Characteristic classes of S~foliated vector bundles

and Gel’fand-Fuks cohomology

By Hiroshi OHSATO

(Communicated by I. Tamura)

§0. Introduction

Let M be a C”-manifold and & be a geometric structure on M such as a
Riemannian structure or a symplectic structure (see below for the precise definition
of geometric structures considered in this paper). (In case there is no geometric
structure on M we set F=@.) Let WM, &) be the set of C”-vector fields on
M which preserve the structure .. (Such a vector field is called an $”-vector
field.)

Suppose U(M, &) is a Lie algebra with respect to the commutator [ , . With
C”-topology U(M, ) becomes a topological Lie algebra.

Let C™U(M, ) be the space of continuous skew symmetric p-forms on
WM, s”). Namely an element of C*((M, <)) is a continuous skew symmetric
multi-linear form on (M, )X --- X UM, &) (p-times) with coefficients in R.

The differential d: CPU(M, &)—C* (M, <)) is defined as

de(Er, -y o) T (=1 08, G5l e B e e )

i<g

The product C*(AUM, ) x C{A(M, FN—-CP UM, &) is defined as

N e ) ign (L PN, gy e ks
N (o s e g )

By this product and the differential C*((M, & N=OC* (AWM, ")) has the
structure of a differential graded algebra (denoted shortly by D.G.A.).

The cohomology of this D.G.A. is a graded algebra and called Gel’fand-Fuks
cohomology. This cohomology is denoted by Hr(A(M, ) (cf. [6]).

Let K be a compact Lie group which acts effectively on M preserving the
structure 5. K-basic elements of C*((M, &)} constitute a sub-algebra C*(W(M,
), K). The cohomology of this algebra is denoted by Hir(U(M, 7)Y, K).

Haefliger [5] has proved that this cohomology algebra gives characteristic
classes for the category of Diff (M, &)-foliated K-bundles, where Diff (M, &) is
the subgroup of Diff M consisting of diffeomorphisms preserving the structure 5.
This category is defined as follows.



280 Hiroshi OBSATO

Object: (E,S)

where E is a differentiable bundle M—E—X with fiber M and structure group

K, S is a Diff (M, &)’ -structure on E compatible with the bundle structure.

(Diff (M, &)’ is the group Diff (M, &) equipped with the discrete topology.)
Morphism: f: (E',S)—(E,S)

where f is a bundle map E'—E which satisfies the condition §'=f%S).

& induces a foliation % on E transversal to the fibers. ¥ is called an -
foliation and the pair (E, &) is called an $“-foliated bundle.

In this paper we consider the case M=R" (non-compact) and assume & satis-
fies the following condition. Let (w4, ---, %,) be the canonical coordinate on R”
and X:f} fi(d/ox;) be a C”-vector field on R". The necessary and sufficient con-
dition f(;; 1X to be an ¥ -vector field can be expressed by a system of linear-dif-
ferential equations (not necessarily constant coefficient) w.r.t. (fi -« fa).

For example symplectic structure, volume-preserving structure and Riemannian
structure satisfy this condition. We also consider & -vector fields on R™ which
vanish at 0. % -vector fields on R" which vanish at O constitute a topological
Lie algebra %,(R",&*). Her(U(R", ), K) can be taken for the characteristic
classes of -foliated vector bundles and Hir(¥(R™, &), K) can be taken for the
characteristic classes of S -foliated vector bundles whose base spaces are leaves.

THEOREM 1. Let
¢ C*QUR", P)—~2px(X) (resp. ¢: C*U(R", F)—25x(X))
be a continuwous D.G.A. homomorphism with respect to the dual topology on
C*(U(R", &) and the C-topology on Qsn(X) where Q3x(X) is the de Rham com-
plex of X. Then, there is a unique foliated vector bundle structure & on XX R"
(resp. with X< {0} a leaf) such that the characteristic homomorphism 2. of F:
Agi CHUR, &)—-25x(X) (resp. C*U(R", F)—2pa(X))
cotncides with ¢.

This theorem shows that the existence of some kind of foliated vector bundle
can be determined by an algebraic condition.

The author does not know, however, whether % may be an S“-foliation or
not {see §4).

Next, we consider deformations of $-foliated vector bundles. Set AR, )=
AR, YQRIE)E) (resp. o(R", )=UA(R", &)X R[1]/(t), where () stands for
the ideal generated by #. Lie algebra structure is defined by

[E+2n, &' +t9'1=[¢, &1+1(&, 71+, €] .



Characteristic classes of S -foliated vector bundles 281

It is shown that Hix(W(R", &), K) (resp. Hir(3(R", ), K)) can be taken for the
characteristic classes of deformations of S-foliated vector bundles (resp. whose
base spaces are leaves).

THEOREM 1I. Assume =@, then the inclusions

CLAUR™, K)yc C*AUR™, K)
Cr(U(RY, K)cC*(A(R™, K)
<resp. Ch@(R™), K)c C*@y(R™, K))

2 ULo(R"), K)cCHAL(R™), K)

induce isomorphisms on cohomologies, where Ch; stands for the sub D.G.A. con-
sisting of elements supported at 0.

This theorem means that the above construction of characteristic classes is
essentially equivalent to the construction given by Kamber-Tondeur (cf. [12]).

REMARK. It has been shown by Bott [2] that the inclusion Ch(2(R™)c C*(A(R™)
induces an isomorphism on cohomology. We prove Theorem II in similar way.

The author wishes to express his hearty thanks to Professor I. Tamura and
Professor S. Morita for many valuable comments and suggestions.

§1. Construction of the characteristic homomorphism Hi»(A(R", &), K)»Hpx(X)
(resp. Hip(%o(R", &), K)—Hpr(X))

We consider the case of Her(3(R", ), K). K acts on Y(R", ) as follows.
For ge K and £cU(R", ) we define g.&eA(R", ) as (d/d)(g-EXp t&-g™")|s0,
where Expt¢ stands for the local 1-parameter transformation group of R" gener-
ated by &.

Let %k be the Lie algebra of K and A<k, then expt4Ae¢ K and acts on R
preserving <. Therefore (d/dt)(exp tA)]i= € WR", &) and k is a sub Lie algebra
of R", ). We define C*(U(R", &), K) as

ce C*UR", ) «(A)e=0 for YA e k}

CTRIER ) ) gfc=c for Yge K

Let E5X be an #n-dim. vector bundle and ¥ be an .%-foliation on E transversal
to the fibers. Let {¢y} be the maximal atlas on E which represents %. {U} is an
open covering of X and ¢y is an isomorphism = (U)—~U x R” such that p, c op=r,
where p; is the 1-st projection UxR"—U. We can write

op e op: (UNUNYXR—(UNUYXR"

ov o 9@, 2)=(x, ropr 2 2)  xeUNU' zeR",
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here 7yp: UNU'—Diff (R*, &) is locally constant and {z (U)2L:U xR“—pzeR”}
determine leaves of . Let {¢y} be the maximal atlas of F considered as a K-
bunble,

gy o grr: (VNV)XR (VA V)XR"
$v o Pyi(x, 2)=(x, kyv-(@) o 2) ze VNV’ zeR"
where Eyy: VNV'—K is a C -map. {¢y} naturally introduce a Diff (R", &)-
structure on E. By compatibility of &, {oy} are Diff (R", &°)-isomorphisms with
respect to this Diff (R", &)-structure. Consider
puo g (UNVIXR—-UNV)xR"
Pu ° 9[’;’1(90: 2)=(%, huv(x)-2) zeUNV zeR"
where hyy: UN V-Diff (R*, %) is a C™-map. The following equation holds
hy v (@y=ry.v-huv(x) kvy(x) .

Now for hyy: UnV—Diff (R*, ") we define (hiv)e: TL(UNV)-UR", &) as
follows. Let

seTUNY), é=%a)|  a0=q,
dt t=0
then
(1) 5 50(0) « hua(®)|

For ce C*U(R", &) we define kivce D5x(UNYV) as
(Bove)(Er -+ EY@)Z c((hrv)alED) - - (hov)a(Ee)
where &;eWUNV), zeUNV.
LEMMA. If ce C*QUR", ), K), then {hgvc} determines a global form.

Proor. It suffices to show hpv.c=hure. Let

Ee T UNUNVAV) 5=ix(t; |

a",  eO=s

and we compute

(s )o6) = Uy (@(O) oy (a(O))

0

= %[k;%n(x(O)) by (@(0)- 7rullry v hov(@(®) - kv (@@))]

it=0

= gg[k;lvr(x(o)) Ry (#(0)) - huv(w(@)) - kv (O vy (@(O) vy (@())] ‘

t=0

= (B y (2(O))x[(Rv)a(8)] +—%[kr7§'(fc(0)) . kvvr(x(t))]l

t=0
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Since (d/dt)[Ery{(2(0))- kyy(()]|:=0 € B, We obtain
h§'V:c=h§Vc . q.e.d.

The homomorphism C*(W(R", &), K)—25(X) constructed in this way is de-
noted by 2.

LEMMA. A, cd=do .
Proor.
* Lty i1 ’ 7 '
(dh c)(&ly Tty E(I+1)=i§1 (—1) Sic(h Ely ftty h E’i) Y h 6'1-4-1)
B D e €51, W, e W o e W)
(h*dc)(gly MY E(Hd): §5(~1)£+j_lc([h,§i’ h,Ei]’ h,gly Y @, M }?Ej’ ctty hISqﬂ) .

It suffices to consider the case when deg c=1, A: R*-Diff (R", &), &,=8/d% and
£&,=08/dy. Let F”(R" be the space of C”-functions on R". For (x,%), (Z,%)c R’
we can define an automorphism of F“(R"™ by [hay ° bl F(R—F (R".
Fix (z,9). peR", fe F*(R™). We have

L ( ) f=2 a_akw Y TR 0))

his, w( ) f—-

If we describe £/(,,,,(3/0x) and ki, ,,(8/0y) as

Z=z

L. ( )=, 4 ) e FRY

' ( . ) % bite, y) b, y) € F(R")

then
(o)
=% <Z @ y) Ol y))—— z ( % bia, y) (@, y)) Z,,

Z ai(x, y) bk(x Y)=h{s, y)( ax>bk(x, Y)

_ i /] _
=%<[h<;,w o Iz ] bl y»i = —-buZ,7)

z=2

9
= awbk(ao, Y) .
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Similarly

F 3
Zi: bi(z, sz; az, y)—@ak(x, Y.

G G = G ()

For ce CHYU(R", &), K)

ol 5)-SH3))
(

Therefore

Similarly

(" (G)=(55#(3)-

oy ox oy ar
Therefore the equation [4'(3/dx), h'(3/3y)]=(3/6x)R’(3/3y)—(3/dy)k’(3/6x) implies
dn*c=h"dc. q.e.d.

By this lemma, 1. induces a homomorphism
Her(W(R", &), K)—Hpr(X) .
This is also denoted by ..

DEFINITION. Let (E,, %,) and (E;, %) be n-dim. & -foliated vector bundles
with common base space X. (E,, .%,) and (E;, ¥, are said to be intégrable
homotopic if and only if there exists an n-dim. & -foliated vector bundle (E, %)
on XxI s.t. (E, # )| Xx{0}=(E,, %) and (E, & )| Xx{1}=(Ey, F7).

LEMMA. 2. depends only on the integrably homotopy class of (E, 57).

Proor. Let ce C*((R", &), K) be a closed form. We write 1-(c) € Q5z(Xx )
as
ia(O)= T fipif(@y e T, O A Nda;,
1< <ig

i

-+ pa Gipoeiqa{®r = v Tomy t)da:jl/\ <o ANdwg, g AdE

Fy1<-<ig1
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where m=dim X and ¢ is the coordinate of I=[0,1]. By the naturality of the
characteristic homomorphism 1,

Io 0= ()| XX} - (=0,1).
Therefore

e 0= D fi,ig(®e e Ty DAL A AT, (1=0,1) .

<<
The equation dA(c)=1(dc)=0 implies

p ("‘1)‘1%_]‘;;1...,;4(%1 et By t)da:il/\---/\dxiq/\dt

3y
9

1< <fg~q Feldp--dg—1} ax]

-+ Giyeedqoi(@1 =+ T, AT A ATG N - Ndxj,_ Ndt=0.

We define ¢: Q5x(Xx D—25(X)QF(I) as follows:
(pw)(€y - 5q—1)d§€0<§1 cee gq—1 %) for we QT)R(XX I,

where & e %(X) and &; is the natural lift of & to W(XxI). Then

PAAO)=_ L. Giig (%1 T, tdw; N--- /\doc,-q_l
yl<"'<]q——1 :

S‘ dt: DHEORF ) — 25X
0

J1<'-~<jq_1

1 1
SD ¢/ig-(c)dt: P (& gjl...jq_l(ﬂh (R xm)dt>dxj1/\ LRIV dqu_l .
0
‘The following equation holds.

[z(g: oA (0) dt):(-1)4*‘{zf1<c>—zfo(c)}

) d(&: goiﬁr(c)dt>

a 1
= > > f(g Gipeerign(BL s * Tm, t)dt)da;,-/\ dxi N« Ndws,_,

§1<-"TGgm1 ety de1t 025\ Jo

1 9
:S {51<~~§jq_1 jed X Giyiqi(®1 ** T, DA AT5 N - - - /\dx,-q_l}dt

0 Gydg—1} 0%;
1 ~
=\ (=1 L fii@y e T, i, A A
So{( P B g i@, O /\a’xq}dt
13
:__lq+1 <87 P e B ) ; “en ;
D S I R A , t)dt Ydzi A+ Adas,

=(=D" 2 (=27, (O)} -

Therefore the lemma results. q.e.d.
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§2. Construction of the characteristic homomorphism H;F(Q(R", ), K)=»Hp(X)
(resp. Har((R", &), K)~Hap(X))

Let (R", &)=UR", )QRIL/(#). An element of A(R", ) is expressed in
the form of &+1¢y, £, e W(R", ). Lie algebra structure is defined as

[&-+in, & +1y1=[€, §'1+41E, 7'1+In, €D .
K acts on H(R", &) by ga(&-+in)=g.&+igsy. We define C*AR", &), K) as

ce C*QUR", )): ((A)e=0 for VA e k}

C*AR", &), K :{
(i ), K) g*c=c for Vge K

Let (E, &) be an n-dim. S -foliated vector bundle on X and & ={%,} be a de-
formation of #. (We fix the bundle structure of E.) Then {£} is a foliation
on EXR and (EXR, {&,}) is a foliated vector bundle structure on X (not neces-
sarily an S -foliated structure). The structure group of this bundle is KXid. Let
{hyv} be the transition functions associated with (ExX R, {&3}):

hyy: U V-Diff R* .
Also let {hYy} be the transition functions associated with (E, 53)

tv: UnV—Diff (R", &) .
By definition of {7}, there is no (9/9¢)-component of (ﬁfm)zée A(R", ) and the
equation (ﬁé]v)zflExX(t}:(htt/{V)zf holds for £e T, (UNYV), where E, stands for the
fiber over z¢ X.

LEMMA., If i}l Sfilz, 1)(8/0%:), is an S -vector field then i}l @/at)fi(z, )le=0(0/0%:)=
is also an -vector field.

PrROOF. Let Li(fi(x), -+, fa@)=0, - - -, Lpa(fi(2), - - -, f2(@))=0 be the system of
linear-differential equations which represent the necessary and sufficient condition
for X=73 fi(0/0z;) to be an S -vector field. Since each L; is a linear differential
equation,

>=%Lk(ﬁ($, t)’ e :fﬂ(wi t)) =0.
t=0

t=0

] 0
Lk(gfx(x, ”Lo’ ey S,

Therefore i}l (0/ot)f iz, t)|:=0(d/02;), 18 an F-vector field. q.e.d.

By this lemma JExo((Atv)2€) =(huy)sé +t-(d/d)(Hiv)aE| =0 is contained in A(R", ).
This is denoted by &,. For ce C*(R", ), K), hivce Qi(UNV) is defined as
(htve) (€ -+ @ Ec(Ere -+~ Eaa)
where &;eWUNV), zcUNYV.
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In the same way as 2, we can construct the characteristic homomorphism
gt HEx@R", &), K)~Hpu(X).

Next we consider the relation to Her((R", &), K). Following [8], we define
a map var: C*QUR", &), K)~C*UR", &), K) as follows.

g
(var-c)(&i+tgy -+ Eq"‘t%)d:“g:l (R TR TS TICIET - I8
Though var is not an multiplicative homomorphism, the relation
var (¢c-¢')=var c-¢'+c-var ¢/

holds. Since d-var=var-d holds, varinduces a cohomology homomorphism:
Hin(U(R", ), K)—Hir(UR", &), K). This homomorphism is also denoted by var.

PROPOSITION. The following diagrams are commulative

Hir(UR", &), K) Her(WR", &), K)
var \P*
*\‘ oY I *\‘ St D7
(/a2 g1y D/HGF(QI(R , ), K) 2o D/HG’F(%(R , ), K)
LY. Lo
263 oIl Xy

where p is the natural projection.
PRrOOF.

E=(hyv)E+2- <j e

(A pvar-o)(& -+ )=(var- o) -+~ &)

)
a d

=X (kUV$1 cee h{W&qE v

i=1

B - hémsq>

t=

':iic(hillv'gl v tU'VEq) C(EI Eq) C]Ed

2
o dE T

£=0

DEFINITION. Elements of Ker {var: Hax(U(R", &), K)—H:x(UR, &), K)) are
called rigid classes.

If ae Hi-(U(R™, &), K) is rigid, then by Prop. 2As,(«) is constant for any
deformation {F}.

REMARK. In the case of U(R", ), it suffices to replace Diff (R", &) by
Diff, (R", &) in § 1 and § 2. Where Diff, (R", &) is the group of S-diffeomorphisms
of R™ which fix the origin.

§3. Proof of Theorem I
THEOREM 1. Let ¢: C*UR", ) —25p(X) (resp. CHU(R", FN-025r(X)) be
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a continuous D.G.A. homomorphism with respect to the dual topology on C*UR", )
(resp. C*(Uo(R", &))) and the C™-topology on Q3p(X). Then there is a unique fo-
liated vector bundle structure 7~ on XXR" (resp. with Xx{0} a leaf) such that the
characteristic homomorphism 25 of F coincides with ¢ (cf. [5] [11]).

It is not yet known whether % may be an < -foliation or not.
Proor. (i) The case when & =¢.
Let d;,...;(x) € C(U(R™) be defined by

Oyl B S ) = 5 o)

0%;, - -+ 0%;,

Let Uc X be a local coordinate neighborhood and (a, - - - «,,) be the local coordinate
on U. {9/da, --- 3/day,} forms a frame of TX|U. Consider {H(5%(x)), (8/0a;)(p)) € R
(i=1,---,m, j=1,---,m) for $(3%(x))e Rpa(X) and peU. This is a C”-fuxgction
w.r.t. p. We show that this is also a C™-function w.r.t. z. Set £=(0---£0

0 eR" (e R).

hm——{<¢<5 @), <p>> (s0'@), 5 (p)}}

= <¢<I}g} MS)__E_(@_

r ), %(P)> (" ¢ is continuous).

Since lim (6%(z+£,)—o*(x))/f=5(x), the limit exists. Therefore the limit
-0

lim - {<¢<5 @+, o (p)> <¢<5‘(x», <p>>}

exists. In the same way it is shown that <{¢(6°(z)), (3/da,)(p)> is C-differentiable
w.r.t. z. When (6/da;)(p) is fixed, é}l@(éi(x)), (9/0a;)(p)>(3/0m:); is a C™-vector
field on R". We denote it by ¢;((3/0a;)(p)). ¢5 is an R-linear map T,U—%(R™.
Let 7: XxR"—X be a projection and z,: Xx{x}]—X (ze R™ be the restriction of
= to Xx{x}. =, is a diffeomorphism.

We define a codim# subspace E, . of T, ., (XX R") as a space spanned by
(7 2((38a;)(P) — (@) (P)) )} (F=1, -, m). E ;. does not depend on the choice
of local coordinates, and depends ‘‘smoothly”” on (p, z). =: E, —T,X is a diffeo-
morphism. {E, .} constitute a codim #»-plane field on XxR". If this plane

field is integrable, it determines a foliated vector bundle structure on Xx R".
Now we have

dé' ()= é 8°(x) A 6 ()
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(gds'@, i(p)A—a—<p>>
= (90w ngile), - <p)A—<p)>
=5 (@), 5&;<p>><¢6 @) 5 ) = (970, 50 ()98, 51D

— 3 (97, —ai—j<p>>5w—s<¢a’<x>, o )= (950, 50 500, o

Therefore

& (sar'@, 5L o)

)= 9 ) 51w |eum

On the other hand

(@@, 5050 (p)\( )

- )= o o)~ [ o )

héfl<¢a<>,q <p>> 9@ ) (7 [ [50).

Therefore

950, @) 83 (50 D) |7 50 85 (50 ) 593 (- @)
| (5 ®) =950, )@ =2 50 ) = 53500 |
= (5, ) (0. @) [ =G ®). 30 ) |
J{n,(—(m) 5 (500 )@ [+ 63(50 @), 815 ) o
P ) CRPC Pt SRR o) R CoR e N

=0.

Therefore {E, .} is integrable.

Let & be a foliated vector bundle structure on XX R" induced from {E, ,}.
Let % be the transition function associated with (Xx R", %), By definition of &,
7y ((3/0a;)(P)) = ((3/da;)(p)) holds. Let A,: C*AUR™)—25r(X) be the characteristic
homomorphism of &
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<xf(a‘<w», a (p)>= 6"(x)(h;% <p>>=a‘(x>(¢:f 52— ®)

g
=<¢<a‘<x>>,5i—j<p>> for Vj=l,---,m, VpeX
20 @)=¢@ () for Vi=l,-.-,n, VzeR"

I SHm+1)— ()
30 = lim zf(——t———)

=1im tl{xf@*'(xw,))—xf(a%x))}
=lim %{gb(ai(st))—sb(a"(x»}

=¢(35(x)) .

=lim
t—0

( 5 +t,t)— 8 () )

Repeating this argument, we obtain
A (@55, @) =(05,...5,())

Let Z; be the sub-algebra of C*(A(R™) generated by {6;11..‘ i@}, then 2 ~=¢ holds
on Zj.

Since Z; is dense in C*(U(R™), 1-=¢ holds on C*R™). Let & and &’
be foliated vector bundle structures on Xx R" s.t. 2,=21,, then the plane fields
of & and %’ coincide with each other. This implies the uniqueness.

In case of C*(¥,(R") we can prove in the same way using 6°(0)=0 lim &*(z)=0.
(ii) The case when = Q. -

Let Li(fil®), -« -, fal@)=0, -, Lp(fi@), + - -, f2(&))=0 be the system of linear-
differential equations which represent the necessary and sufficient condition for
X=3 fi(0/ox;) to be an S -vector field.

Replacing terms (3°:/(0x;, - - - 33;,))(@) in Li(fi(%), - - -, fu(®)) by 65,...;,(@)(X), we
get the system of linear-differential equations L,(8'(x), - -+, 8™(@)), -+, Ln(6(@), - -,
o™x)). Since Ly(8'(), -« -, S"@NX)=Li(fi(&), - - -, fo(x)), the necessary and suffi-
cient condition for X to be an S-vector field is L,(6'(®), - - -, 8"(@)(X)=0, - - -,
L (8 (@), « -+, 8"(@))(X)=0. We show that ¢;((3/a;)(p))= §1<¢5"<x), (8/9;)(9)>(3/05).
is an S-vector field. Since L, is a linear equation and

5

<¢6‘(x>, 52— <p)> = <¢5§-l. i), 53— (p>>

holds,

Lk(<¢a‘(x), a% <p>>, e <¢6”<x>, a%(p)» = <¢Lk<a‘<x>, o, 8, (p)>=o .

a;
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Therefore ¢3((3/0a;)(p)) is an F-vector field. Moreover, since AR™ is locally
convex w.r.t. C™-topology, we can apply Hahn-Banach extension theorem, and
conclude that C*E(R™)—C*QUR", ) is a subjection. Using these facts we can
show that ¢=21,. Uniqueness is proved in the same way as case (i). q.e.d.

Example 1).
We define a continuous D.G.A. homomorphism ¢: CYU(R)—25z(SH) as

Do) =a-p, 43" (@)=p, ¢ (x))=0, ---, where z is the volume element of S.

By Theorem I there exists a foliated vector bundle structure % on S'XR
with S"x{0} a leaf. Moreover, the characteristic homomorphism A, of & coin-
cides with ¢ and 2,1 Hegr(U(RY)—Hpz(S") is a non-zero map.

SIXR

St
7 ~
s N 1] [y 1) \
S M ' [} M 3
T t 1
i .
: « '| F
1 1 1
N N t A
i 1 1
1 \ A
+ ’

The normal bundle is trivial:

Example 2).

Let & be a codim l-oriented foliation on M™.
WF)=M"XR. Let w be a 1-form on M" defining #. Since do Aw=0, there
exists a 1-form 8 s.t. do=wAf. The Godbillon-Vey form G.V. (&) is represented
by 6AdBe Q5x(M™). Since o Adf=0, there exists a 1-form 5 s.t. dd=wA.

Let X be a vector field on M™ which is transversal to & and satisfies the
condition w(X)=1. Let ¢; be a 1-parameter transformation group generated by X.
We define a continuous map ¢: C*(URY)—Q5z(M") as

o) =9 0
G0 () =Ly s0=((X)d+de(X))pZ 0
=¥ 0—0(X)p* 0
P (@)=L xpt0— (X)L xp 0
=% p—(X)p* 0 +d0(X)~0(X)p 0 +0(X) 0% 0 .
Then, d¢=¢d holds, and ¢ is a continuous D.G.A.-homomorphism. By Theorem
I there exists a unique foliated vector bundle structure Z on W(F)=M"xXR and

¢=24 holds. Since
2B A @AY () =—0%, G.V. (F )40 .d0(X) -0 AO) ,

the homomorphism A;: Har(QURY)—Hsp(M™ transforms a generator 6(0) Ad'(0) A
5"(0) into the Godbillon-Vey class of & (cf. Theorem II).
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Example 3).

Let & be a Riemannian structure &2 on R", then U(R", )=so(n) (cf.
Matsushima “Introduction to differentiable manifolds’”). Therefore C*(¥(R",
)= A*so(n)’, where so(n)’ is the dual space of so(m). Regarding A*so(n) as a
sub-algebra of 25z(SO(%)) consisting of left-invariant differential forms on SO@),
a continuous D.G.A.-homomorphism ¢: C*(Uy(R", &) —025(SO®)) can be con-
structed. By Theorem I there exists a foliated vector bundle structure & on
SO(m)x R" s.t. ¢=2,. Moreover, by propositions in § 4 & is an “2-foliated struc-
ture. The homomorphism A,: Har(Ue(R", #))—Hpz(SOn)) is an isomorphism.

SO(2)=S!

SO@2)x R?

R?

REMARK. When =@, R" can be replaced with a paracompact manifold M
in Theorem I. In case of (M), some point on M must be fixed in advance.

Proor. Let U=(U, (%, --- x,)) be a coordinate neighborhood in M and ae U.
8% .. i) e CYAU(M)) is defined as follows. When X e %(M) and we denote Xly
by X1U=§1ﬂ<x>(a/axi)z,
»
<. 0%

Js

@ (X)E Sfx(@) .

ale .

Let U'=(U’, (x1 - -+ x+)) be another coordinate neighborhood s.t. ¢e U’. Similarly

7'8%,...5,(a) € C'(U(M)) is defined. Ua"(a)zki @(x; - 2" )/wr) (@' (@))” 0%(a) holds. Let
=1

¢: CHUM))—25x(X) be a continuous D.G.A.-homomorphism.

3 ( ai] <¢<”5 (@), 5 (z>)>< =)

m—aa—)@o (a>><¢(”’5 @), 5 (p)>(

).

= 3 {976 (@), ~~<p> z M(w (a))( - >

=2 (0@ (‘”Xai;)a

:U’¢:(aaj (1>)> :
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Therefore {Y¢*((3/0a;)(p))}y determine a C”-vector field on M. We denote it by
$2((@/0a;)(P)).

In the same way as M=R", there exists a foliated bundle structure .¥ on
XXM and

@75 . i (@) =2 (U5}, 1 (a))

holds on any coordinate neighborhood U.
Since M is paracompact, there exists a countable covering of M by coordinate
neighborhoods and there exists a partition of unity subordinate to this covering.
Moreover, ¢e CP(U(M)) has a compact support and its local restriction by a
partition of unity can be written as

lope.xvp= & SU XU play -+ 0) 185 (@)D - - @0, (w,)day -+ - d,
i »

(cf. [6]). Therefore the subalgebra Z;(M) of C*(U(M)) generated by {05’;1... s} is
dense in C*(UA(M)).

Since ¢ and A is continuous, ¢=2_ holds on C*(U(M)). In case of C*( (M)
Y5*(@)=0 and l}nax Us*(2)=0 holds for the base point ¢ and any coordinate neighbor-

hood U, and we can prove in the same way.
Uniqueness can be proved in the same way as the case of M=R". g.e.d.

§4. Some condition for ¥ to be an “-foliation

PRroPOSITION 1. Let G be a finite dimensional Lie group and H be its closed
subgroup. Let g=T,G and h=T,H be associated Lie algebras. Let x)cG (fc R)
be a C™-path such that z{0)=e.

If (d/dt)x(to)‘l-a:(t)]t=t0 is included in T H for Vi € R, then x(t) e H (t € R) holds.

Proor. Homogeneous space G/H is a C”-manifold. Let z: G—G/H be a natu-
ral projection and e==le). Z{)=rox() is a C”-path in G/H s.t. ¥le)=&. Let
Zy! ToG—Trz)(G/H) be a homomorphism induced from = and L. ,: G—G be a
left-translation by «(). Then we get 7y o Ly x=La % © 7y and

t=t0>

25| =r. (%x(t)it:to)=ﬂ*Lmo,*(%x<to>“-x(t)

=1y

=L,(t0,*7:*<d%x(to)—1.x(l‘)i ) .

it=tq

Since T .H=Ker {r,: T.G—>TG/H)}, (d/dt)x(to)”l-x(t)[mo eT.H implies
:r*((d/dt)x(to)'l~m(t)[t=to)=0. Therefore (d/dt)z(f)|i=:,=0 for Vi,e R and Z(0)=eé.
Z(t)y=¢ (i.e. 2(¢) € H) results from this. q.e.d.
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We give some condition for &~ in Theorem I to be an S -foliation in case of
U(R", &).

The general linear group GL(#) can be taken for a subgroup of Diff, R*. On
the other hand, there exists a differential d: Diff, R"—GL(#n). d is a homomorphism
and identity on GL(#). The Lie algebra gl(#) of GL(n) can be taken for a sub-
algebra of U (R" and the projection p: U(R™)—gl(z) is a Lie-homomorphism and
identity on gl(s).

Assume Diff, (R", &) is a closed subgroup of Diff, R". We define GL(n, %)
and gl{n, &) as follows. »

GL(n, &)%Diff, (R", &) N GL(n)=d(Diff, (R", &)
gl(n, F)EAL(R", &) Ngln)=p(U(R", ) .

GL(n, %) is a closed subgroup of GL(#) and gl(n, &) is a Lie algebra of GL(%n, ).
There exist continuous D.G.A.-homomorphisms p*, i* such that

CHUR", SNS A aln, ) i o p*=identity,

where 7 is an inclusion.

PROPOSITION 2. Let ¢ CH*UL(R", N—25x(X) be a continuous D.G.A.-homo-
morphism and F be a foliated vector bundle structure on XX R", such that ¢=2,
(cf. Theorem 1). Then, if there exists a D.G.A.-homomorphism ¢y: A glin, &) —
Q3 p(X) such that =¢0i*, F is an -foliation.

ProoF. Let {hy: U—Diff, R"} be the transition functions associated with 5.
Corresponding to & we define a foliated vector bundle structure d¥ on XxR"
as a foliated structure whose transition functions are {dhy: U—-GL{#n)}. Since
P o hy=(dhy): TU—gl(n), 2+ op*=2s holds. If ¢=¢;+i*, then ¢=¢p*=
Ao P =g, p=¢y 0 =234 o i =145. Therefore, by uniqueness, & =d.¥. This
implies (hy)'=(dhy): TU—gln). On the other hand, (hy): TU-U(R", ).
Therefore (dhy): TU-UJ(R", &) Nglin)=¢l(n, ). Let ae U be a fixed point and
%(f) be a path in U such that z(0)=a. If we define ¢(f) as o()Sdhy(a)™ o dhy(a(t)),
o) is a C™-path in GL(n) and (d/de(t)™" ° ¢(t)le=s,=(dR0)(d]dB)a(t)]i=t,) € gUn, )
holds for Vi, R.

By Prop. 1 ot)=dh(a)™ o dhy(x(®)) € GL(n, &)CDiff, (R", ). If U is con-
nected, dhla)™ o dhy(z) e Diff, (R", &) for Vz e U. If we define Ay # {(U)SUXR®
as hp=dh(a)™ o dhy, hy is a diffeomorphism preserving the structure &*. Moreover
hn=dhl; holds. {fhy} can be also taken for the maximal atlas on XX R™ which
defines % =d.%. Therefore & =d¥ is an S -foliation. g.e.d.
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By Prop. 2, in case of Riemannian structure, % in Theorem I is an .-
foliation (see §3 example 3). Moreover, if 5 is a finite order G-structure, &~
in Theorem I is an S -foliation.

§5. Proof of Theorem II
THEOREM II. Assume =@, then the inclusions
CrU(R", K)cC*U(R"), K)
Co(A(R"), K)cCXUR™, K)

(resp. CE@(RY, K)cC*@,(R™, K)>
C:t(%o(Rn): K)CC*(QIO(R”), K)

induce isomorphisms on cohomologies, where Cy, stands for the sub D.G.A. con-
sisting of elements supported at 0. (cf. [3])

PRrOOF. We consider the case of ChLQI(R", K)cC*GUR™, K). Let
AR 58+ $=§_§1 f};‘i— 1= gin -
Then 3,...;,(®), p},...;,x) € C*QAUR™) are defined as

i i d_"t.'___.a_s'é_.._
5al-~~ax($)($+t77)"‘ ale e asz @

055 -5@NE+ I = 3(13;;1 ooe 025, @

An element of CY3(R™) can be written as follows

Sw ;z(x)Bﬁ-l;. s (@)d Si v(x)pﬁ-l. —imdx

where g, v are continuous functions on R" with compact supports.

We define an automorphism %, ((#0) of R” as hy(x)=¢-x. k. induces an auto-
morphism A} of A(R™), therefore induces an automorphism 4 of C*QI(R™). Since
hi o g=g o h; holds for ¥ ge K, h¥ induces an automorphism #* of C*(GU(R™, K).

{hféﬁ-l...js(w)::tl_séﬁ-l...5,(t“1x)
Bt 0%,...5(@) =t 0%, .. 5 )
holds.

LEMMA. Lm (/8" exists.
t—co

PRooF. If s>1, there is no problem for 65,...;(x) and p},...;(x). Suppose
s=0. Moreover suppose #=1 in order to simplify the proof. The worst type is
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denoted as follows.
c=§ &y - Tp Yy o YDOBIA -+ NO@D)APYDN + - Np(Y)ay + -+ A, Ay, - - - dy,

B c=1 S s By s e YDI@DA -~ NS AW A - -+ A p(ylt)
Xdxy - de, dy, - -+ dy, .
We compute the order of
{B(xl/t) Ao AO(&p/H—0 (t—c0)
YA -+« A p(Yo/t)—0 (#—00)
& € W(R") is denoted as &;=f,(x)(3/0x) (i=1--- p). We assume fi(x)=a;+b;x (terms
over 2nd order can be ignored).

(2 /E)(Ey) « - - 5(w1/t)($p)
SN« NO(@t)Es -+ E)=] - :

(@ D)E) - - Bl lE)ES)
ay+bi(zyt) - - - ap+bp(x1/t)

Il

a1+b;(x,,/t) cee a,,-%—b;(x,,/t)

» bx(ah/t) rec by bp(ﬂ’l/t)
o
bl(wp/t) (/2 bp(xp/t)
/\
i
Similarly
PN+ Npalt)(- - - )=TX{ }
PRI EI=1
Therefore lim (1/9h7 exists. q.e.d.

hm (/8 )h, is a homomorphism from C*@(R™, K) to Ci@(R™, K).
For R= Z x:(8/0x;) we define 0 CLAUR™)—CEOU(R™) as

(0Rc)($1+i771 bl Sp"{‘tnp)gi;l C($1+t771 T [€1+t77w R] A 5p+t”p) .
Since g.R=R and [A,R]=0 hold for Vge K and VAck, 6z C;t(ﬁ(R"), K)y—
C:z(ﬁ(R"), K) is induced. The equations

{0};53’1. . '53(0): a _5)531 . -.’0'3(0)
Or05,...5,(0)=(1—5)03,...;,(0)
hold.
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We define the eigen-space Ch:(2) for 8z as

Ch()E{ce CEAR™, K): Orc=2c} .
LEMMA. Cj.(3) is a sub-complex of CE(UR™, K).

Proor.
dé*=73 6* Ao}
1 Ry .
dp :2;_,‘ 3 /\pﬁ—%} A
@ {0a/azk5§~1...js:-—&%l...js,k
00/0205, .- 55= 05, -Gg.k
a 0
3 dol—=0—od.
3 oo U am
Using (1), (2) and (3), we can prove dCh()CCh(2). g.e.d.

CHEUR™, K) splits as follows.
CoUR™, K)= @ Cr(d) .
Since z=d o tp+ip o d, H*(C}(2))=0 for 2#0. Therefore
H*CHQUR™, K)=H"(Ch(0) .
We define a filtration {F*C*(R™, K)} of C*@(R"), K) as

F*C*QU(R™, K)":‘-f{c e C*U(R™, K): }im —t—lfhi"c exists} .

We get C*(I(R™, K)=F*"C*>F™C*>... and oeF“lc*ﬁFxc*%c:tw—»o is a
splitting exact sequence, where 7;=lim (1/tY%} and ¢; an inclusion.z
t—oco

C*'=F"C*oF*™C*>...0FC*>FC*>... .

T2n 7an—1 7o T-1
Co2n) Co2n—1)  C3l0) Ch(—1)
‘We have

C* AR, K)y——C3HR", K)
inclusion /inclusion
C3:0)
Since H*(C}(A(R™), K)=H*(C*,0)) is already proved, we have only to prove
H3QUR™, K)=H*(C%(0)). We construct a map inverse to ¢ H*(ChH(0)—
H}»Q(R™, K). Define

Z*AUR™, K)={ce C*EUR™, K): de=0)
B*A(R"), K)2{ce C*UR™, K): c=d 3¢/} .
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Let ¢ be an element of ZE(R™, K). Since H*(CE(2n))=0, yec € Z1(2m)=B%(2n).
Therefore there exists 7., € Ch(2n) such that 72aC=dNzn. Let Cou-1 be c—dtznnan,
then ¢;,—; € F*7'C* and cohomologous to ¢. Since H*(Ch(2n—1))=0, 7up_1Cn_1€
Zy(2n)=Bj3(2n). Therefore there exists 7.,; € Ch(2n—1) such that ysp_1Con_1=
dnzn-1. Let Cany be Con1—@izpo12n 1, then ¢z, o€ F™°C* and cohomologous to
Csn-1. We proceed with this till we get ¢, € F°C*.

We define a map =,: Hir(A(R", K)—»H*(C:0), as mlc]Z[roc], where [ ]
denotes a cohomology class. Then =, is a desired inverse map to ¢,.

LeEMMA. This fact results from H*(F'C*)=0.

PROOF. to70co=comod F7'C*. Since H*(F'C*=0, FpeF'C* such that
co—treco=dp. Therefore [crocs]=[co]=[c] and ¢-7y=id. =-to=id results from
rorte=1id. g.e.d.

Now we prove H*(F'C*)=0.
LEMMA.

d

L= ti{eR- d+d-caht .

PROOF.
d oy v his—hi_ . Rita—hi

g him s = him s
1 Bvas—hy he

=—"1lim

=L drdo
t 450 46 Tt ler-dtd-cplhe . q.e.d.

K@f:‘rmhf@%
1

{del-KTd}c:gT d:ghf(c)% + ST zgh:‘(dc)iji
1 1

Td

T
=Sl {dmwd}h:‘(c)%: S 2wt

=hr(c)—c.
If ce F7IC*, then K.ce F7'C* exists. Therefore {dK.+ K.djc=hk(c)—c=—c and
H*(F'C*=0. Now, Hi-(R", Ky=H*(C:, (R, K)) is proved. q.e.d.

Example. Determination of rigid classes. )

Let %(z) be the topological Lie algebra of #z-dim. formal vector fields. An
element of U(x) is expressed in the form of f} f:(0/ox), f:€ Rl[x, +-- x,]], where
Ri[x: - - - x,]] denotes the formal power series Zr=1;1g (cf. [7]D. Let %e(n) be a sub-
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algebra consisting of elements such that each f; has no constant term. Taking
co-jets at O of elements of A(R™) (resp. A (R™), we can construct a Lie-algebra
homomorphism: A(R™)—UA(x) (resp. W (R™)—We(n)). Similarly, we can construct
a Lie-algebra homomorphism: §I(R")—>§[(n) (resp. %AIO(R”)—@Io(n)).

The following diagram is commutative and vertical maps are isomorphisms
by Theorem II.

Hir(UR™), K)— Hgr(A(R"), K)
Jﬂ Ik n "‘ﬂ s
Hir(¥(n), K) ——Hix(W(n), K) .
Therefore
Ker {var: Hyr(W(R"), K)—HirUR"), K))
=Ker {var: Hin(l(n), K)»Hir@n), K)) .
In case of K={e¢} and SO(n), the basis of Hjz(%(x), K) is expressed as follows
(Vey, cf. [10]).
(i) K=le}: hicy=hyn--- Ahy@cs - ¢
I=1<i, < <<} J={I<ji< - <jn<n}
0<sp Lt+ljl>n
(ify - K=SO(n)
(@ n=odd: hic;=hi A+ - AR;QCsy -+ iy
I={1<<- - < <n, 4 odd} J={1<j,< - <jn<n}
5 <min (JNodd integers) 7,+|/i>n
(b) m=even: h;c; as above.

m

2

h[CJx and X =Cp .
By Gel'fand-Feigin-Fuks ([8]),
Ker {(var: Hgpn(%(n)—Har@m)={hic; € Hix(An)): ir-+]1>n+1)
Ker {var: H#(%(n), SO(m))—Hir((n), SO(n))}
={hsc; € Hip(W(n), SOM): i+ |J|>n+1} .

Next, we consider the case of % (R").
The following diagram is commutative.

Hir(Uy(RY), K)——Hir(@y(R"), K)

Iy T n n 7o [
HEx%(m), K) ?HéF<§TID<n>, K)
R N U

H*@lm), K) ——H" 6w, K) .
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Therefore

Ker {var: Hir(U(R", K)—HizUo(R"), K)}
=Ker {var: H*(gl(»n), K)—H *@(n), K)}.
Assume K={e},

y var

A*gUm)'— A" (gUn)' Dtgl(n)")

where gl(n)’ stands for the dual space of gl(). Let {6}} be a basis of gi(z)’ and
{75} be a basis of t-gl(n)’. dos=—08LA5% dyi=—5,Ant—pind: holds. Let W, be
a sub-space of A*(gl(n) +#gl(x)") with » #gl(%)’ components. Since dW.c W,, W,
is a sub-complex.

H*(gl(n)) =7é§0 HW,)  H*@lw) " H Wy

H*(gr(n))NA*(h1~ ko) deghi=2i—1
hk=5’1 A 5"21: -1,

Let 0=(8%), t=(}) be nxn-matrices. k=Tr (6)=5! var h,=1., therefore var &, +0
in HY(W). As for k. with £>1,
i

2%k—1 \
var iy=var (Tt (6™ ))= % Tr(@A--- AGATAGA ++- Ao)=constant X Tr ( Ad®™?) .
11

On the other hand, d Tr (c Ac™ =—Tr (cAc®*?. Therefore var k,=constantx
dTr(zAc™® and var k=0 in H*(W)).

REMARK. Since

H*(gUn), K)=HzrH(n), K) ,

Theorem II means that, in case of M=R" and &=, the above construction of
characteristic classes is essentially equivalent to the construction given by Kamber-
Tondeur (cf. [12]). It is not yet known how other cases are.
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