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Introduction

The notion of growth of leaves in foliations was first introduced by J.E.
Plante with respect to his study of transverse invariant measures. Since then,
it proved to be a useful tool for the qualitative study of non-compact leaves in
foliations of codimension one. Generally speaking, the degree of growth of a
leaf measures the complexity of the injective immersion of the leaf to the
ambient foliated manifold. Besides the usual definitions such as polynomial
growth, we say a leaf F has exact polynomial growth if F grows as fast as a
polynomial. The main purpose of this paper is to give conditions under which
a leaf has exact polynomial growth.

There is another concept which measures the complexity of a leaf. In
[Ni 37, Nishimori defined the notion of depth of a leaf and used it to the
study of asymptotic behaviour of ends of non-compact leaves. These two
notions are mutually related. In Theorem 1, we show that a proper leaf has
exact polynomial growth of degree equal to the depth if each leaf contained
in the limit set of the leaf has abelian holonomy.

To treat non-proper leaves, we introduce the concept of nice saturated
sets. This is a generalization of a component of an almost without holonomy
foliation. Leaves contained in a nice saturated set are shown to have exact
polynomial growth under the assumption of abelian holonomy (Theorem 2).
Again we give a topological interpretation to the degree of growth of leaves.

These results are applied to the case where the foliation is almost without
holonomy (Theorem 4) and to the case where the foliation is transversely
analytic (Theorem 5, 6). Polynomial growth leaves in these foliations are
shown to have exact polynomial growth.

The growth of a foliation is the set of degrees of growth of leaves in
this foliation. A foliation of codimension one has finite growth if it is trans-
versely analytic (Theorem 6) or if it is almost without holonomy (Theorem 4).
In Theorem 8 and 9, we give characterization of codimension one foliations
whose growth consist of one or two elements.

In §1 we state the main results of this paper. In §2 we introduce a
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notion which will be used in the proofs of Theorem 1 and 2—a uniform trans-
verse manifold for a leaf. It measures the growth of a leaf in terms of the
growth of the holonomy pseudogroup which acts on this manifold. In §3 we
study basic properties of depth of leaves. In particular we prove that a leaf
F has finite depth if and only if the limit set of F consists of finitely many
leaves. §4 is devoted to the proof of Theorem 1. For the proof we use a
method of Nishimori to decompose a foliated manifold into simpler ones. In
§5 we study the structure of a minimal nice saturated set. In §6 we prove
Theorem 2. We again use the Nishimori decomposition in a generalized form.
In §7 we study leaves with linear growth. In $8 we prove Theorem 4. In
§9 we prove Theorem 5 and 6 which treat transversely analytic foliations.
Finally in §10 we prove Theorem 7 and 8.

Unless otherwise specified, & will denote a transversely oriented C? folia-
tion of codimension one on a compact manifold M which is tangent to the
boundary. .

The author is grateful to his advisor I. Tamura for stimulus conversations.
during the preparation of this paper.

§1. Main results

We begin with some notations and definitions. Choose a Riemannian metric
of M and relativise it to a leaf F of &. The resulting distance function on F
is denoted by dp. For a point x of F, the metric ball of radius R centered at
x is defined by

D (R)={ysFlde{x, y)<R} .

The growth function f,(R) of F at x is defined to be the Riemannian volume
of D.(R).

DEFINITION 1. (A) The degree of growth of F, denoted gr(F), is a non-
negative integer or a symbol co or exp defined as follows.

1) If the growth function f,(R) is dominated by a polynomial, we say F
has polynomial growth. In this case g#(F) is the smallest integer degree of
polynomials which dominate f,(R).

2) If f.(R) dominates an exponential function, we say F has exponential
growth. In this case we define gr(F)=exp.

3) Finally gr(F)=oco, if F has neither polynomial nor exponential growth.

(B) If F has polynomial growth of degree 4 and the growth function
J=«(R) dominates a polynomial of degree d, we say F has exact polynomial
growth of degree d.

It is known that gr(F) does not depend on the choice of the base point x
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or the Riemannian metric of the compact manifold M ([P 37). Let M/< denote
the set of leaves of &F. We consider gr as a function from M/F to the
linearly ordered set {0, 1, 2, ---, oo, exp}.

DeriNITION 2. The growth of &, denoted by g#(F), is the image of the
function
gre M/g'_’{07 1: 27 e, O0, eXp} .

Let F be a leaf. L(F) denotes the [imif set of F. That is, L(F) is the set
of points y of M such that there exists a sequence {x,} of points of F which
is discrete with respect to the topology of F as a manifold, and which con-
verges to y with respect to the topology of M.

DEFINITION 3. Let F be a leaf of &. Let d(F)=sup{k| there exists a
sequence Fy, F,, ---, Fp of leaves such that F,CL(Fi.,), Fy#F;, for 1<k and
F,=F}. Secondly let pd(F)=sup{k| there exists a sequence F,, F,, ---, F}, of
leaves such that F,CL(F;yy), Fi#F,, F; is proper for i<k and F,=F}. We
call d{(F) and pd(F) the depth and proper depth of F respectively.

In [T], we have proved that gr(F)=pd(F) for any leaf F.

THEOREM 1. Let F be a leaf with the following properiies.

1) d(F) is finite.

(2) Let F’ be a leaf contained in L(F). Then the holonomy group of F’ on
the side approached by F is abelian.

Then F has exact polynomial growth of degree d(F).

Next we give a condition for a non-proper leaf to have exact polynomial
growth.

DEFINITION 4. A safurated set is a set which is a union of leaves. Let U
be a saturated open connected subset of M. We say U is nice if the saturated
closed set UU—U consists of a finite number of proper leaves and all leaves in
U7 have trivial holonomy groups. A saturated open set U is munimal if U con-
tains no non-empty saturated relatively closed proper subset.

In §5 we study the structure of a minimal nice saturated set U. In par-
ticular, we define the Novikov transformation. It is a homomorphism from the
fundamental group of U to the group of diffeomorphisms of a transverse circle.
Its image is abelian.

THEOREM 2. Let U be a minimal nice saturvated set and F a leaf contained
in U. Let G be the image of the Novikov transformation of Fy. Assume the
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following condition. If F’ is a leaf contained in U, then the holonomy group of
F’ on the side approached by U is abelian. Then G is finitely generated and F
has exact polynomial growth of degree pd(F)+rank(G).

COROLLARY 1. Let F be a leaf. Assume the following condition. If F' is a
leaf contained in the limit set of F, then the holonomy group of F’ on the side
approached by F is abelian. Then F has polynomial growth if and only if d(F)
is finite or the set U=F—\J{F'|F’ is a proper leaf contained in L(F)} is a
minimal nice saturated set.

We can characterize leaves with linear growth. In this case we do not
need the assumption of abelian holonomy.

THEOREM 3. Let F be a leaf. Then gr(F)=1 if and only if one of the fol-
lowing two cases occurs.

(1) The limit set of F consists of a finite number of compact leaves.

(2)  All leaves in M are everywhere dense and have trivial holonomy groups.
And the rank of the image of the Novikov transformalion is one.

Recall that a foliation is almost without holonomy if the holonomy groups
of non-compact leaves are trivial ([He 17, [T 27).

THEOREM 4.V  Assume F is almost without holonomy. Then each leaf of &
has exact polynomial growth and the set gr(F) is a finite set.

If the foliation is transversely analytic, we can apply Theorem 1 and 2
satisfactorily.

THEOREM 5. Let F be a leaf of a transversely analytic foliation of codimen-
ston one on a compact manifold. Then F has polynomial growth if and only if
either d(F) is finite or the set E—\J{F'|F’ is a proper leaf contained in L(F)}
is a minimal nice saturated set.

COROLLARY 2. If F is a leaf with polynomial growih in a transversely
analytic codimension one foliation on a compact manifold, then F has exact poly-
nomial growth of degree=pd(F). The equality holds if and only if F is proper.

THEOREM 6. Let F be a transversely analytic codimension one foliation on a
compact manifold M. Then the set gr(ZF) is a finite set.

In the proof of Theorem 4 we see that the growth of a foliation without

1) This theorem was obtained independently by G. Hector (“He 37).
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holonomy consists of a single element. Using the results of Plante, we can
characterize such foliations.

THEOREM 7. Let F be a transversely orientable codimension one foliation of
class C? on a closed manifold. Then

(1) gr(@)=1{d}, 0=d<oo, if and only if &F is without holonomy.

(2) There are no foliations F with gr(F)= {oo}.

(3) gr(F)={exp}, if and only if all leaves of F are non-compact and there
exists a leaf of F with non-trivial holonomy.

THEOREM 8. Assume gr(F)={d,, ds}, 0=d,=d,<co. Then F is almost with-
out holonomy.

§2. Uniform transversals

First we recall the definition of the holonomy pseudogroup of a foliation &F.
Let X be the disjoint union of all one-dimensional submanifolds of A which
are transverse to . Let ¢ be a curve in M from a point x of X to a point
y of X which is contained in a single leaf. The basic property of a foliation
is that some neighbourhood U of x in X is translated along ¢ to a neighbour-
hood V of y in X. The resulting local diffeomorphism of X is denoted by 7..
The collection I’y of all these local diffeomorphisms forms a pseudogroup and
is called the holonomy pseudogroup of F. 1f Y is a subset of X, I denotes the
restriction of I'y to Y. We call [y the holonomy pseudogroup of F restricted
to Y.

Let F be a leaf and R a one-dimensional submanifold through F which is
transverse to &. Let I’ be a finitely generated subpseudogroup of Iz~r and
S={r, -, 7} a finite generating set of [. For an element 7y of I, i)
denotes the length of 7 with respect to S. As before, dr denotes the distance
function on F induced from a Riemannian metric of M.

DEFINITION 2.1. Let F, R and I' be as above.
(1) We say the pair (R, I') is dispersed for F if
a) K=sup{dqx, 75" (x)|7:.€S, x€RNF} is finite and
b) d=inf{dx{x, x)|x, x’=€RNF, x+x'} is positive.
(2) We say (R, I") or R is finitely dense for F if I'=Igp,
a) p=sup{ds{x, R—{x})|x=F} is finite and
b) let a,=inf{ds(x, 7(x))|x€ERNF, rel’, [(7)>n and there is no y’'el’
such that I(7)<n and 7 (x)=y(x)}, then the sequence {a,} is unbounded.
(3) If (R, I") is both dispersed and finitely dense for F, we say R is uni-
Jorm for F, or F admits a uniform transversal K.
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Example. lLet F be a codimension one foliation of a total space of a
circle bundle over a compact manifold which is transverse to fibres. Then
each fibre is uniform for every leaf.

Choose a base point x, of F\R. We define the growth function of I’ at x,.

DerINITION 2.2. The growth function g, : Z*—Z* of I at x, is defined
as follows. g, (n) is the number of distinct points of FN\R which are mapped
from x, by elements of I with length<un.

The main theorem of this section is the following. £, (R) denotes the
growth function at x, of F defined by the volume of the metric ball.

THEOREM 2.3. Let F, R and I' be as in (2.1).

() If (R, I') is dispersed for F, then the growth function f,, of F domi-
nates the growth function g, of I'.

(@) If R is fnitely dense for F, then g., dominates fs,.

(8) If R is uniform for F, then f,, and g., have the same growth type.

Proor. Let A,={r(xo); r<l’, {r)=<n}. Assume (R, I') is dispersed for F.
Then by the definition of K and 4, it is easy to see that

Dy Kn+0)D U D2(5/2)

and if x, x’ are distinct points of RNF, then D (6/2N\D..(6/2)=3. If o=
inf{volume D,(0/2)| x=FNR}, then we have

SeEnt0)z06g.(n).

Thus we have proved the first assertion.

Assume R is finitely dense for F. Then, by the unboudedness of {a.},
there is an integer N such that, if x, x’€FNR, d«{x, x’)=<3p, then there exists
vl for which x’=y(x) and {(;)<N hold. We show

Daynp)S \J Du(30).
IEANn

In fact, if x is a point of F with dg(x, x,)<np, then from the definition of p
there exists a sequence x,, x;, -+, x, of points of FAR such that dg{x;, x4
=3p for i=0,1, -, n—1 and dglx,, x)=2p. For each i=n—1, there exists
7.1 such that 7:(x;)=x;, and (7)=N. It follows that x,=7,_so--o71°7s(X0o)
€Ay, and x€ \J D (3p).

yEAz\ n

Let z=sup{volume D,(3p)| x=FNR}, then

fznp)Erga Nn).
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Thus we have proved the second assertion. This completes the proof.

§ 3. Depth of leaves

In this section we study some basic properties of depth of leaves. Let F,
and F, be leaves of 4. By F,<F, we mean F,CL(F,) and F,#F,. The proof
of the following proposition is due to K. Yano.

PropPoOSITION 3.1. If F is a non-proper leaf, then d(F)=oo.

Proor. Let T be a closed line segment transverse to & which intersects
with F. Since F is non-proper, TNF is a perfect set. Let {U;} be a countable
basis of open sets of TN\E. Let I’ denote the holonomy pseudogroup of &F

restricted to TMNE. We consider the set X:(u\ Urr(Uj). It is easy to see
Jj=1 re

that for each x= X, the leaf through x contains F in its closure. By the Baire
category theorem X is residual in TF. So X contains uncountably many
points. On the other hand it is easily seen that for any leaf G, GNT is a
countable set. So X—F is non-empty. Choose a point x,€X—F. Let F, be
the leaf through x,. Then we have F>F,. Choose a point x,eX—F—F, and
let F, be the leaf through x,. Then we have F>F,>F, In this way we can
choose an infinite sequence F>F,>F,>---. Thus we have d(F)=co,

Secondly we analyze the structure of the limit set of a leaf with finite
depth. By (3.1), the closure of such a leaf contains no non-proper leaves.

LEMMA 3.2. If F 1s a leaf with finite depth and G is a leaf contained in
L(F), then the holonomy group of G on the side approached by F contains a
contracting element.

PROOF. Fix a transverse arc through G and a parametrization T=[—1, +1]
such that TNG={0} and F 0, 1) accumulates on 0. Let I" be the holonomy
pseudogroup on 7T defined by the holonomy along G. By a theorem of
Sacksteder-Schwartz ([S-SJ, Theorem 1, [C-C]1, Lemma 1) there is ¢ >0 such that
for each f,=(0, )T, there exists an element y€/[ such that y(¢)<ft, for
0<t<e.

Suppose I' does not contain a contracting element. Then there is ¢,<
0, eYN\F and 7,1’ such that y,(¢)<t,. By assumption, 1n1ﬁr2 7H(t)=1,>0. Choose

7.=1 such that 7,(t,)<t,, and set lim r2(¢,)=1,. In this way we can choose
n—oo
infinite sequences {y;} CI and {t;} C(0, ¢) such that 7,(¢,)<tf; and lim 77(¢;)=1;21.

This is a contradiction since F was assumed to have finite depth.
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Let F be a leaf of 9. Assume that for each GC L(F), the holonomy group
of G on the side approached by F contains a contracting element.

LeMMA 3.3. For each k, let C,={GCL(F)|d(G)<k}. Then, under the above
assumption, each C, consists of a finite number of proper leaves.

Proor. C, coincides with the set of compact leaves contained in L(F).
And it is well-known that the number of compact leaves contained in the
limit set of a leaf is finite. Suppose C; consists of finitely many leaves for
7=0, 1, ---, k—1 and C, contains infinitely many leaves {G;}. Without loss of
generality we can assume that each G, accumulates to a fixed leaf G,=C,_,
from one side. Choose a transverse arc T through G,, T=[—1, +17, GNT
=1{0}, GiN(0, 1) accumulates to 0 for each 1, TNC,;=@ for j<k—1 and TNCp-y
=TMNG, Using the contracting holonomy of G,, we can find a compact subarc
JC(©, 1) such that G;N\J=x; for each ¢1>0. Let x be a cluster point of {x;}
and let G be the leaf through x. Since G is contained in L(F), the holonomy
group of G contains a contracting element. So G is contained in the limit set
of some G;. From the choice of T, d(G)=Fk and it follows that d(G,)=k+1.
This cotradiction completes the proof.

THEOREM 3.4. Let F be a leaf. Then d{F) is finite if and only if the Limit
set of F consists of a finite number of leaves.

ProoFr. This follows easily from (3.2) and (3.3).
COROLLARY 3.5. If d(F) is finite, then d(F)=pd(F).

In a later section, we shall have an occasion to make use of the following

lemma.

LEMMA 3.6. Suppose there exists an infinite sequence F,, Fy, -+ of proper
leaves such that Fo<F\<F,<---. Then there exists a non-proper leaf.

Proor. Choose a transverse arc 7T through F, T=[-1, 1], TNF,={0}.
For simplicity we assume that F;,;MN(0, 1) accumulates on F;N(0, 1) from the
positive side for ;=0, 1, 2, -.-. Let ¢,=0. By the theorem of Sacksteder-
Schwartz (see (3.2)), we can choose 7,17, by F,N(0, 1) such that 7,(a.)=a, and
7olbo)<bs. Let a;=74b,) and choose 7,17, b,=F,MN(0, 1) such that b, >b,>a,,
7ila)=a, and 7(b,)<b,. In this way we can choose sequences {7;} C/r, {a:}
and {b;} such that a,<a;<a,<--<b,<b,<by 7i{a:)=ai, 7{b)=a;s, and a;, b;
=F;. Let a.=lim a;. Then for each i, we have a;<7{d.)<dair.. This shows
that the leaf through a. is non-proper. The lemma is proved.
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§4. Proper leaves with exact polynomial growth

In this section we prove Theorem 1. For the proof we use Nishimori’s
method to decompose a subset of a foliated manifold into simply foliated
ones. We need some preliminaries. Let A be a compact manifold with or
without boundary, and let B be a codimension one submanifold of A such
that A—B is connected. C(A, B) denotes the compact manifold obtained from
A—B by attaching two copies B, and B, of B. Let f: [0, &)—[0, 9), 0<d<e
be a contracting diffeomorphism. X(A, B, /) denotes the manifold obtained
from C(A4, B)X[0, ¢) by identifying (x, ) B;x[0, ¢) with (x, f(1))€ B.x[0, 9).
And F(A4, B, f) denotes the codimension one foliation of X(A, B, /) induced
from the product foliation of C(4, B)X[0, ¢).

We consider a certain special type of foliated manifolds with corner. Let
X Dbe a compact manifold such that the boundary 0X is divided into two parts
Y, and Y, by the corner, that is aX=Y,UY, and 0Y,=0Y,=Y,NY,. Let & be
a transversely oriented codimension one C? foliation of X such that & is
tangent to Y, transverse to Y, and the induced foliation |y, is without
holonomy. Such a foliation will be called admissible.

The following theorem is proved in [Ni 2] when Y, is empty. But the
proof easily generalizes to our case. So we omit the proof (see also [Ni 3]
and [Ni 471).

TuEOREM 4.1 (Nishimori). Let (X, &) be as above and let K be a connected
component of Y. Suppose K is contained in the limit set of a proper leaf of F
and the holonomy group of K is abelian. Then theve exist codimension one sub-
manifold N of Int(K), a contracting diffeomorphism f:[0, &)—[0, ), 0<d<e and
an embedding h: XK, N, f)—X such that h(x, 0)=x for x€K and h*F=
F(K, N, f).

Now we are in a position to explain Nishimori’s method. Let F be a leaf
such that d=d(F) is finite and the holonomy groups of leaves in L(F) on the
side approached by F are abelian. As we have seen in §3, L(F) consists of a
finite number of proper leaves. Let 2! be the connected component of

M—\U{K|K is a compact leaf of F}

containing F. Since the closure of ' contains a finite number of compact
leaves, we can consider the compact manifold 0% obtained from £' by attach-
ing the boundary. 2% is naturally immersed in M. Then F can be considered
as a leaf of the foliation & |g: of 0" induced from & by the immersion. Let
K., j=1, -, v;, be the compact leaves of F|pm contained in F. By (4.1), we
have codimension one submanifolds N} of KJ, contracting diffeomorphisms
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Figure 1

J3:00, e)—[0, 8%) and imbeddings A}: X(K3, NI, f;-)—n@l such that A}C(K}:, NI
XA{0})=K} and A¥*F=F(K}, NI, /1), for j=1, ---, v..
Let

- Y1 Y1
Gi=0'—\J hi(nt XUG, N3, f)—J K).

Then £ is a compact manifold with corner equipped with an admissible folia-
tion Flor. If K is a compact leaf of F|g; contained in F/N\R2}, then it has the
form GNQ where G is a leaf of & contained in F and d(G)=1. Let £? be
the connected component of

2 —\J{K|K is a compact leaf of Floy}

containing FNQ). As before the closure of £2% contains a finite number of
compact leaves of F| 2 and we can consider the compact manifold §* obtained
from £2* by attaching the boundary and the admissible foliation F|g. Let K%
j=1, -+, vy, be the compact leaves of F|p. contained in FNL) By (4.1), we
obtain NICK?Z fi: [0, e2)—[0, 62 and hZ: X(K% N3, f3— 07 such that
R{C(KE NOHX {0})=K2, h¥*g=F%F(K% N [

and

vy

hEOK3X[0, N hi(NE XL, b)) .

=1

Let
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- vo vz
Qg:m—g hidnt X(UKG, N3, f9)— \J K5

Then £3 is a compact manifold with corner.

We can repeat this process and obtain a sequence 2}, 3, ---, £¢ of sub-
manifolds of M. Note that K is a compact leaf of EFi_Qg if and only if there
is a leaf F’ of depth i of & which is contained in F and F/NQ{=K. Since
d(F)=d, FN2{ is a compact leaf of F|oz and our process finishes at the d-th
step. For notational conveniency, we formulate all of this in the following
proposition.

PropoSITION 4.2 (Nishinori decomposition theorem). Let F be a leaf of &
such that d=d(F) is finite. Suppose that the holonomy groups of leaves of
F'CL(F) on the side approached by F 1is abelian. Then there exist sequences
(88, 24, Q% -, 29, (2, 22 -, 2% and (.@, 02 e, O d) of manifolds with the
following properties.

(1) Q=M. Qi is a compact submanifold of M with corner and Flgi-t is
admissible for i=2.

(2) ¢ is the connected component containing FNE§H of

Q5 —\U{K|K is a compact leaf of F|gi-1}.

(3) 2% is the compact manifold obtained from Q' by altaching the boundary.
Although 3% is not a submanifold of M, it naturally immerses o M and we can
consider the induced foliation which is simply denoted by F|gi.

(4y The compact leaves of F|p: contained in the limit set of FN\2% are finite
in number. Let K3 j=1,2, -, v, be such leaves. For each j, there are a
submanifold NiCK: a contracting diffeomorphism fi: [0, ey—[0, 85) and an
embedding h}: X(K%, NE, H—a such that RYC(K3, NHX {0})=K}: hixg=

F(K:, NI, f4) and h HOKEx[0, en)C U hy 1(NZ U057, e ).
B Qi=02'— U hi{Int X(K3, N3, f]))— U K
6) FNQ¢ is campacz‘.

Now we are ready to prove Theorem 1. Let F be a leaf which satisfies
the assumptions of Theorem 1. We decompose a neighbourhood of the limit set
of Fasin (4.2). For simplicity, we assume each N is connected. For each com-
pact leaf K¢ of &|gs, choose a base point xie NI, and choose a base point
xesInt(FN09). Let Ri=hi(x;x(0, ¢5)) and let K, be a small transverse arc
through x,, Ry"\F={x). Let R=\URNJR, We shall prove R is uniform for
F. For this purpose we study the holonomy pseudogroup of I restricted to
RNF, which is denoted by I.

I’ contains the following three types of elements. First there are 7%:
RiNF—- RINF, i<d, j=1, 2, -+, v;, which is the conjugate of f} by &}
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Secondly, let K¢ be a compact leaf of F|g: and Ki' a compact leaf of
Flgi-1. By (4.2), RYOKix(0, ¢9))NRL' consists of a finite number of open
intervals R%%1, [=1,2, ---, a3%™". One of the end points of R%%/ lies on 0K
Choose a curve ¢ in K} from this endpoint to x} such that ¢N\Ni={x3}. It is
easy to see that 9}h;<cx<o,s§>) is the trivial foliation. So we can define an

element of the holonomy pseudogroup
T3l Ry REGT.
Note that r4%} is independent of the choice of the curve ¢ such that ¢N\Ni
={x}.
There remains one more type of elements of I. For each (i, j),
Vit

1
Ff\(R;?—jglR;iﬁ‘;!;) consists of a finite number of points x¢ ,, £=1, 2, ---, bi. We

define 7ot , to be the unique map from x, to x% ;.
LemMA 43. I' is generated by S={r%, ré4i, rz;z,k}.

The proof is straight-forward from the detailed description of the structure
of the limit set of F in (4.2), so we omit it.

LemMA 4.4, R is uniform for F.

PrROOF. It is easy to see that (R, I') is dispersed for F. We show that R
is finitely dense for F. The number p is bounded, approximately, by

max {diameter of FN2§, diameter of (K{—ND|i<d, j=1, -, v;}.

Let m be the cardinality of the set {y%%1, T2t o+ If 7 is an element of I" with
(r)=n>m, then it is easy to see that y contains at least (n—m)-letters in the
7¥s. Let

e=inf{ds(Ri(x, ), hi(x, F{INI R} x, DEF, i=d, j=1, -, v} .

Then dz(x, 7(x))>(n—m)e, s0 a,>(n—m)e and the sequence {a,} is unbounded.
This completes the proof.

By (2.3), F has the same growth type as the growth function g, (n) of I’
at x,. First we prove that the growth function g, (n) dominates a polynomial
of degree d. To see this, choose a sequence F,, F,, ---, F; of leaves such that
F.CL(Fi.y), Fi=F;y, and Fg=F. For each i, a connected component of F,N\Q¢
is a compact leaf K;’-i of Flg:;, and there exists TG e R}, — R, for
some a. Fix one of them. Let g (n) be the growth function of the sub-
pseudogroup of I' generated by 7471 ., 7%, and 722, at xo. It is easy to see
that for n>d, we have
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m

Figure 2

8o —Zaf(m)Z(n—d)*".

So gi(n), hence g,,(n), dominates a polynomial of degree d.

Secondly we show that g, (n) is dominated by a polynomial of degree d.
To see this, let Iy, be the subpseudogroup of I generated by 7%, i=a, 75,
1=za and Vol g Thus we get a sequence

Lycric.--cl;=I.
Let g%,(n) be the growth function of I} at x,, that is,
gh(n)=2A% where At={r(xy); rels, I(N=n}.

We prove inductively that g% (n) is bounded by a polynomial of degree a. It
is clear that g%, is bounded. Assume that g7 (n) is bounded by a polynomial
of degree a. If r(x,) =A% — A2, then it is easy to see that 7 has the form
7=71°7. Where 7,1, (7)=m and 7, is a word in {y¥ 7, ri:%+9 % of length
<n—m. Let

C=max {the number of elements of I which is a word in

ydmet, yanabame of length nln=1, 2, ---}.
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Then it follows that
i) =C{gs (D+ g3(2)+---+ g8 (n)} .

So g%;'(n) is bounded by a polynomial of degree a--1. By induction, g, (n) is
bounded by a polynomial of degree d.

Thus g, hence f,, has the same growth type as a polynomial of degree
d. This completes the proof of Theorem 1.

§5. Nice saturated sets

If all leaves of & contained in the interior of M have trivial holonomy
groups, then the interior of M is a nice saturated set. And there are many
results related to the structure of such foliations ([Nol, [S], [He 17, [I 1, 2.
In this section we show that some of these results can be generalized to nice
saturated sets.

Let U be a nice saturated set, X a non-singular C? vector field transverse
to ¢ and ¢, its flow. Let f: M—R be a bump function such that f(x)>0 if
x€lU and f(x)=0if xeM—-U. Let ¢: UXR—U be the flow generated by the
vector field /- Xiy. A curve ¢: [0, 1]—-U is a leaf curve when its image is
contained in a single leaf. If ¢ is a leaf curve, &, denotes the foliation of
[0, 13X R induced from F|y by the composed map

ro, 1IxR S UxR <> U,

The leaves of &, are transverse to the lines {{} XR, for 0=¢=<1.

LEMMA 5.1, Let ¢: [0, 1]—=U be a leaf curve. Then for any t<=R, the leaf
of F. through (0, t) intersects with {1} XR. In other words, all leaves of F. are
compact.

PrROOF. Let t,=sup{f|t>0, the leaf of &F. through (0, s) intersects with
{1} X R for 0=s<t¢} and —i;=inf{t|t<0, the leaf of &, through (s, 0) intersects
with {1} xR for t<s=0}. If ¢, is finite, then by a theorem of Imanishi ({1 1],
Theorem 3.1), the leaf of & through ¢(c(0), t,) is a holonomy limit leaf, that is,
it is the limit of leaves which have non-trivial holonomy groups. Since U is
nice, this is absurd. So #, is infinite. Similarly ¢} is infinite. This completes
the proof.

LEMMA 52, Let ¢: [0, 1]—-U be a curve in U from ¢c(0)=x to c(1)=v. Then
there 1s a veal number t, such that c 1is homotopic relative {x, 3} to a curve
which is a join of ¢l {x} X[0, t.] (or (@l {x} X[, 00)7") with a leaf curve from
olx, to) to y. Moreover the number t. is uniquely determined by the homotopy
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class of ¢ relative {x, y}.

Proor. Using the distinguished charts of U, we can homotope ¢ to a
curve in the form a,2b,#--ga,fb, where each a; is contained in ¢(a(0), R) and
b; is a leaf curve from a;(1) to @;4,(0). Consider the foliation &,. From (54)
it is easy to see that a,£b.#a.£b, is homotopic to a curve in the form a§ai#bi%b,
where a,#a} is contained in ¢(a,(0), R) and bigb, is a leaf curve. By induction,
¢ is homotopic to a join of a transverse curve with a leaf curve.

Suppose there are ;> .20 such that (¢| {x} X[0, t.1c; and (p] {x} X[0, tcDic,
are homotopic where ¢, and ¢, are leaf curves. Then the null-homotopic curve
(o] {x} X[t,, ti)ckc? can be deformed to a loop which is everywhere trans-
verse to &. This implies there exists a leaf which has non-trivial holonomy
(ENo]). This contradiction completes the proof.

Now assume UJ is a minimal nice saturated set. Then there is a simple
closed curve C in U transverse to 4. And we can assume that the flows ¢,
and ¢ have C as a closed orbit of period one. By a theorem of Sacksteder-
Schwartz ([S-S], Theorem 4), C intersects with every leaf of F|,;. Choose a
base point x,&C.

Let PerDiff(R) denote the group of periodic C? diffeomorphisms of R of
period one and let Diff(C) denote the group of C? diffeomorphisms of C. There
is a natural map ps: PerDiff(R)— Diff(C) which is induced from the projection
p: R—C, p(t)y=¢(x,, t). We define two maps

G: 7y(U, x,)—PerDiff(R)
and q: 7(U, x,)— Diff(C)

as follows. Let « be an element of = (U, x,), c¢: (S, 0)—(U, x,) a representa-
tive of o and # a positive real number. By (5.2) there exists uniquely a real
number g(a)(#) such that the closed curve (o] {x,} X[0, t1) " Hci#e! {x} X0, t1)
is homotopic relative {¢(x,, )} to a curve in the form (¢} {xq} X[¢, da)()Dic,
where ¢, is a leaf curve. Similarly we define §(a)() when 1=0. It is easy to
see that §(a) belongs to PerDiff(R). We define ¢{a): C—C by gla)=p«dla).
The map ¢ is called the Novikov transformation of F|y, with respect to a
transverse circle C ([No), [1 17). The proof of the following lemma is easy
and we omit it.

LEMMA 5.3. (1) § and q are group homomorphisms.

(2) Let G and G be the mage of § and q vespectively. Then the kernel of the
homomorphism P : G—G is the nfinite cyclic group generated by G(LCT).

3 G and G are free, i.e., no element of G or G other than identity has
Jixed points.
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(4) G coincides with the holonomy pseudogroup of F westricted to C.

According to a theorem of Imanishi ([T 1], Theorem 2.1), a finitely gener-
ated free subgroup of PerDiff(R) is topologically conjugate to translations. So
we get the following corollary.

COROLLARY 5.4. G and G are abelian. If G is finitely generated, then there
are a homeomorphism h: S'—C and a [Lift fi: R—R of h such that hGh™' is
contained in the group of rotations and RGER-' is contained in the group of
transiations.

PROPOSITION 5.5. Assume G is finitely generated. Then there is a reparvame-
trization map a: UXR—R of the flow ¢ such that the reparametrized flow ¢:
UXR—U, ¢(x, t)=¢(x, a(x, t)) maps each leaf of Fly diffeomorphically to a
leaf of Fly.

Proor. We use the homeomorphism F: R—R of (5.4). Let (x, 1) be a
point of UXR, t>0. We define a(x, t) as follows. Choose a leaf curve ¢
from x to a point y of C. By (5.2), the curve (] {x} X[0, {])""#c can be homo-
toped relative the endpoints to a curve of the form ¢,#(p|{y} X[0, #]) where
t’ is a real number and ¢, is a leaf curve from ¢(x, t) to ¢(y, t'). We define
alx, t) by alx, z‘)zlength(ﬁ([(), #7). Similarly we can define a(x, t) when ¢t is
negative. Since AGR™' is a subgroup of the group of rotatioms, a(x, #) does
not depend on the choice of the leaf curve ¢. It is easy to see that a is a
continuous reparametrization map and the reparametrized flow ¢ is foliation
preserving. This completes the proof.

Let F be a leaf contained in U—U. We define the proper height of F,
denoted ph(F), as follows:
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ph(F)=max{k|there is a sequence F,, Fy, ---, F;, of leaves
in U—U such that F,<F,<--<F, and F,=F} .

Let K be a leaf in U—U with ph(K)=0. We study the relations between the
holonomy group of K on the side bordered by U and the group G. Choose a
base point y, of K and a real number ¢ such that ¢,(¥,, (0, 7)) is contained in
U and ¢o(¥,, 7) lies on the leaf through x,. Let T=¢y(y, (0, 7)) and let I7
denote the holonomy pseudogroup of & restricted to 7. We define a homo-
morphism @y : G—TIy as follows. Choose a leaf curve ¢ from x, to @Yo, 7).
Let « be an element of 7.{U, x,) and c; a loop representing a. Then @ (j(a))
is the element of Iy associated with the curve c#c,#c™t If G is finitely gener-
ated, we can express @r(G(«)) in terms of the linearlization map f: R—R and
the reparametrized flow ¢. If hg(a)h* is the translation of R by a number
t., then it is easy to see that ¢r(G(e)) is given by

D(G(a))l@o(yo, ), D)= (@o(¥0, T), tHta).
PROPOSITION 5.6. I is generated by O(G). In particular, I'y is abelian.
The proof is left to the reader.

COROLLARY 5.7. The holonomy group of K on the side bordered by U is
abelian.

Till now we fixed a transverse circle C in considering the Novikov trans-
formation. We study what happens when we use another transversal. Let C’
be a transverse circle, G(C’) denotes the image of the Novikov transformation
with respect to C.

LEMMA 58. If G=G(C) is finitely generated, then for any transverse circle
C’, G(C) is finitely gemerated and rank{(G(C"))=rank(G). And there exists a
transverse circle C, such that G(C,) is torsion free.

The proof is not difficult.

§6. Non proper leaves with exact polynomial growth

The purpose of the present section is to prove Theorem 2. Assume U is
a nice saturated set and the holonomy groups of leaves in J—U on the side
approached by U are abelian. Let d be the proper depth of a leaf contained
in I/, We remark that all leaves in U have the same proper depth. As in
(4.2), we can decompose a neighbourhood of non-isolated ends of U.



490 Nobuo TsucHiva

PROPOSITION 6.1. Under the above hypotheses, there exist sequences (825, §25, §23,
e, 09, (028, 08 -, 09 and (21, 2%, -, 3% of immersed submanifolds of M
with the following properties.

(1) Q=M. 2t is a compact immersed submanifold of M with corner and
the induced foliation F|gi- is admissible for =2,

(2) ¢ is the connected component containing UNLE of

2 NJ{K|K is a compact leaf of Floi} -

(3) 0% is the compact manifold obtained from £* by attaching the boundary.
Q% naturally immerses to M and we can consider the induced foliation F|g:.

(4) Let K3, j=1, 2, ---, v; be the compact leaves of Flging-v» with positive
proper height. For each j, theve are a submanifold N} of KY, a contracting

diffeomorphism fi: [0, ¢5)—[0, 83) and an embedding h}: X(K: N, f§)—>.Q-i such
. . , X ) Yi-1 )
that hYC(K: NHOX{0)=K¢, hi*F=g(K}, Ni 5, hYoKix[0, ¢H))C k\=]1 RSN

X (G5, e57Y)) and there exists % with 05<ni<el, for which hi(C(K%, N X(nk, enNU
= holds.

6) Q=2'—\J hilnt X(K3, N, 79)— U K.

The proof is much the same as that of (4.2).

COROLLARY 6.2. Let U be a minimal nice saturated sel. Assume that the
holonomy groups of leaves in U—U on the sides approached by U are abelian.
Then the image of the Novikov transformation of Fly is finitely generated.

Proor. We use the decomposition given in (6.1). Choose a transverse
circle C and a base point x,=C. We may assume C is contained in Int(£29.
Let ¢: =,(U, x,)—Diff(C) denote the Novikov transformation and let 7: Int(£29)
—UJ denote the inclusion map. We show ¢(z, (U, xo))=q(sm.(Int 2%, x,)). To
see this, it is sufficient to prove the following assertion. Let a: [0, 1]— U be
a leaf curve from a point a(0) of C to a point a(l) of C, then there exists a
leaf curve a’: [0, 17—~Int(2% such that a(0)=«¢’(0) and a(l)=da’(1). But this
assertion is easily proved using our decomposition, since each F(K}, N?, f%) is
induced from the trivial foliation. Since £2¢ is compact, the image of g is
finitely generated. This completes the proof.

PrOOF OF THEOREM. 2. Let U be as in Theorem 2 and let F be a leaf of
F|y. Choose a transverse circle C, a base point x,FNC and a transverse
flow ¢, on M which has C as a closed orbit of period one. Let G be the
image of the Novikov transformation with respect to C. By (6.2) and (5.8), we
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may assume G is free abelian of rank ». We decompose a neighbourhood of
non-isolated ends of U as in (6.1). We assume C is contained in Int(2%. For
simplicity, we assume each N? is connected.

We define a uniform transversal for F. For each compact leaf K% i=I,
-+, d—1, j=1, ---, v, choose a base point x{cInt(N?) and set Ri=hi({x} X(0, &5).
Let K%, j=1, -+, vq (resp. Kj, j=ve+1, -, pa) be the compact leaves of F|g2
with empty (resp. non-empty) boundary. We remark that each K%, j=1, -, v,
(resp. j=vq+1, -, pa) corresponds to a compact (resp. non-compact) leaf of
Fly-y whose proper height is zero. For each K¢, j=I, -+, v4, choose a base
point x$e K¢ and a real number 74 such that @o(x%, tHEF and Ri=g¢q(x%, (0, 19)
CU. For each K%, j=yg+1, -, pq, let N, k=1, -, ¢} be the connected
components of 0K9. For each NY , choose a base point x4 ,=N%, and a real
number 1%, such that @(x%,, 14 ,)€F and RY i=¢(x% 4, (0, t4)CU. Let

R= U RW U R U RS UC.
v B

i<d GVl et

J=1 vy =10, c%
k=l

We shall prove R is uniform for F. Let I’ be the holonomy pseudogroup
of T restricted to R. We define a finite generating set of I'. First we define
7i: Ri—R% i<d, j=1, -+, v; and %%} Ri—R%}, 1=d in the same way as in
§4. Secondly the image of the Novikov transformation G acts on C. We
choose a basis 74, ---, 7> of G. Thirdly, for each R%, j=1, -+, v4, we defined a
map (ZJR?: GN—»FRg in §5. Let 73!,,,:@,2;(7,9 and 7j:@R<Ji(cj([C])). We define a
map Zgg : C—R% as follows. Choose a leaf curve ¢ from x, to ¢fx% t%. Zgg
is the element of the holonomy pseudogroup of & associated with the leaf
curve ¢. To define 21;3% uniquely, we cut C at x,. Using the leaf preserving
flow ¢ of (6.5), ng is expressed as follows. If #% is positive (resp. negative),
Zﬁgz P(xo, [—1, 0))— R? (resp. 23?: (x4, 0, 1)— R% is defined by ZRg(gb(xo, )
=d(py(x3, t9), t). For each RY,, j=v,+1, -, pa, k=1, -, ¢4, we define 7% ;,,
=0z (10, 17.5=Pz¢ (G([C])) and 2z¢ ,: C— K], in a similar way. From (5.3),
(4) and (5.6), it follows easily that I” is generated by the elements listed above.

LemMA 6.3. R is uniform for F.

Proor. It is easy to see that (R, I") is dispersed for F. We prove R is
finitely dense for F. Let x be a point of U. F, denotes the leaf through x
and dp, denotes the distance function on F, induced from a Riemannian metric
of M. We show sup{dr(x, R—{x})|x€U} is finite. At first we prove that
sup{dr,(x, R—{x})|x€ R} is finite. Assume the contrary. Then there exists
a sequence xi, X, --- of points of R such that dpxn(xn, R—{x,})=n. Taking a
subsequence if necessary, we can assume that {x,} converges to a point x.=K.
If x.. is contained in U, an easy compactness argument leads to a contradic-
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tion. So we assume x.=x;= K} Take a closed curve ¢ in K7 through x} and
consider a fence over ¢. That is, consider a map f: S*X[0, 1]—UCM such
that f(S*X{0})=c¢, A{x}X[0,17) is transverse to & for each x&S' and
JH{0} (0, 1))=R% It is easy to see that, for large =, den(xn, R—{x,}) is
bounded approximately by the length of ¢. This is a contradiction.

Next we prove that sup{dr (x, R)lx€U—R} is finite. Assume the con-
trary. Then there exists a sequence xi, X, --- of points of U—R such that
dpxn(xn, R)=n and {x,} converges t0 xS 0. Choose a leaf curve ¢ from X
to a point y of F, MR and consider a fence over ¢ on the side of F,_ from
which {x,} accumulates on x.. That is, consider a map f: [0, 1IX[0, 1]—»[7
such that f([0, 11X {0})=c and f({#} X[0, 17) is transverse to &, 0=¢t=1. Again
it is easy to see that, for large n, den(xn, R) is bounded approximately by the
length of ¢. Thus we have proved sup{dr(x, R—{x})|x€U} is finite.

Finally we prove the unboundedness of the sequence {a,} of (2.1). If the
sequence {a,} is bounded, there exist a real number L and sequences {x,} of
points of FN\R and {r,} of elements of I” such that I(y.)=#n, dr(x,, 7x(x.)=ZL,
7(xa)#=7{xn) if {7)=n and the sequences {x,} and {r.(x,)} converge to x. and
Y. respectively. It is easy to see that the points x. and y. lie on the same
leaf F, . Assume F,_is contained in U. Then there exist a positive number
¢ and an integer 7, such that the restricted flow ¢,: D, (L-+1)X(—¢, )—M is
an embedding and the points x, and 7,(x,) are contained in @D, _(L-+1)X
(—e¢, &) for n=n,. From the compactness, the number of connected compo-
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nents of oD, (L+1)X(—e¢, e)NR is finite. Let R;, 1=1, ---, s be these com-
ponents where R, is the component containing x.. For each i=2, there are

Jg
finitely many elements 7y, -, 7, of I' such that Ul‘/ij(Rl):)Ri. Let N be
1 Jj=

the maximum of the length of the 7;s. Then I(y.) is bounded by N for
n=n, This is a contradiction. Similarly we get a contradiction when x. is
contained in J—U. Thus we have proved R is finitely dense for F. This
completes the proof of (6.3).

We continue the proof of Theorem 2. Let g, (n) be the growth function
of the pseudogroup I’ at x,. By (2.3), F has the same growth type as g..(n).
We prove g,,(n) dominates, and is dominated by, a polynomial of degree d+7.
Let I, a=0, 1, ---, d, be the subpseudogroup of I" generated by G and the
remaining elements with 1>d—a. Thus we have

G=r,chc.-cly=I".

Let g2(n) be the growth function of Iy at x,. g&(n) coincides with the
growth function of the free abelian group G. So it grows as fast as a poly-
nomial of degree r. As in §4, we can inductively prove that gZ(n) has the
same growth type as a polynomial of degree r+a. So F has exact polynomial
growth of degree d+r. Since the leaf I was chosen arbitrarily, this completes
the proof of Theorem 2.

PROOF OF COROLLARY 1. The “if” part is the content of Theorem 1 and
2. On the other hand, the “only if 7 part is proved in ([C-CJ, Proposition 2
and 3). This completes the proof.

§7. Leaves with linear growth

In this section we study leaves with linear growth. At first we prove the
following easy lemma.

LEMMA 7.1. Let F be a non-compact leaf and x, a point of F. Then the
growth function of F at x, dominates a linear function.

PROOF. As before D, (R) denotes the metric ball in F of radius R centered
at x,. Since the metric of F is induced from that of a compact manifold M,
there exists a positive number ¢ such that for each x<=F the exponential map
is a diffeomorphism from the ball in the tangent space of F at x of radius ¢
to D.(¢). Let é=inf{volume D,(¢)]x=F}. Then it is easy to see that f, (Zne)
=dn. Thus the lemma is proved.
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COROLLARY 7.2. If F has linear growth, then F has exact linear growth.

ProOF oF THEOREM 3. In [T3], we proved that if a leaf F with polynomial
growth contains a proper leaf F’ in its limit set, then gr(F)=gr(F/)+1. So
if F is a leaf with linear growth, then each proper leaf contained in L(F) is
compact. If F is proper, then L(F) consists of finitely many compact leaves,
since the number of compact leaves contained in the limit set of a leaf is
finite. If F is non-proper, then by ([C-CJ, Proposition 3), £— {F’|F’ is a proper
leaf contained in F} is a minimal nice saturated set. By (5.7), we can apply
Theorem 2. It follows that M itself is a minimal nice saturated set and the
rank of the image of the Novikov transformation is equal to one.

Conversely assume F is proper and L(F) consists of finitely many compact
leaves K, .-+, K,. We shall prove that F has linear growth. For an end & of
F, L(F) denotes the e-limit set of F, that is, L£<F):UQSL(U> (see [Ni 17). By

a theorem of Nishimori ([Ni 47, Theorem 1), the number of ends of F is finite
and each end of F is a tame end of depth 1. Let ¢, i=1, ---, s, be the ends
of F. There is a surjective map j: {1, -+, s}— {1, ---, #} such that L (F)y=K;.
There are submanifolds U;=¢,;, i=1, ---, s, such that U;N\U; =g if i+ and
F—&ijUi is compact. Let fi(R)=volume(D, (R)NU,) where x, is a base point

of F. Then we have f,(R)=volume(F—UU;)+X fi(R). Since the end e,

approaches to K¢, tamely ([Ni1]), it is easy to see that f; has linear .growth.
S0 fz, also has linear growth.

Finally assume that the closed manifold A itself is a nice saturated set
and the image of the Novikov transformation has rank one. Then each leaf
has linear growth by Theorem 2. This completes the proof of Theorem 3.

§8. Growth of almost without holonomy foliations

In order to study almost without holonomy foliations, it is convenient to
consider models of them.

DerinrTION 8.1 ([He 17, [I 2]). We say that a pair (M, ¥) is a model of
type 1) or 2) if F is a codimension one foliation on a compact manifold M and
if the following condition is satisfied.

type 1) M=Vx[0, 1] where V is a closed manifold and & is the product

foliation.

type 2) & is tangent to the boundary oM and the leaves in the interior

of M are non-compact with trivial holonomy groups.

The following theorem ([He 11) is an easy consequence of the Reeb stabil-
ity theorem.
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THEOREM 8.2 (Hector). Let M be a compact manifold and F a codimension
one foliation on M which is almost without holonomy. Then there exists a foli-
ated manifold (M’, F') which is a disjoint countable union of wmodels (M’, F’)
:KLJ(MZ-, %) and a folwation preserving immersion p of M’ onto M such

that Pl 15 an embedding of Int(M’) and plsw s a two fold cover onto
M— p(Int(M")).

Moreover there exists a finite number of closed manifolds Ni, ---, Ny and a
natural number 4, such that if 1=1,, then M, is diffeomorphic to some N;, X[0, 17.

By this theorem, to consider the growth of an almost without holonomy
foliation, it is sufficient to consider those of models of type 2). Assume (M, F)
is a model of type 2) and & is of class C®. Then it is known ([Sa], [He 17,
[I 27) that the interior of M is a nice saturated set. In general Int(M) is not
minimal, but it is easy to see that there exists a transverse circle C and we
can consider the Novikov transformation ¢: z(Int(M))— Diff(C).

THEOREM 8.3. Let (M, &F) be a model of type 2) and let r be the rank of
the image of the Novikov transformation of Flimon. Then all leaves of F have
exact polynomial growth. If OM= (resp. oM+ D), then gr(F)={r} (resp. gr(F)
={0, r+1}). In both cases, the degree of growth of a leaf is bounded by the
Jirst Betti number of M.

Proor. The first and the second assertion follow directly from Theorem 1
and 2. Let ¢: 7 (Int(M))— PerDiff(R) be the lift of the Novikov transformation
(§5). Then we have r+1=rank(Image(@)=b,(Int{(M))=b,(M). This completes
the proof.

Proor oF THEOREM 4. By (8.2) and (8.3), each leaf of & has exact poly-
nomial growth and the degree of growth of a leaf is bounded by max {b,(M)),
b(Npli<iy, j=1, -+, ¢t. Thus we have proved Theorem 4.

§9. Growth of leaves in transversely analytic foliations

In this section we apply our theorems to the case where the foliation is
transversely analytic. We use the following theorem of Hector ([He 27, Theo-
rem 9).

THEOREM 9.1 (Hector). Let F be a proper leaf in a transversely oriented
transversely analytic foliation F of codimension one. If the holonomy group of
F 15 non-abelian, then all leaves sufficiently near to F are locally dense. Move
precisely, there exists a transverse arc T=[0, 1] such that TNF=1{0} and if a
leaf F’ intersects with T— {0} then F'NT=T.
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PrROOF OF THEOREM 5 AND COROLLARY 2. The only if part of Theorem 5
follows from a theorem of Cantwell-Conlon ([C-CJ, Proposition 2 and 3).
Assume d(F) is finite. Then F is proper by (3.1), and each leaf contained in
the limit set of F has abelian holonomy by (9.1). So F has exact polynomial
growth by Theorem 1. Assume F is the closure of a minimal nice saturated
set. Let F’/ be a leaf contained in F. If the proper height pA(F’) of F’ is
positive (resp. ph(F7)=0), then the holonomy group of F’ is abelian by (9.1)
(resp. by (5.7)). So we can apply Theorem 2 and we conclude F has exact
polynomial growth. This completes the proof of Theorem 5 and Corollary 2.

In order to prove Theorem 6, we need a filtration theorem of Dippolito
(ID]). Let U be a saturated open subset of a foliated compact Riemannian
manifold. U denotes the completion of U with respect to the induced metric.
A triple (E, B, &) is called a foliated /-bundle if E is the total space of an
I-bundle over B and & is a codimension one foliation of E such that each
fibre is transverse to 4.

THeOREM 9.2 (Dippolito). Let F be a codimension one foliation of a compact
manifold M. Then there exists a finite filtration

D=U,ps: CUpn - CU,CU=M

by saturated open sets such that for each i=0, 1, -, m,
a) Uy,—Ussy is a relative minimal set in U, and
- . /\ . -
b) the foliation on Uppy—Use induced from F admits a structure of a
foliated I-bundle.

Let (E, B, ) be a foliated I-bundle. It is well-known ([Ha]) that & is
determined by the total holonomy map II: m(B, x,)—Diff(J), where x, is a
base point of B and Diff(/) denotes the group of diffeomorphisms of the inter-
val. Let G denote the image of JI. We call G the toial holonomy group of
. If & is transversely orientable, each element of G is orientation preserving
and E is a trivial I-bundle over B. We say (E, B, &) is trreducible if & is
transversely orientable and G has no common fixed points other than {0, I}.
If & is transversely orientable, transversely analytic and G= {1}, then Z is
decomposed into a finite number of irreducible foliated /-bundles.

LemMMma 93. Let (E, B, F) be an irreducible, transversely analytic foliated
I-bundle. If theve exists a leaf with finite depth in Int(E), then the total holo-
nomy group G of F is an infinite cyclic group gemerated by a contracting
diffeomorphism.
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PrOOF. We choose a trivialization of E, E=BX[0, 1. Let B, be the leaf
Bx {0} of & and 4(B,) the holonomy group of B,. There is a natural map
p: G—H(B,). Since & is transversely analytic, p is an isomorphism. Let F
be a leaf with finite depth in Int(E). Then F is proper and the closure of F
must contain BX {0} or Bx{l}. We assume F contains B, in its limit set. By
9.1), #(By)=GC is abelian. We prove G is cyclic. If #(B,) contains an abelian
subgroup of rank>2, it is easy to see that all leaves sufficiently near to B,
are locally dense. So each finitely generated subgroup of G is cyclic. Assume
G is not finitely generated. Then from the irreducibility of &, there exists a
contraction f€G, a sequence of integers {m;} and a sequence of diffeomorphisms
{g;} such that 111&1 my=oo, g;€G and gpi=f. It follows that each leaf of

Flimm 18 non-proper. This proves G is cyclic. Since & is irreducible, & is
generated by a contraction. Thus we have proved the lemma.

ProoF OF THEOREM 6. Taking a finite cover if necessary, we may assume
& is transversely orientable. We use the filtration theorem of Dippolito (9.2).
Since U,;— Usiy: is a relative minimal set, 1=0, ---, m, it follows from Theo-
rem 5 that either all leaves in Uy~ U,;4; have non-polynomial growth or all
leaves in U,;—U,sy: have polynomial growth of the same degree. So the set
{gr(F)|F is a leaf contained in some Us;— Uy, 1=0, 1, -+, m} is a finite set.
We consider growth of leaves in Uspri—Usipe. I Us—Usziys is a relative ex-
ceptional minimal set, then each leaf in Ugy—Usiis has non-polynomial growth

T

by Theorem 5. Assume U, —U,;4; is not exceptional. Then Upy;—Usie, has
finitely many connected components. Let E; j=1, 2, -, k, be such components.
We can assume each E; is irreducible. We claim that if there exists a leaf I
with polynomial growth in Int(E;), then all leaves in Int(£;) have polynomial
growth of the same degree. If F is proper, then each leaf in Int(F)) is proper
and has polynomial growth of degree d(F) from (9.3) and Theorem 5. If F is
non-proper, then Int(E;) is a minimal nice saturated set again by (9.3) and
Theorem 5. So each leaf in Int(E,) has polynomial growth of the same degree.
Thus we have proved our claim. As a result, the set {gr(F)|F is a leaf con-
tained in Use1—Usies, =0, 1, -+, m} is a finite set. This completes the proof
of Theorem 6.

COROLLARY 9.4. Let F be a transversely analytic codimension one foliation
on a compact manifold. Then there exists an integer d such that for each leaf
F of &, either d(F) is infinite or d(F) is smaller than d.

The proof is left to the reader.

COROLLARY 9.5. Let & be a transversely analytic codimension one foliation
on a compact manifold M. Let C be the union of proper leaves with non-trivial
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holononty. Assume each leaf of F has polynomial growth. Then C is closed, C
consists of a finile number of leaves and each connected component of M—C 1is a
nice saturated set.

ProoF. For each k&, let C,={F|FeC, d(F)<k}. Assume there exists an
integer 2 such that C, contains infinitely many leaves. Then an irreducible
/\ - - - .
component of some Uy — Usiy, must contain infinitely many leaves in C,.
This contradicts (9.3). So each C,, hence C by (94), consists of finitely many
leaves. The remaining assertions are easy to prove.

From the existence of a leaf preserving flow (5.5), it is easy to see that
all leaves in a nice saturated set are diffeomorphic. So we get the following
corollary.

COROLLARY 9.6. Let F be a transversely analytic codimension one foliation
on a compact manifold M. Assume each leaf of F has polynomial growth. Then
all leaves of F are classified into a finite number of diffeomorphic classes of
mantfolds.

We remark that the assumption of (9.5) or (9.6) is satisfied when the
fundamental group of M has polynomial growth ([P 17). We prove that the
assumption is satisfied if we assume all leaves of & are proper.

THEOREM 9.7. Let F be a transversely analytic codimension one foliation on
a compact manifold. Assume all leaves of F are proper. Then each leaf of F
has exact polynomial growth and there exists a non-negative integer d such that
gr(®=1{0,1, -, d}.

ProoF. For each %, let C,={F|d(F)<Fk and the holonomy group of F is
non-trivial}. By the proof of (9.5), each C, consists of finitely many leaves.
Assume C,—C,_,#+@ for any k=1. Then we can find a sequence {F;} of
leaves such that F,<F,<F,<---. It follows from (3.6) that there exists a non-
proper leaf. So there exists an integer d such that C,&C,&EC4 ;=Ca=
Cys=--. It is easy to see that gr(¥)=1{0, 1, ---, d}. This completes the proof.

§10. Foliations with simple growth

In this section we prove Theorem 7 and Theorem 8 and obtain some corol-
laries from them.

PrOOF OF THEOREM 7. Assume gr(F)={d}, 0=d<oo. If d=0, then all
leaves of F are compact and & is without holonomy. Assume d is positive.
Then all leaves of & are non-compact. Hence a minimal set of M is either an
exceptional minimal set or all of M. But a leaf contained in an exceptional
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minimal set has exponential growth ([P 27]). So the only minimal set is all of
M. This is equivalent to saying all leaves of & are everywhere dense. Assume
there exists a non-trivial holonomy. Then there exists a (one-side) contracting
holonomy 7 of a leaf Fsay at x,. Let T be a compact transverse arc through x,
which is contained in the domain of 7. Since all leaves of ¢ have polynomial
growth, there exists a holonomy invariant measure g on 7 which is finite on
compact sets ([P 3]). On the other hand, from the existence of the contract-
ing holonomy 7, u(T)=p(N\r™(T))=p({xs}). This contradiction shows that F is
without holonomy. "

Conversely if & is without holonomy, then gr(&F) consists of one element
by (8.3).

The second assertion follows from ([P 3], 6.4).

If gr(g)={exp}, then & has no compact leaves and by 1), & must have a
leaf with non-trivial holonomy.

Finally assume all leaves of & are non-compact and there exists a leaf
with non-trivial holonomy. If there exists a leaf with non-exponential growth,
then there exists a transverse invariant measure g ([P 3]). A minimal set
contained in the support of g is either an exceptional minimal set or all of M.
It cannot be exceptional again by ([P 3J). If it is all of M, we can show &F
is without holonomy by the same argument used to prove the first assertion.
Thus all leaves of & have exponential growth. This completes the proof.

Theorem 7 implies, in particular, that if all leaves of & are non-compact,
then gr(F) consists of only one element. So we have the following corollaries.

COROLLARY 10.1. [f there exist two leaves F and F' such that gr(F)=+gr(F"),
then there exists a compact leaf.

COROLLARY 10.2. If there exists a leaf such that gr(F)=oo, then there exists
a compact leaf.

If # is transversely orientable and without holonomy, it is known ([Sal)
that all leaves of & are diffeomorphic. So we get the following corollary
which generalizes a theorem of Plante ([P 27, 1.6).

COROLLARY 10.3. Assume F is transversely orientable and F has no compact
leaves. If therve exist two leaves of F which are not diffeomorphic, then all leaves
of F have exponential growth.

Proor OF THEOREM 8. From ([T], Theorem 2), the holonomy group of
each non-compact proper leaf is trivial. From ([C-CJ, Proposition 3), the holo-
nomy group of each non-proper leaf is trivial. This completes the proof.



500

Nobuo TsucHIYA

COROLLARY 104. gr(@)={0, 1} if and only if there is a nom-compact leaf,
all leaves of F are proper and F is almost without holonomy.

The proof is left to the reader.
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