u=f, v=Q2,—Apf in 31). (3.9) is obtained by taking f=g in
(.11 (=2, 8)s+B.(f, D=B:f, 2), [, g<K.
(3.10) is obtained by (3.6), (3.8) and (2.7):
W(ALS, 8)i—(Arg, Nol =1(Af—ALS, £)s—(Aag—ALg, /sl
=|Ba(f, ©)—Bafg, NI=EIfI-Igls
<k RVl lghs<E 27| £+ g3

PROPOSITION 3.5. For u=(—A,.)"v and 121,

(3.12) A=a)lull3+ulz=(u, v)s, veH,
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(3.13) 1Au—vi3+-2luli—Alluld)=Ba(u, v)—2(u, v)s, veEK
(3.14) 12w —vi3+Q@— ) Au—vl§=(Av, 2u—v);+{Lv, 2u—v>, veC¥D).

Proor. By taking f=u in (3.1), and by (3.9), we have (3.12):
(v, w)s=B,u, u)y=A—2)luld+ul}.
(3.13) is obtained by (3.1), (3.9) and (3.11):
fAu—vii=Au, Ju—v);—Q@, Au—v);=2Au, Au—uv);— B (u, Au—v)
=Au, 2u—v);—A—2A)(u, lu—v)s— B, (u, 2u—v)
=2tt, Au—v);— 1B, (u, u)—}—Bzo(u,- v)
=2l ull3—Ao(u, v)s— A ullz+ Ba,(u, v).
To prove (3.14), we use (3.1) and apply (2.10) for f=ve=C¥D) and g=iu—v:
fAu—vl}=B; Qu—v, 2u—v)=Q—)iu—v|3+ B,Au—v, Au—v),
where the last term is
AB(u, Au—v)— B,(v, lu—v)
=2, 2u—v)s—((A—AWw, lu—v)s+<{Lv, lu—v)
=(Av, Au—v);-+<{Lv, lu—v).

PROPOSITION 3.6. Let 2=2,.

(3.15) A= A— A le=lvls, vEH;.

(3.16) Q—=DNA—A)y Wl . kvl , veK, for a constant k', A=A3.
8.17) Hm|2A— A v—vls=0, veHs.

(3.18) l)imll)\(2~AL)‘lv—v|[L:0, vek.

Proor. We write u=(A-—A;)"* as in Proposition 3.5. We have (3.15) by
(8.12):
A=l ul3=, v)s={ulls lvls.
We multiply the both sides of (3.12) by A, and add to (3.13) to obtain
(3.19) HAu—vl[F+A+- Al uli—Blulz=B,u, v),
CA=ADNuliE B (u, sk ull- sk B ull e vz,

by (2.4)-(2.6) and (3.6), and hence we have (3.16). By (3.19) and (3.16), we have,
for A=A and vEK,

Pu—vi3< B, (u, v)s ko Hulp vl
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ko kR VIE/(A—2D—0,  as A—oo.
Since K is dense in Hj, this holds for all v in H;. By (3.14),
Nu—v|i=(Av, lu—v);+<{Lv, 2u—1v)
=l Avlsdu—vls+1 Lvllslidu—vls.
But, by (1.16) and D(/f, /)<lifIF=k™|/|%, we have
A —vlle=(e DQAu—v, Au—v)+Cle)|du—vlf*)**
=(e/R)* Au—vl L +C(e)*l Au—vl,
fAu—viiz=(e/ )1 Au—v] L+ Avls4-Cle) Dl Au—vlis .

Thus, by (3.17), gﬁl{lu—v{h is finite and
(lx—igllllu—'vﬂL)zé(S/@”zEi_r?lﬂlu"vllr’ro.

But, since ¢>0 is arbitrary, lim|iu—v| =0, completing the proof.
Ao

THEOREM 3.1. A is the genevator of a semigroup of linear operators
{T,, t=0} on Hj which is strongly continuous in t =0 and satisfies | T, flis<e’o*| fls
Jor each feH; The domain D(AL) is a dense subset of the space K.

Proor. By Proposition 3.3, (1—A;)"! is defined on H; for A=1, and the
norm is bounded by (1—4,)"* by (3.15). The domain 9(A;) is dense in H; by
(38.17). Hence, by Hille-Yosida Theorem, A, is the generator of a semigroup
{T:, t=0} on H; as in the theorem. 9D(A;) is dense K by (3.18).

PROPOSITION 3.7. 1) If fe€C¥D) satisfies Lf(x)=0 on 8D, then f belongs to
DAy and Arf(x)=Af(x) on Ds. Especially, when the mass of v(x, -) is concen-
trated on 0D, that is, vp(x, -)=0, then CYD) is contained in 9(A;) and f€C¥D)
satisfies Apf(x)=Af(x) on Ds.

i) If f€D(AL) is twice continuously differentiable on D, then Apf(x)=Af(x)
on D.

iii) If f belongs to DANNCYD) and A,f(x) is continuous on Ds, then f
satisfies Lf(x)=0 on 0D almost everywhere.

Proor. i) In this case, we can take f,=f, n=1,2, ---, and g=Af in
Definition 3.1, and hence A,f=Af in H; If vp(x, -)=0, then each feCi¥D)
trivially satisfies Lf(x)=0, x<dD.

ii) Let {f,} be a sequence as in Definition 3.1. Then, for 1 in C¥D),

0= {Uim(Afo—ALf, Wst<{Lfn, IO} =lim(Afs, h)—(ALf, 1)
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=lim(f,, A*h)—(Af, H)=({/, A*h)—(Arf, W=(Af=Arf, k)

and hence, Af(x)=A4,f(x) on D, where A* is the formal adjoint of A.
iii) Since A.f(x) is continuous on Ds, Af(x)=ALf(x) on D; by ii). Hence,
for a sequence {f,} as in Definition 3.1 and heCyD),

0=lim By(fo—F, W=lim Afos, Malim (Afa—Af, Rt< L= LS, )
= —lim{(Afa—ALf, o< Lfa, kY —(Af=Auf, (L, W} =(LF, B>,

Hence, Lf(x)=0 on 8D almost everywhere.

§4. The group of operators for the wave equation

First, we prepare an abstract lemma which is independent of the preceding
results.

LeMMA 4.1. Let H be a Hilbert space with inner product (f, s and norm
I Flls=(F, Y% and let the following conditions be satisfied.

1) There is a dense subspace K of H, which is a Banach space with respect
to a norm | fll; such that || fll:<\ /., for fEK.

2) There is a semigroup of linear operators {T, f=0} on H, which 1is
strongly continuous in ! and satisfies VT, flls=e%, for fel.

3) The domain 9N) of the generator U of {T.} is contained in K and 1is
dense as a subset of K.

4) There are positive constants 2, and k such that

CHY Af=%f, =112, fea),
4.2) LS, 9)s—Ag, Nl k(NI [ g=2).

Let M be the product Banach space (g) of K and H with norm

MﬁM:WﬂWHwMW2

N_(& ! _ (2@
o)) 7r ())=mo~(*2)
Then, ® is the generator of a group of linear operators {U,, —oo <L <00} on

a(Dfse | (Dl 5r (7=

PROOF. 9(®) is dense in M by 1) and 3). © is closed, since U is closed
by 2). For 2*>8,

and let

M, which is strongly continuous in t, and

§23'IZI1



430 Tadashi Uexo

69w o (Do
has a solution by 2) and
u=2=WAf+g), v=22—WAf+g)—f.

The solution is unique, since lu—v=0 and lyv—Uu=0 imply (2*—Wu=0, and
hence u=0 by 2), and then v=0. Thus, 1—&)* is defined on M for 2> B,

Hence, it is sufficient to prove the following for (g)EM.

()

In case (‘;) belongs to 9(®), this is obtained by (4.1), (4.2) and (4.3).

(4.4)

g“(g)”/(ll!—ﬂ’), for a constant f'.

[ =1rt+1gk=or~27, it te o)
=l Au—)—UQAu, u), Au—v)+Av—Uu, Av—Uu),
=AH{Aou—Au, u)s-+(, v)} +2{ A, w)s—Au, V)s~2;,(u, v)s}
+Aev—Uv, v)s+(Hu, Wu),

(2)
(2)

= {{A]—(k+220)}*

=22

{2+z{@rv, )= (at, 0)y—22(ut, 0)5) + ]2 122

Gl

2
B

"2k 22,)
(;)

In case ({:) is in M, there is a sequence {<£ )} in 9() such that ({:” >—>({:)

n
S k3

=22

for |A|>k422,=F".

Then {( z:):(l—@)“<§’; ), n=1, 2, } is a Cauchy sequence, since (4.4) applies

n

of (4.3), and hence,
u Unp fn
()=t () stim)(21)
K . .
THEOREM 4.1. Let M; be the product space <H> of K and Hj; with norm
[O)=tririsin and ter

for (? ), and hence has a limit (ZL) Since @ is closed, this is the solution

=lim

oo

fiai-gr=[( Dl uiai-g).

<lim

N oo
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([)=(ilp): dor (Q)=a@a=("g").

If d(x) is strictly negative, or if A and L are formally self-adjoint, then &; is
the generator of a group of linear operators {U;, —oco<t<co} on Mj, which is

Ut(;)“<eﬂ’m (‘j;)“ for a constant B§’. Thus for
feD(AL) and ge K, there is a solution u, of

strongly continuous in t, and

d2

P u=Aguy, —ooLt<oo,

(4.5)

U—f in K, —jt“uﬁg in Hy, as t—0.

Proor. If we take Hs, /N5 1SNz, AL and A, for H, [ fls 1/, ¥ and B in
Lemma 4.1, and if § is strictly negative or A and L and formally self-adjoint,
then all conditions 1)-4) in Lemma 4.1 are satisfied. In fact, 1) is clear by the
definitions of H; and K and (3.7). 2) and 3) are satisfied by Theorem 3.1, and

4) holds by Proposition 34. For each <f)E@(@5), (ut> Ut(f> is the solution
of (4.5) by

AR R TR S

THEOREM 4.2. Let the coefficients of A be in C¥i2+(Dy and the mass of
W(x, -) be concentrated on 8D, that is, vy{x, -Y=0. If f and g are in C¥/»*(D),

then a version u(t, x) of u, in (th):Uz(£> satisfies
¢

(4.6) %u(t, x)=Au(t, x), (t, x)e(—c0, c0)XD.

Moreover, if the coefficients of A and f, g are infinitely differentiable, then there
is an infinitely differentiable version of u,.

REMARK 4.1. If f and g belong to D(A,N'#*%), then a version of u, in
<v ) Ut<f) satisfies (4.6). If f and g belong to D(A7) for all n=1, then there
t

is an infinitely differentiable version of u,.

ProOF. Let the coefficients of A be in C*™(D), f and g in C3™(D) and let
vp(x, -)=0. Then, A*f and A*g belong to C¥D) for 0=k=<m—1, and hence f
and g belong to 9(AF) and At f=A*f, Alg=A*g on D; by i) of Proposition 3.7
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for 1=k=m. Since <§)a@(@),

arCmou(g)ue()=0() wa GCH=u().

S1m11ar1y,( ) Uc< )belong to 9(G™) and jt2k<u£) Zf) 1=k =<m, and

S Cru(E)), 1zhan,

The strong derivative u, of u, in H; can be considered as the deriva-

dt
tive D,u, in the sense of Schwartz’s distribution on (—oo, co)XD. ALf for
JeD(AL) is also the derivative in the Schwartz’s sense as a function on D

N N
Alx, D)= 3 ai(0)Ds, Dy f+ 3 50Dy f+e(2)f .
In fact, for each % in C(D) and a sequence {f,} in Definition 3.1,

(Arf, h)=(ALf, R)o=Um {(Afn, R)s+<Lfn, hD} =lm(Af,, )
=lm(fa, A*h)=(f, A*h).

By Hille-Yosida Theorem, (Z”):Ut(g) for (§>GM is given by
¢

()= E S e(?)

where &,=n&(n—-®)"*. Since the both convergences in (4.7) are locally uni-

@.n (Z‘):strong hm(?é:) s

-0

. tm . .
form in ¢ and —;ZT(@,,)’"(];) are measurable in (¢, x), there are versions of u,
- S

and v, which are measurable in (¢, x). Clearly, these are locally square inte-
grable as functions on (—o0, co)x D,

Hence, there is a version of u, such that (D Alx, D)Y™u, is locally
square integrable as a function on (—oo, 00)X D, and hence u,(x) belongs to
HiZ((—o0, 00)X D) since (D}+A(x, D,,))™ is elliptic. Thus, in order that 1u,{x)

is of class C% it is enough to assume 2m= [g]—}—\? by the Sobolev’s lemma.
If f, g and the coeflicients of A are infinitely differentiable, there is an
infinitely differentiable version of u,.

The Remark 4.1 is clear, since we need the conditions in Theorem 4.1 only
to derive f, g€ D(AP), or f, g= D(AD) for all n=1.
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THEOREM 4.3. Let the coefficients of A be in C¥+(D), vp(x, =0, and f in
CY¥*8(D). Then, a version w(t, x) of w.=T,f satisfies

4.8 %—L;—(t, O=Au(t, x), (¢ 00, 0)XD.

Moreover, if the coefficients of A and f arve infinitely differentiable, so is a version
of w,;.

REMARK 4.2. If f is in 9(AY*®), then a version of w,=T,f satisfles (4.8).
If fis in 9(AP) for all n=1, there is an infinitely differentiable version of w,.

PrROOF. Let the coefficients of A be in C**(D) and f in C§™(D), and let
2
vo(x, )=0. Then, f is in 9(A) and (—;?J,—AL)kwt:Tz(AL—FA%)kf, 0= B =2m.

Hence, there is a measurable version of w, such that (Di+A(x, D.)"w, is
locally square integrable on (0, o0)X D, as in the proof of Theorem 4.2. Since

. .. N
the version is in H27{(0, o0)x D) as before, it is enough to assume 2mz= [?}+3

again. Remark 4.2 is clear, since we need the conditions in Theorem 4.3 only
to derive fe 9(AZ™), or f=D(A}) for all n=1.

§5. A semigroup and a group of operators on the boundary
It is known that there is a unique solution of the Dirichlet problem
Au(x)=0, z=D, u(x)=¢(x), x=dD, for @=C@D).

The solution u is written as
u(x)=Hp()={_H(x, d»)e(»)

by a bounded measure H(x, dy)® on 0D, and
G.D . | Holl <Chllella,

by a constant C; For ¢ in C¥2D), He belongs to C*D), and hence LHyp is in
C(0D). We define

(6.2) BXe, ¢p=CQ—LH)p, > for ¢, $=C©OD), 120,

6) This measure is called the hifting measure to 3D and is the distribution of the
first hit to 8D of the diffusion particle, which has started at x and diffused in D
N aZ

according to (0.3). In case A=4=7

P this is also known as the harmonic
1 ox3

measure of D with respect to x.
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Lo, Pry=<p, ¢p>+Dlp, g>+D(Hp, H)+v(o, $)7,  for ¢, p=C@D)
flolle=<p, o>>%  for @eCoD).
Let H and K be the completions of C¥a@D) by || Il and |jl |i5, respectively.

PROPOSITION 5.1. i) There are constants C and C such that Jor o=C¥0D),
(.3) Cliels=llgli< Cligls -
i) If a sequence {@,} in C*0D) satisfies limll@,lo=0 and lim |lp—¢.lls=0,

then limflealls=0. Thus, K can be imbedded in H as a dense subset.

ProoF. 1) [|Holl*=Hell*+<e, |61¢>+ D(Hep, Hp)+Dlp, o>+ulp, @)
S(C3+lpl3+D(He, Hp)+ D<o, o>+u(p, ¢)=(1-+C3+dllel,

where 5:5%113){5(9:)[. Let C;=(26)"* when 6>0, and C,=0 when 6=0. Then, by
TE
(1.16),

lilg=llo|3+ D(He, Ho)+D<p, ¢>+1(p, ¢)
=Cp, |8lp>+<p, (1+Cd)p>+ D(He, Ho)+ Do, ¢>+(p, ¢)
=Cp, 10le>+C(lHpl*+(1+e)D(He, Hop)
+ Do, o>+u(p, 9)=(1+Ci+e+CleNHOIE .

ii) By the assumption, we have [|Ho,—Ho|< Cllon—oallo—0 and |He.l3
=HHe, |2 +<@n, 1000 S(Ci+0)le,l2—0, as m, n—oo. Hence, by Proposition 1.3,
lHexll—0, and hence [l.lls—0 by (5.3).

ProOPOSITION 5.2. B¢, ¢> can be extended to a bilinear form on K uniquely.
The extension, written by the same notation, satisfies the following, where A,=0,
k, E, b;>0 are constants.

G.4) |B:Cp, ¢ Shilells-llglle, 420, ¢, gkK.

(5.5) Bxe, o>zkllelE, Az, oK.

(5.6) Bxo, o>=lel3, zk, oK.

When 6 is strictly negative, or A and L are formally self-adjoint,
G.7) | BXo, ¢>—BKg, o> | <Hlipls-Iols, 220, o, ¢=K.
(5.8) BXo, ¢p=<(A—LH)p, ¢>, 120, ¢C¥aD), ¢<k.

DEEGDH 5() and v(, ) are defined as in §1. These quantities are determined only by
the values on dD.
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PrOOF. Let ¢ and ¢ be in C*0D). Since Hyp is in C*D), AHp=0 on D,
and hence,

B:(He, Hp)=((A—A)Hp, He)s—<{LHep, ¢)
=A(Ho, Hp)y— @, $p>+{(A—LH)p, ¢>
=2(Hep, Hp)+2:<p, 18d>—2p, >+ By, &> .
By Proposition 2.2, (5.1) and (5.3),
| BiCp, ¢>1 =1 By(He, HP)| -+ Holl - | Hol+ A+ A:0) @l llgis
< k2, Callglla: pllat(AC3+ 2+ 2 ¢l [ plla
< (o3, CrH 2C3 24 1)l lighlo
By, >z Bay(He, Ho)+ e, ¢>—A{(Hp, Hp)+<p, [0]¢)}
=2 kCllolE+A—ACE— D) 0ll5 -
Hence, (54)-(5.6) hold for 2,=2,(C3-+8)+1 and k=p,C2 By ii) of Proposition 2.2,
| Bp, p>—BLp, or|=1B;(Hp, Hp)—B;(Hp, Ho)l
<A@l 1Hgls=k- C-Callpllo- 1l -
It ii clear that B;{(¢, ¢> and the estimates (5.4)-(5.7) can be extended for ¢, ¢
in K. (5.8) is also obtained by continuity.

PROPOSITION 5.3. If {p.} in C®D) and ¢ in H satisfy limlells=0 and
1i»m<LH<pn~—¢), =0 for each =C¥0D), then ¢=0.

ProOF. Since {fg,lls—0, we have B, ©>—0 and {¢,, z>—0, and hence,

0=lim{LHp,—¢, >
=Hm{lp,—¢, ©0— B, oo=—Lg, v>, for z=C@©OD).
Since C¥@D) is dense in H, ¢=0.

DeFiNITION 5.1, If, for ¢ in K, there are a sequence {p,} in C*0D) and ¢
in H such that limflp,—oll;=0 and Uim{LHp,—¢, ©>=0 for ==C*0D), then we
define THp=¢. We write D(LH) for the domain of LH.

PROPOSITION 54. Let 224, 1) For ¢ in K and ¢ in H,

(5.9 B, ©={p, 7> for each t€K,
if and only if ¢ is in Y(LH) and



436 Tadashi Uexo

(5.10) A—TH)p=p.

i) For ¢ n ﬁ, there is a unigue solution of (5.9) and (5.10) with values in
K such that

(5.11) 1a—LH)plle=k"Iplla -
ProoF. 1) If llp,—¢il—0 for ¢,=C*adD) and Q/)EK, we have, by (5.8),
(5.12) {@, ©>—BX¢, T>=£i2{<@, =B, T}
=lm(LHp,—~(g—p), ), ek,

If ¢ and ¢ satisfy (5.9), there is {¢,} such that li¢,—¢lls—0 and (5.12) vanishes.
Hence, LH)=2p—¢ by definition of LH. Conversely, if ¢ and ¢ satisfy (5.10),
then there is {¢,} such that {l¢,—¢llb—0 and the right hand side of (5.12)
vanishes, and hence ¢ and ¢ satisfy (5.9).

ii) If ¢ and ¢ satisfy (5.9), we have [lgllb=<k 'llpls by taking t=¢ in (5.9):

OBk BLg, o=k o, pd=k ol Igls=E ol liglls -

Hence, the uniqueness of the solution of (5.9) or (5.10) is clear.

To prove the existence of the solution, we take ¢ in K, and define F(z)
=(p, 7y on K. Since F(z) is continuous by | F(2)| <[l Izls=lols- iz, there is
¢ in K such that F (r)=<a, to». Then, (5.4)-(5.5) and Milgram-Lax Theorem,
there is ¢ such that B¢, ©)=<{0g, o). Hence, ¢ is the unique solution of
(5.9)-(5.10). Since the mapping ¢—¢=GQ—LH) ¢ satisfies [|¢}<Eklols for
@ef%, it can be extended over H so that (5.9) and (5.11) hold.

DEFINITION 5.2. For ¢k, we define

lolr.e=Ba e, >,

PROPOSITION 5.5.

(5.13) Eolh=liol. . <klells, oK.

(5.14) iolo=lole, =K.

(5.15) lol3o=—LH, 9>, o=a(LH).

(5.16) |<LHo, >—<LHp, o>\ <klelb-Igla, ¢, g o(TH).
(5.17) G—2)lel+lol=BKo, ¢», oK.

ProOF. (5.13) and (5.14) are clear by (5.4)-(5.6). By the definition of LH
and (5.8),
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(.18) (G—TH)p, $>=Bxo, ¢, ¢=9(lH), ¢=k.
Thus, we have (5.15) by 1=2, and ¢=¢ in (5.18), and (5.16) by (6.7) and (5.8).

PROPOSITION 5.6. For 2=2, and ¢=0Q—LH) ‘¢,

(5.19) Q=PI+ 1¢12.=4, 0>, o=H,
(5.20) 12—+ Aoz —Alold =B b, o>—Ald, 0>, o=k,
(5.21) 12— |8 5+ A—2)Ap—@l3=<LHop, 2p—p>,  o=C¥aD).

ProoF. These are proved by using (5.9) repeatedly, taking ¢ for = to
obtain (5.19) and A$—¢ for z to obtain (5.20) and (5.21). To prove (5.21), we
also use (5.8).

e, ¢p=BLP, >=Q—2)|Pl3+ Br g, ¢r=0UQ—IPl3+ ¢l
For (5.20): [2¢—ol3=Ud—0, 2p—0>
=X, dp—p>—Lp, Ap—@r=¢, ip—¢>—B,{, ip—¢>
=2, Ap—0>—(A—2 )X, Ap—>— B, (P, ip—e¢>
=2 PU3—2:4P, > =PI+ Ba{¢, ¢
For (5.21): ||2p—¢l3s=B1,O¢—p, Ad—o)
=, —DAp—oll3+ B <Ap—¢, 2p—¢>
== DA — |3+ K¢, Ap—>— B e, ip—o>
=D Ap—ol3+ e, 2p—e>—XKe, ip—e>+<{LHo, 1d—¢) .

PROPOSITION 5.7. For A=4,,

(5.22) Q=2MC=LH) eleslolls, ¢=H.

(5.23) A—2DIQA—TH) ¢, AP holr.a, gaef?, for a constant k',
(5.24) im{22—LH) 'o—pls=0, e<h.

(5.25) Hm|23-TH) o—plr:=0, ¢=K.

Proor. We write ¢ for (A—LH)*g. (5.22) is clear by (5.19). We can
prove (5.23) similarly as (3.16), by adding (5.20) to (5.19) multiplied by £;:

(5.26) HM—@H%HM—LN@! o A= B1<b, o> =k kel 10 s,
(A= P13.52 kt o— BIPIE=Rs, k0l o [Pl

(5.24) also follows from (5.26) and (5.23) for QEK’:
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lg—olisk kelo dlze
SE B —Dleli—0,  as A—oo.
Since K is dense in # and by (5.22), (5.24) holds for g=H. By (5.21), we have
12g—elie=<lI LHpls- 12p—ella .
By (1.16) and (5.13),
12— ollo<(e DIH(Ap—¢), HAp—@))+C(e)| HAp—p)l|*)/?
= (el HAg—p)IP+C(e) | HAG— @) *)*
=/ 2 — @l .o+ (C(e)-Ca) 2l ap—oll5 -
Hence, by (5.24), lim{2¢—o¢ll .5 is finite, and
Tmlag—gls. =/ Tl g —pl..o+0.
But, since ¢>0 is arbitrary, lim{lA¢—ell., =0, completing the proof.
THEOREM 5.1. LH is the generator of a semigroup of linear operators

(T, t=0} on H, which is strongly continuous in t=0 and satisfies || ’T‘L@Ha
<elitlgl, for each pcH. The domain 9(LH) is a dense subset of the space K.

This is clear by the Proposition 54 and 5.7 and Hille-Yosida Theorem.

THEOREM 5.2. Let M be the product space (H) of K and H with norm
II(GDN’ (et s+ lgld?, and let

o(5)=(c, ) o (5)=o®=("5").

If 8(x) is strictly negative, or if A and L are formally self-adjoint, then & is
the genervator of a group of linear operators {ﬁc, —ooL <} on M, which is

U(i) (g){! for each (z)eﬁ and

a constant 3. Thus, for o 9(LH) and ¢k, ¢, of (i’):ﬁt<z) satisfies
D¢

strongly continuous in t, and satisfies <g&v

d2

— o~ d e
W%:LH@" —oolt<o, o= wm K, ——o,—¢ inH, as t—0.

dt

This is obtained by taking &, K, lols 1ol {T.} and TH for H, K, |,
lol, {T.} and ¥ in Lemma 4.1.

The operator LH on the boundary is essentially an integro-differential
operator as in
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ProrosiTION 582 For ¢ in C¥0D),

fﬁgg(x}:LHw(x):iézdw(x) 322505, (x)

+ 5 502 D)

1

+ fer—et0— "5 2 oamstr, dy),

where {@,{x)} is symmelric and non-negative definite, 7(x)<0 and (x, ) is a
measure on 0D such that, for each neighbourhood U, of x

S EON(x, dy)+(x, USMNaD)<oo .

SUme i1

§6. Comments on {I/ : and the boundary condition

The diffusion equation with the boundary condition (0.3)-(0.2)
%u(t, x)=Au(t, x), x€D; Lu(x)=0, x<oD

determines the diffusion process on D. The semigroup on the boundary with
generator LH, in the setup of [12], determines the Markov process on the
boundary. This process is the trace on 0D of the diffusion described by a
random time scale on dD—the local time on the boundary®. This interpretation
of the Markov process on 0D was suggested by the following analytical fact.

The resolvents {G;} of the diffusion semigroup {7} are, roughly speaking,
obtained by solving

6.1) (A—Aulx)=v(x), xeD,

(6.2) Lu(=0, xeiD,

for sufficiently many v on D, and defining
Giivou=G;v.

On the other hand, the resolvents {&;} of the semigroup {7} are obtained by

8) This was derived to construct the diffusion semigroup on C(E) when the boundary
condition (0.2) is given (“117, [121). For the proof, the reader can consult [117,
pp. 572-573.

9) This was conjectured and justified for a special case in {12] on the setup of C(3D).
The result was extended by K. Sato [107, P. Priouret 9] and others. There are
also more probabilistic approaches as in M. Motoo 77, K. Kunita [6] and others.
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solving
6.3) Au(x)=0, xeD,
(6.4) QA—L)u(x)=¢(x), x€0D,

for ¢ on 00, and defining

Gi: o—Tuln=G0,
where [uJsp is the restriction of u to the boundary 0D. In fact, we can write
u=Hlulsp=H¢ by (6.3) with ¢=[ulsp. Then, by (6.4),

(—LH)g=gp.

Hence, there is a kind of “duality” in appearance between this operation
(6.3)-(6.4) of obtaining {CN} .} and the operation (6.1)-(6.2) of obtaining {G,} of
the diffusion, suggesting the above interpretation of (T},

Since, the relation between {U/,} and {T} is exactly the same with that of
{U;} and {T,} as in §4-5, analogy with the case of diffusion leads to a con-
jecture that {UJ,} corresponds to the wave propagation on the boundary described
by some time scale on 0D*.

For the diffusion equation, each term of Lu(x) has a probabilistic meaning.
_Z i BEAE. corresponds to the diffusing effect along 0D, Z Bi to the drift

szas] by £
along 0D, 7-u to the absorption (or killing), p—=— E to the reflection at oD, and

the last term to the jumps from boundary points when the particle arrives at
0D. When d(x) is strictly negative, the particle spends time on 8D comparably
long as it stays in D, where the time spent on 8D is proportional to [d(x)[.
For the wave equation with boundary condition (0.2), it seems natural to
consider a model of the wave propagation (sound wave, for instance) through

a system of some medium in D and a vessel dD which has a mass distribution

o*u

Ié(x)ldx 1 Here, the wave propagates through 4D according to Za“ SEGE
T 7

+Z ‘31
agl a
Au of (0.1). The wave reflects at 0D according to py—— 5, , and it gives effect to

-L7-yu, just as it propagates through the medium in D according to

the points in D according to v(x, -) as soon as it arrives at dD.

10) For a strictly positive function ¢(x) on éD, the boundary conditions Lu(x)=0 and
o(x)Lu(x)=0 are the same. But LH and ¢-LH vield different groups of operators
on the boundary. This indirectly suggests that a suitable time scale should be
chosen for {ljz} derived by A and the given L in (0.2).

11) The interpretation of the term &(x) Au(x) is suggested by the definition of H; as
Feller {47 discussed for one-dimensional case, where ¢;sin (0.4) are the masses of the
end points of a vibrating string with mass distribution dm.
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But, a rigorous justification of these interpretations, as in the case of diffu-
sion processes, is still an open problem.

In this paper, we started with Wentzell’s boundary condition as given. But,
it seems interesting to know the most general boundary condition for the wave
equation in the sense of Wentzell (that is, as a necessary condition), or in some
other sense.
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