Markov fields and local operators

By Shigeo KUSUOKA

1. Introduction

The purpose of this paper is to investigate the transformations preserving
Markov property of random distributions and to give a remarkable difference be-
tween a Gaussian white noise and a Poisson white noise from a viewpoint of
Markov property. Before stating our results, we shall give a short account of
results of J. L., Doob [1], N. Levinson and H.P. McKean Jr. [5] and Y. Okabe
[8], [9]. By Markov property we mean the definition in H, P, McKean Jr. [7].

J. L. Doob [1] considered a stationary Gaussian process X(f) satisfying a sto-
chastic differential equation
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where P(¢) and @Q(¢) are polynomials without common factors such that P(i&)+0
for any £ € R and B'(#) is a Gaussian white noise. Then he showed that if @ is
constant, X(#) has Markov property, and that if @ is not constant, X(#) has not
Markov property, but the so-called finite multiple Markov property. We note that
P(d/dty and Q(d/dt) operate on the space &*'(R) of tempered distributions as linear
local operators.

Giving a refinement of results of N. Levinson and H. P. McKean Jr. [5] con-
cerning Markov property, Y. Okabe [8], [9] showed that a stationary linear process
X(t) satisfying a stochastic differential equation

P(%)X(t):Z’(t)

has Markov property, where P(£) is an entire function of infra-exponential type
and Z'(#) is an additive white noise. We also note that P(d/d¢) operates on the
space <7 of hyperfunctions as a linear local operator.

Since the polynomial P with P(#€)+#0 for any & ¢ R induces a linear local and
invertible operator P(d/dt) from &'(R) to &*’(R), and the additive white noise Z'(#)
is a typical Markov random distribution, we are led to the following question:
Let Y be a Markov random distribution included in $*'(R% and P(&,, -+, &) be a
polinomial with P(i&,, - -+, i&5) %0 for any (&, ---,£:;) € R®. Then, does the random
distribution X defined by
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i) J \~!
possess Markov property?

Our main aim in this paper is to answer this question. In Theorem 1 in
Section 4, we shall show in a more general situation that X has Markov property,
if ¥ has 0-Markov property due to V. Mandrekar [6], which is defined in Section 2
and actually it will be seen to be stronger than Markov property for random dis-
tributions.

The next purpose is to apply Theorem 1 to investigate a Gaussian white noise
and a Poisson white noise from a viewpoint of 0-Markov property. We shall show
in Theorem 2 in Section 6 that in a class of mean 0, stationary Gaussian random
distributions with independent values at every point, a Gaussian white noise is
characterized as a random distribution having 0-Markov property, under a certain
condition. In Section 7, we shall consider a stationary linear random distribution
X satisfying a differential equation

ad 0 0 ad
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where P&, ---,&;) and Q(&, - --, &) are polynomials without common factors such
that P&y, -+, i€;)#0 for any (&, -- -, &) € R?, and W is a white noise. By virtue
of Theorem 2, we see that Q(3/0X,, ---,3/0X,;)W has not 0-Markov property, if W
is a Gaussian white noise and @ is not constant. From J.L. Doob’s result, we

also see that X has not 0-Markov property in that case. On the other hand, we
will see in Example 1 that @(3/0X3, - --, 9/0X,;) W has 0-Markov property, if W is a
Poisson white noise. Therefore we can apply Theorem 1 to prove that X has 0-
Markov property in the case of W being a Poisson white noise. These facts show
a remarkable difference between a Gaussian white noise and a Poisson white noise.

The author expresses his gratitude to Professor Y. Okabe for his valuable
advices and hearty encouragement.

2. The definition of 0-Markov property

To begin with, let us introduce some preliminary notations. We denote by
(2, <%, P) a given complete probability space. The trivial sub-s-fields of <7 is
denoted by .7, i.e. 4 ={Be <, P(B)=0 or 1}. A d-dimensional Euclidean space
is denoted by R®. For any domain D in R% we denote by C5(D) a space of real-
valued infinitely differentiable functions on D with compact supports and we denote
by 2'(D) a space of real-valued distributions on D. We denote by 7y the topolog-
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ical Borel field of M for any topological space M. For a family of random
variables {f3; 1€ 4}, we denote by ¢{f3; A€ 4} the least sub-o-field of <Z with respect
to which the f}’s are measurable. We denote by <Z,v.<Z, the least o-field that
contains <&, and <. We will write £, JLﬁz, if ¢, and 2, are independent
under the conditional probability with respect to <& for any sub-o-fields <%, <,
and &5, of 7.

Now let X be a random distribution, i.e. X is a measurable mapping from
R, %) to (Z' (R, 75 zey). For any domain D in R?, we define a sub-o-field <7,
of & by ’

Fp=0{a{p, X(0))2; ¢ € C5 (R, support (p)CD}v .4,

DEFINITION 1. Let ¢ be a non-negative number. We say that a random
distribution X is s-Markov, if Py, _U_ %’Dz for any pair of domains {Dy, D,} such
that D;UD,=R" and dis (Dl,D2)>e wnere Dy=D:nD,, dis(-, ) is an ordinary
distance function on R? and D° is the complement of D.

For any closed set C in R?, we define a sub-o-field <&, of <& by ﬁc%ﬂ ﬁu,;,
where U; is a §-neighborhood of C.

Following H. P. McKean Jr. [7], we define the Markov property.

DEFINITION 2, We say that a random distribution X is Markov, if <&, 1. e
oD
for any domain D in R?, where 8D is the boundary of D and D° is the exterior

of D.

REMARK 1. If X is 0-Markov, then X is Markov. Conversely if X has the
Markov property, and if X=X(z, 0), € R* and o €2, is a continuous function of
X with probability one, then X is 0-Markov. These facts are essentially proved
by V. Mandrekar [6].

REMARK 2. In general the O-Markov property is strictly stronger than the
Markov property (see Theorem 2 and Remark 6).
3. A random variable inducing a Radon measure

Let M and N be Hausdorff topological spaces, and let S be a continuous
mapping from M to N. Let X be an M-valued random variable, ie. X is a
measurable mapping from (2, &) to (M, ty), and put Y=SX, an N-valued random
variable. We define o-fields <% and <&y by

={XYA); Aerylvs"  and y={Y A); Aertylv.A .

ProPoSITION 1. Suppose that S is a one-to-ome mapping, and that the proba-
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bility measure px—=XP induced on M by X and P is Radon, i.e. for any A€y,
ux(Ay=sup {gx(K); K is a compact subset of M, KC A} and px(A)=inf {¢#x(0); O is
an open subset of M, AcO}. Then FBx=Fy.

The proof of Proposition 1 is obvious by the following proposition due to L.
Schwartz [11].

PROPOSITION 2. Suppose that p is a Radon measure on M, then v==Spy induced
by S and it is also Radon. Furthermore, for any subset A of N, A belongs to the
completion of ty with respect to v, if and only if ST/(A) belongs to the completion
of ty with respect to p.

Next let M; and M, be Hausdorff topological spaces, and let (Xi(w), Xa(w)) be
an M; X M,-valued random variable. So X, (resp. X;) is an M; (resp. M,)-valued
random variable. We define o-fields <k, &x, and Zix,,x, by Gy, ={XT(A);
Acty vy, %’XZZ{XEI(A); Aery vt and Fix x,={X(), Xo(+)TA; Ae

Taryxup VA

PROPOSITION 3. Suppose that the measure p induced on M; X M by (Xi(+), Xa*))
and P is Radon. Then & x x,=%x N Fx,.

ProoF. Set #={A ety xm, (Xi(+), Xo(+)) A € Py, v Fx,}, then 7 is a o-field.
If #(A)=0 for A €%y xm, then (Xi(+), Xy(+)) A7, and so Aez. We denote by
&, (resp. &) the family of open subsets of M; (resp. M.). Then it is obvious
that {Uyx Uy Uie &y, Use Zhlcz. But {U; XU, Uy e @y, U €%} is an open base
of M, xM,. Since g is Radon, it is easy to see that p(K)=inf {#(4);, KCA, Aecz}
for any compact subset K of M X M,. So every compact subset of M; X M, belongs
to #. Therefore it is easy to see that #=ry xu,, Which completes the proof.

Next let E be a locally convex Hausdorff vector space, and let £’ denote the
dual space of E. Now let X be an E-valued random variable, and we define o-fields
Py and Py by Fx={X"Y(A); Actg}v S and FBy=0{x{X(w), upp;uc E'}v. A"

PROPOSITION 4. Suppose that the probability measure px=XP is a Radon
measure on E, then Byx=Pyx.

It is not difficult to see that Proposition 4 follows from Proposition 1, Proposi-
tion 2 and the fact that the cylindrical open sets are basis of the weak topology
of E.

4. The inheritance of the O0-Markov property

Let E, and E; be locally convex Hausdorff vector spaces which are continuously
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included in Z'(R%, and we suppose that E, (k=1, 2) satisfies the following con-
ditions (C-1) and (C-2): Let {Di, D;} be an arbitrary pair of domains in R? such
that D,UD,=R® and dis (D5, D3>0, and set Dy=D, N D;.

(C-1) For any f, g € E; which satisfy flp =glp,, there uniquely exists z¢€E;
such that hlp,=flp, and hlp,=glp,, where flp, is the restriction of fto D as a
distribution, etc. We shall write p (f, g)p, for A.

(C-2) Put Hy=(f¢e Es; flp,=0}. The mapping from H;x H, to H} correspond-
ing (f, 9) € HyXH, to p,(f, 9)p, € H, is continuous.

Let L be a one-to-one, onto and linear mapping from E; to E., and suppose
that L is bicontinuous and local, i.e. for any f, g € E; and for any domain D in
R?, if flp=glp, then Lfl,=Lg|p. Put G=L", a continuous linear mapping from
E, to E..

THEOREM 1. Let ¢ be a non-negative number, and let Y be an E,-valued random
variable. Suppose that the probability measure on E, induced by Y and P is Radon,
and that 'Y is s-Markov, when we regard Y as a random distribution. (Notice
that E,, E.c2'(RY.) Then X=GY, an E;-valued random variable, is also -
Markov as a random distribution.

REMARK 3. We can adopt a space of ultra-distributions and a random ultra-
distribution in place of 2'(R% and a random distribution almost without changing
the proof. Then we can take an ultra-differential operator as an example of L.

REMARK 4. If E, and E, are Fréchet spaces, then the condition (C-2) holds
automatically by the condition (C-1) and the closed-graph theorem.

For any domain D in R’ we define an equivalence relation ~ on F'(R% by
S59, iff flp=glp for f,9e Z'(RY. We write E, p for E,/~, and we denote by
[u]y,p for an element of E,,» corresponding to u<c E, (k=1,2). E; p and E; p are
locally convex Hausdorff vector spaces continuously included in 2/(D). Since L
is local, we can regard L as a continuous mapping from E, p to E, p.

For any domain D in R?, we define o-fields %5 and #p by
Fp=0{o{p, X(0))5; ¢ € C5(RY), support (¢) CD}v 4~
and
Fp=0{{p, Y(0))5; ¢ € C;(R?), support (p) CD}v 4",

The operator G and the canonical mapping from E, to E;, p are continuous and
the measure on E, induced by Y and P is Radon. So it is obvious by Proposition
2 that the measure on E p induced by [X(-)],,p=[GY(-)},,p and P is Radon. Since
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the canonical mapping from Ei p to 2'(D) is continuous, the measure on Z"(D)
induced by X{(:)p and P is also Radon. Therefore it is obvious by Proposition 4
that & p=0{50,{p, X(0)|p)z" 01} ¢ € CTD}V A =(X()p'A; A€t} Vs Apply-
ing Proposition 1 to [X();,p and X(-)ip, we get Fo={[X()]ip4; A €tg, VAL
Similarly we get Zp={[Y(-)lapA; Aecp, }vs". Since LIX(*)|.p=[LX()].»
=[Y(*}}s.p, FpCF .

So we obtain the following claim.

Claim 1. Fp={{X()ibA; Aetr VA, Fp={[Y()pA; Accp, )} Vs and
. Fp for each domain D in R°.

Now let {D;, D;} be a pair of domains in R® such that D,UD,=R® and
dis (D5, D%)>e¢, and set Dy=D, N D;.

Lemma 1. Let #1=Fp NS, and F,=Fp N Fp,. Then Fp =5V .7;.
We shall prove Lemma 1 in the next section 5.
LEMMA 2. F p,=F p,VFp and Fp, =F 5 vV Iy,

Proor. Let S be a mapping from E:p, to E, p,@®E:,p, which corresponds
luhi,p, to [uli,p,®[Luls,p, for any ueE;. S is well-defined and continuous. We
claim that S is one-to-one. For this purpose, it is enough to show that #|p,=vlp,
for any #,ve E; such that u|p,=v|p, and Lujp,=Lvlp,. But set w=p (,v)p,, then
Lwip,=Lu|p,=Lv|p, and Lw|p,=Lv|p, by the locality of L. So Lw=Lv. Since L is
one-to-one, w=v. Therefore u|p =w|p,=vlp,.

Notice that S[X(cu)]l,Dl:[X(a))]l,po@[LX(w)k,DI:[X(w)]l,DO@[ Y(o)l,p,. It is
obvious by Proposition 2 that the measure on E;, p,E:,p, induced by [X(+),p,®
[¥(-)]:,p, and P is Radon. By Proposition 3 and Claim 1, we get & b, V£, =
(X0, PLY()e,n) "4 A€ty p,@F2,n,} V-7 Therefore by Proposition 1, Claim
1 and the injectivity of S, we obtain ﬁ'Dl:ﬁrpovfpl. Similarly ?pzzﬁ‘povfpz
is proved.

The following lemma is due to F. Knight [3].

LEMMA 3. Let <7, <7, <&, and <B, be sub-o-fields of 5.
(1) Suppose %ﬂ% and FyC B, C By B, then %JJ_@
2) Suppose %Léﬁ’z and B, C B, By, then %JL%’

Z3

Now we shall prove Theorem 1. The e«-Markov property of Y implies

JL *p,. Noticing #p C.#;C-#p, and using Lemma 3-(1), we obtain fplﬂfpz
+ Dy

Since F,CFp =5V F,CF V.S, by Lemma 1, we get fDl _U_ fp by Lemma
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3-(1). It follows from Lemma 2 and Lemma 3-(2) that .& p, AL Fp,, which implies
< D,
the e-Markov property of X, This completes the proof of Tﬁeorem 1.

5. The proof of Lemma 1

For any fi, fs, g1, 92 € E, such that Silo,=f2lpy=91lp,=9:lp,, it is easy to see that
p,(/f1, 9)p,+ 0, (f2, 92),=p,(f1, 92)p,+b,(f2, 91)p,. By the linearity of G, we obtain
G(Dl(fly gl)Dz)lDo”*‘G(Dl(fm gz)D2>ID0:G(D1(ﬂ, gz)DZ)IDO‘f—G(Dl(fz, g1)p,)\p,-

Therefore the following condition holds.

(A-1) For any fi, fi, g1, 9z € E; such that fi|p,=/alp,=g1lp,=¢:Ip,,
(D) if Glo,(f1, 91)0,)loy=GC(p,(f2, 91)n,)\p,, then Glo,(fi, 92)0,)l0,=G(o,(f2, 92)p,)\p,-
@) if G(p,(f1, 91)0)lp, =G (o, (f1, 92)p,)In,, then G(o,(f2, 1)), =G(p,(f2r g2)n,)pg
We define two relations R; and R, on E, as follows.
For fi, f. € E,, we define flgl' 2 if filp,=felp, and there exists some g € E; such that
9lp,=fln,=felp, and G(o,(f1, o), =GC(o,(f2, D)p,)lp,. For gi,g:¢€ E,, we define
91792 if gilp,=g:lp, and there exists some fe E, such that S1p,=91lp,=9:|p, and
G(p,(f, 91))lp,=G(0,(, g2)p,)Ip,-
By (A-1) it is easy to see that R, and R, are equivalence relations. We write
[flr, (resp. [flz,) for an equivalence class of f with respect to R, (resp. R,) for
each fe E,.
Since  [Ole,={f¢ Ex; flp,=0, G(v,(f, 0p)lp,=0} and  [0lr,={g € Ez; glp, =0,
G(n,0, 9o )lp,=0}, we can see that [0iz, and [O]p, are closed linear subspaces of
E; by the condition (C-1). Therefore

(A-2) E,/R; and E,/R, are Hausdorff topological spaces.

Next we define two relations @, and @, on E; as follows.
For u,, u, € E,, we define 1 5z, if there exist some f, ¢, 9. € E, such that flp,=
9ilpy=8:lp,y #1lp,=G(p,(f, 9)p)lp, and w:|p,=G(o,(f, g2)p,)lp, For v, v, E;, we
define V502, if there exist some fi, f2, g € E, such that Slpy=Felp,=glp,, 1lp,=
G(o,(f1, 9))lp, and 2:lp =G(p,(f3, 9)p,)|p,-
It is not difficult to show that @, and @, are equivalence relations. We demon-
strate only the transitive law of @,. Suppose that 1 5 U and Us g ts for some
#;, #; and u;€ E;. Then there exist f, g1, 92, %, & and ke E, such that Slpy=
g1|00=gzlpo, th(,:kllDO:kleo, tlp,=G(o,(f, 91)pp)lp,s szDOZG(Dl(f, 92)0,)Ip,s Uzlp,—
G(o,(h, k)p,)Ip, and uslp,=G(p,(h, k2)p,)In,- Put v:=G(p (f, g2)p,) and 0;=G(p,(h, k1)p,),
then vy/p,=0vs/p,=#slp,. S0 set v;=p (v1, v2)p,, then v3lp,=01|p, and vs|p,=vslp,. By
the locality of L, we get Lvy|p,=Lvilp,=f]p, and Lvslp,=Lvy|p,=kilp,. Therefore
Slo,=Fkilp, and Lvs=p (f, k1)p,, which shows that v3=G(p,(f, k1)p,). Since Us|p,=0s|p,,
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we obtain G(o,(f; £1)p,)lp,=G(o,(h, k)p)lp,. By (A-1)-(2), we get G(o(f, k2)p,)ip,=
Glo,(h, k,)p)lp,. S0 t:1]p,=G(p,(f, g1p,)lp, and uslp =G(p(f, %2)p,)lp,, Which implies
Uy g s

We write [ule, (resp. [#]o,) for an equivalence class of # with respect to @
(resp. Q,) for each uc E;. By the definitions of Ry, R;, @; and Q,, it is easy to

prove the following claim.

Claim 2,
O Gy It fbvlg, then fR~1g for any f, g€ E,.
Gy If fD~zg, then fg;g for any f, g € E..

2 If upv, then ugv and ugv for any #,ve E;.

Therefore there exist the following continuous mappings:

hi: By p—Es/Ry, hlfle,p,=[fle, for feks,
hs: Es,p,~Es[/Rs, holgle,p,=[gle, for gekE,,
Jit By p,~Ed @y, jiluly,p,=lule, for uek,,
and Ja: El,DO'_)El/QZy jZ[Ull,DOZ['I/]QZ for vek, .

The relations between R; and @, and between R, and @, are clarified by the
following claim.

Claim 3.
@O @G It ugv, then Luglfl,v for any u,v e E;.
() If Uz, then Lu;;;Lv for any u,ve E,.
@ () If fl?{g’ then Gfg;Gg for any f, g € E..
) If fgz'g, then Gf(szGg for any f, g € E..

Therefore the following canonical mappings are homeomorphisms.
BJQOESR:,  Liule=ILuls,,  Glfle=[Gfe,
BJQZ2EJR:, Liwlo=lluls,, Glfln,=IGflo,,
where # € E; and fe E,.

Proor. (1) Suppose that ugv for some #,v € E;. Then there exist f, ¢; and
g: € E; such that fip =gilp,=g:lp,, #lp,=G(n,(f, 90)p,)Ip, and v|p=G(»,(f, g2)0,)|p,-
Put wi=G(p,(f, g1)p,), then wilp =ulp,. Let w.=p (u,w:)p, then we get Luw|p =
Lu|p, by the locality of L, which implies Lu;z;sz by Claim 2. It is easy to see
that Lws|p,=Lwi|p,=g:lp, and wi|p,=wslp,. Put h=Lw,, then klp,=giip,. Since
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w1lp,=G(o (f, 91)p,)ln,=Go,(f, B)p)lp, and  w.lp,=G(p,(h, B)p)lp,, We obtain
G(o(f, Wp)lp,=G(o (R, I)p,)lp,, which implies szzhgl' f. Therefore we get Lug;f.
Similarly we get ng; f. So we have Lu g;Lv, which completes the proof of (i). The
proof of (ii) is similar. (2) Suppose fkvlg for some f, geE, then flp,=glp, and
there exists some % € E, such that &|p =f|p,=g|p, and G(»,(f, 1)p,)|p,=G(o (g, #)p,)\D,*
Using Claim 2, we obtain G(p,(f, h)DZ)Q~IG(D1(g, R)p,). Since Gflp,=G(p,(f, Np,)lp,
and Gglp,=G(o,(g, 9)n,)lp,, We get Gfp-Glo,(f, hin,) and Gg5Glo,(g, h)p). So we
have GfQNIGg, which completes the proof of (i). The proof of (ii) is similar.

Claim 4. If ugv and uzv, then ug-v for any u,v e Ey.
1 2 ]

PrROOF. From the assumptions of @; and @., there exist some f, g; and g. € E,
such that flp =g:lp,=9:lp,, #lp,=G(p,(f; §1)0,)Ip, and v|p =G(»,(f, 92)p,)Ip,, and there
exist some ki, k. and ke E, such that & =h:p,=kln, #|p,=G(p,(hs, k)p,)p, and
Vlp,=G(o,(hs, B)p,)lp,. Put wi=G(o,(f, g:1)p,) and w,=G(p,(h1, k)p,), then w;|p =
Wlp,=ulp,. Set ws=p (w:, w;)p,. Using the locality of L, we obtain Lws|p =
Lw,|p,=flp, and Luwsjp,=Lw.|p,=kl|p,. So flp,=klp,, and we have Lws=p (f, k)p,,
which implies w,=G(p,(f, #)p,). Since ws|p,=ulp, we get ulp,=G(p,(f, k)n)|p,-
Similarly we get vip,=G(p,(/, #)p,)|p,. Therefore u|p=v|p, which completes the
proof.

Thus we have the following diagram which shows the relations between the
spaces and the mappings introduced till now.

G

Eep, S EfR2EQux

Ez< N ¢ >E1,Do<—E1
Eq 0, S B Ri2En[Qu 72

Now we establish Lemma 1. Let Xj(0)=[X(0)]le, and X,(w)=[X(w)]e,. Since
Xi(o)=7[X(@),p, Xi(w) is Fp -measurable by Claim 1. We, however, get
Xi(0)=GlY(0)lp, =G| Y(®)]s,p,- So Xi(e) is also Fp-measurable by Claim 1.
Therefore Xi(w) is #;-measurable. Similarly X,(w) is & ,-measurable. Since the
mapping /i®j, from Ei,p to Ei/Q: X Ei/Q; corresponding u € Ey,p, to (jit, jau) is
continuous and the measure on E,p, induced by [X(-)];,p, and P is Radon, the
measure on E;/Q; X Ey/Q, induced by (X;(-), Xz(+)) and P is also Radon by Propo-
sition 2. Using Proposition 3, {(Xi(+), Xx(*))"A4; A € tpj0,xB,/0,} VA TT 1V F 2.
Furthermore 7,®j. is one-to-one by Claim 4. So by Proposition 1 and Claim 1,
{(Xu(+), Xa()) ' A; A €trys0,x8,00,) VA ={X()5,A; A€ Ty,p} V¥ =F p,. There-
fore Fp,CF vV F, Fp DFVF, is obvious. This completes the proof.
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REMARK 5. We need not assume in Theorem 1 that L and G is linear, if the
conditions (A-1) and (A-2) are satisfied. Indeed we have used the linearity of L
and G only to prove the conditions (A-1) and (A-2).

6. A Gaussian white noise and the 0-Markov property

We say that a random distribution W is a Gaussian white noise, if W satisfies
Elexp (12e, W(co))sy,)]:exp(—é— S . lo@)[? dx> for every veCy(RY), where E[-]
R

denotes the expectation and i=+—1. It is obvious that W is 0-Markov. By
Minlos-Sazanov-Kolmogorov’s Theorem, we can regard W as an &'(R%-valued
random variable, where &*'(R?) is a space of real-valued tempered distributions on
R®. We denote by (R a space of real-valued rapidly decreasing C*-functions
on R%

Let P(E):[aémaaé" be a polynomial of £=(&,, ---, &;) with degree m, where a=
(@3, -+, @g) I8 a multi-index of non-negative integers with length |aj=a;+---+a,,

&% denotes &1t ... £5¢ and a,’s are real numbers. We denote by P(D,) a differen-

alal
tial operator Qo=
P X ax g

PROPOSITION 5. Let W be a Gaussian white noise, and let X=PD, W. If
P(&) is not constant, then X is not 0-Markov.

Proor. For any domain D in R, we denote by &%, (resp. ¥7) the closed
linear hull in LXQ2, % P) of {.{o, W(®))s; ¢ F(R",support (p)cD} (resp.
{ e, X(0)) 13 g:eS/(Rd),support (p)c DY), where L2, &Z, P) is a space of real-
valued random variables whose squares are integrable. Since {p, X)o =
AP(—Dyyo, W, it follows that ZpC527.

Let LZ*(R‘ﬁ):{ f; fl&) is a complex-valued function on R, Sxd P de< 400

and f(&)=F(—&) for every £¢ Rd}, and we define the inner product on L*.(R%) by

. g):<21 >d§ , f(&)g® dz for each f,ge L’ (R%), where Z denotes a conjugate
=) Jr

number of z for each complex number z. Then L*(RY is a Hilbert space. For
any domain D in R% we denote by Hp (resp. Kp) the closed linear hull in L*(RY
of {F[pl(&); p € FARY, support (¢) D} (resp. {P(—i&)F [¢)(§); ¢ € S(R?), support
() D)), where & is a Fourier transform.

We define a linear mapping @ from {<o, W(w)) o+ 0 € F(RY)} to L’y(RY) by
(Ao, W)y o )=F [¢] for each ¢e F(R*), then @ can be extended to an iso-
metric operator from S#&e onto L* (RY=Hga. It is easy to see that O(5#p)=Hp
and @(*5)=Kp for each domain D. So KpcHp for any domain D.
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Now suppose that P(§)=constant and X is 0-Markov. Since the set of roots
of P(—i&)=0 in R® is a closed set in R* and its Lebesgue measure is zero, we
obtain Kgra=Hri=L*(R%).

Let {D,, D.} be a pair of domains such that D,UD,=R% dis (D, D§>0, D, is
a bounded set and D, is not dense in R?, and set Dy=D;ND,. Since X is 0-Markov
and Gaussian, KDanﬁo is orthogonal to sznKéo, where K* denotes the orthogo-
nal complement of some subspace K in L?(R%). It is obvious that de:KD1+KD2,
so Kri=(Kp,N K5)®Kp,B(EKp,N Kp)=(Kp, N K3 )DKp, Since Kni=Hri=Hp®
Hp, and Kp,< Hp,, we get Hp,c Kp N Kp,CKp,. So Hp,cKp CHp,. Butwe shall
show that it is impossible.

Since D, is a bounded set, L*D,, dx) is continuously included in &’(R%), where
“'(R% is a space of distributions with compact supports. So by Paley-Wiener’s
Theorem, a Fourier transform is a continuous mapping from LDy, dz) to S7(CY),
where (€% is a space of entire functions on C* and its topology is introduced
by uniform convergence in wider sense. Therefore Hp, and so Kp, are continu-
ously included in (C?%. Since P(¢)#constant, there exists & e C* such that
P(—~i&)=0. By our assumption {P(—i&)F [¢](&); ¢ € S/(R"), support (p)CD:} is
dense in Kp, so we get Kp c{fe.(C%; fi&)=0}.

‘We assumed that D, is not dense in R%. So there exists zo=(xs, « -+, 25) € R?
such that the d-neighborhood U of g, is disjoint with D,. It is obvious that Hy is
orthogonal to Hp,, which implies HyCKp,. There exists ¢eCo (R% such that
support (¢)C{x € R%; dis (0, ) <1} and S . o@) de=1. Set g (r)=c % (w—m,)) for
0<e<d, then F [p.]e Hy. Since goe(;)—ﬁ(x—xo) in € (R% as =0, F[p.)&)—
exp (—i%- &) in SZ(C% as ¢—0, where §(+) is a Dirac distribution and z,- =&+« - -
+2x3-&.  Since lim 7 [g.](§0)=exp (~io- &) 0, there exists & such that

F g, J(€0) #0, which contradicts to the fact that HyC Kp,. This completes the proof.

Next let Y be a mean 0, stationary Gaussian random distribution with inde-
pendent values at every point. By I. M. Gelfand-N. Ja Vilenkin [2], there uniquely
exists a polynomial P(&) of é=(&, ---,&,;) of degree 2m with real coefficients such
that P(—&=P&), P@E&)=0 for each £e¢R® and Elexp(islp, Y0))s)]=
exp(——;— Sxd (P(D)o)x) - o(x) dx) for every ¢ e C;(RY).

THEOREM 2. (1) If there exists a polynomial r(Z) with weal coefficients such
that P(&y=w(&)-#(—&), and if P(&) is not constant, then Y is not 0-Markov.
(2) If PGE)#0 for any £ R* and P(£) is not constant, then Y is not 0-Marov.

REMARK 6. Since each mean 0, stationary Gaussian random distribution with
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independent values at every point is Markov, Theorem 2 gives an example of a
random distribution which is Markov but not 0-Markov.

REMARK 7. We conjecture that a mean 0, stationary Gaussian random distri-
bution with independent values at every point is 0-Markov, iff it is a Gaussian
white noise up to a constant factor.

Theorem 2-(1) is obvious by Propositon 5, since there exists a Gaussian white
noise W such that Y=#D,)W.

Notice that we can regard Y as an &°'(R%-valued random variable and the
measure on &'(R% induced by Y and P is Radon by Minlos-Sazanov-Kolmogorov’s
theorem.

To prove Theorem 2-(2), we prepare a lemma.

LEMMA 4. S7'(R% satisfies conditions (C-1) and (C-2).

Proor. Let (D, D,} be an arbitrary pair of domains in R® such that D, UD,=R*
and dis (D5, D3)=6>0, and set Dy=D,ND,. There exists some ¢ e C:(R?) such
that g , ¢(z) dz=1 and support (p)C{w € R*; dis (0, )< 5/6}, and there exists a con-

R

tinuous function ¢ on R’ such that ¢(z)=1 if dis (x, D)< /3, ¢(x)=0 if dis (%, D)<
0/3 and 0=¢=1. Now let y,=¢ x¢ and n,=¢ * (1—¢), where *+ means a convolu-
tion. Then %, and 7, are infinitely differentiable and their derived functions of
each order are bounded. Setting p(f, g)p,=7/+7:9 for any f, g€ (RY such
that f]p,=glp,, we find that the conditions (C-1) and (C-2) are satisfied.

Now we shall prove Theorem 2-(2). Suppose that Y is 0-Markov. It suffices
to prove that P(§)=constant. Suppose P(§)#constant. Let D(, ¢)=—(&+ -+
€)+c for each ¢>0. Then there exists a positive number ¢, such that D(&, ¢,)
and P(§) are relatively prime as polynomials of & Put q(&)=D(&, c)™*%. Then
q(i&)*/P(i€) is not a polynomial. Let Lu=q(D)u and Gu=F" [(1/q(i&)a(&)] for each
uwe ' (RY, where # is a Fourier transform of # and % is an inverse Fourier
transform. Then L and G are continuous linear mapping from SFRY to F(RY,
and L is local.

Put E;=E,=5"(RY. Since E;, E,, L, G and ¥ satisfy the assumptions of

Theorem 1, X=GY is 0-Markov as a random distribution. It is easy to see that

Elexp (io{o, X>o)]=exp [_i<i>d X PaS) e dg] for each o € C(RY). Since

2\2x rd g(i&)"
there is a constant A such that |P(i£)/q(i&)’|< AJ(1+&+- - - +E5)% for every ¢ RY,

we can regard X as a continuous function on R? with probability one (see M.
Reed-L. Rosen [10]). So X is regarded as an ordinary stationary Gaussian random
field whose spectral density is (1/27)%(P(i€)/q(i€)") and its reciprocal is locally inte-
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grable by our assumption. By Remark 1 X is a Markov field. But this contra-
dicts to the result of S. Kotani [4], because g(i€)*/P(i€) is not a polynomial. So
P(&) must be a constant. This completes the proof of Theorem 2-(2).

REMARK 8. The proof of Theorem 2 shows that we cannot adopt the Markov
property in Theorem 1 instead of the 0-Markov property.

7. Examples

Example 1. Let Z be a Poisson random measure on R, i.e. Elexp(i={e,
Z(w)>g,)]=exp(XRd (€™ =1) dw) for every ¢eCy(R%. It is obvious that Z is
0-Markov. It is well-known that support (Z(w)) is a countable set with no cluster
point and Z{e)=3 §(- —v): y € support (Z()) for almost every w. Let Q(¢) be a
polynomial of E:ZEI, -+, &) with real coefficients. Suppose @Q(£) is not zero, and
let Y=0Q(D,)Z. Then it is obvious that Y(w)=3 Q(D.)é(-+ —y): y < support (Z(w))
and so support (¥Y(w))=support (Z{w)) for aln‘fost every o. Since Z{w)lp=
Zuj o(—y): y esupport (Z(w)) N D and Y(a))lpzzyj QD.)Yo(» —y): yesupport (Y{w))ND
for almost every o, o{z{e, Y(©)s; veCi(RY, support{p)cDiV.4 =
a{support (Y())N.D} v -+ = e{support (Z()) N D} V A" =0{{p, Z(®))s; ¢ € Co(RY),
support (pyC D} v.# for any domain D in R*. So not only Z but also Y=Q(D,)Z
is 0-Markov. This fact is in a striking contrast to Proposition 5.

Now let E;=E,=5"(R% and let P(&) be a polynomial of &=(&,,---,&;) with
real coefficients such that P(i£)#0 for every €< R°. Let Lu=P(D,u and Gu=
F(PEENME)] for each ue S (RY). Then by Lemma 4 we find that E;, E,, L
and G satisfy the assumptions of Theorem 1. So, if ¥ is an &*'(R%-valued random
variable inducing a Radon measure on <’ (R%, and if Y is 0-Markov as a random
distribution, then X=GY is also 0-Markov.

Example 2. The random distribution Y in Example 1 satisfies Efexp(io<¢,
Y(0))5)]=exp Bnd (exp (- Q(—D)p(x))—1) dx] for every ¢ € Co(R%. So it follows
from Minlos-Sazanov-Kolmogorov’s theorem that we can regard Y as an &'(R%-
valued random variable and the measure on &*'(R?% induced by ¥ and P is Radon.
Therefore X=GY=.5[(Q(i€)/P(i£))Z] is 0-Markov.

Example 3. Let Y be a white noise, i.e. there exist a non-negative number

2
. ll—fill m(d2) < -+co and Y satisfies

Elexp (ia(p, YaDalmexp |~ | ol dut| | @ ~1—itg(e) damian) |

for every ¢ € Co(R%). It follows from Minlos-Sazanov-Kolmogorov’s theorem that

¢ and a measure m on R such that m({0})=0, S
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Y can be regarded as an &'(R%-valued random variable and the measure on &*'(R%)
induced by Y and P is Radon. It is obvious that Y is 0-Markov. So X=GY is
0-Markov.
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A note added in proof

Professor S. Kotani of Kyoto University informed me of the following prop-
osition due to L.D. Pitt [Some problems in the spectral theory of stationary
process on R? Indiana Univ. Math. J. 23 (1973), 343-365].

PROPOSITION. Suppose (X(x)}zcna is a mean 0, stationary Gaussian random
field whose spectral density function M) is a rational function (€ € R®). If {X(2)}zerd
has the Markov property with vespect to all half spaces, then 4(&)™ is a polynomial.

Using this proposition, we can prove our conjecture in Remark 7 similarly as
the proof of Theorem 2-(2).
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