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1. Introduction.

In this paper, the following theorem is proved:

THEOREM. Let G be a finite group having 2-local subgroups isomorphic to a
(nontrivial) split extension of an elementary abelian group E., of order 16 by
L2). Then G/O(G) is isomorphic to one of the following groups: E.s-L(2), L{(2),
Aut(Ly(2)), Moy, Ass, Asey Sier Sins Aus, 07 Ajs.

An initial work on a finite (fusion simple) group G having 2-local subgroups
isomorphic to a split extension of an elementary abelian group E;, of order 16
by L, (2)=A, was done by Kiernan [8]. Among other things, he has shown
that if the order of Sylow 2-subgroups of G is less than 2%, then G is isomor-
phic to E,-L(2), M, or L{(2). In [6], the first author treated the general
cases. The main result of [6] is that if the order of a Sylow 2-subgroup 7 of
G is at least 2%, then T is of type A,; or A, In [127], the second author has
partially classified the structure of fusion simple groups having Sylow 2-sub-
groups of type A;. The result of [12] easily determines the structure of G if
T is of type Aj. The main part of this paper is devoted to the case that T
is of type Ay

§2 is a collection of the precise statements of the assumed results [8], [6],
(1273, and [13]. In §2, the case that T is of type A,; is completely handled.
The remaining sections §4~§9 will be devoted to the case that T is of type
Ay In §4, we prove that if z is an involution in the center Z(T) of T, then
Ce(2)/ O(Cs(z)) involves C,((1,2)3,4) ---(15,16)). In §5, we determine the precise
structure of Ca(2)/0(Ce(2)). If all simple groups with an involution x satisfying
O(Cq(x))=1 are classified, we may stop our argument there and conclude that
G/O(G)=A; or Ay, (see the remark in section 5). In view of the fact that
such a classification has not quite been completed at the time of writing, we
shall give a brief proof of the precise structure of O(Cy(2)). The structure of
G will then be determined by a result of Kondo [9].

*) This research was supported in part by NSF Grant MCS 77-03937.
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Our notation is standard.
Epn-X; a split extension of an elementary abelian group Epn of order p" by
XS GL(n, p).
W(X): the Weyl group of type X.

2. Assumed results.

TarEoREM 2.1 (Kiernan [8], Harada [6]). Let G be a finite group having a
2.local group N=Ng(A) such that

(1) A=E,, A is a Sylow 2-subgroup of Ce(A),

(ii) N/ON)=E;-L{(2), and

(iii) G#N-0(G).
Then if the order of Sylow 2-subgroups of G is less than 218 G/O(GY=2M,,, L{(2)
or Aut(L(2)) (8], and if the order of them is at least 2%, they arve of type A
or Ay, [6]. In particular, |G|,=2%, 2V, 2%, or 2%.

THEOREM 2.2 (Yamaki [12]). If the Sylow 2-subgroups of a fusion-simple
group G are of type Ase, then G= A, Aur, the split extension of an elementary
abelian group of order 28 by A, or G has the involution fusion pattern of 243).

THEOREM 2.3 (Zappa, Yoshida [13] see also [71). Let G be a finite group
with a Sylow p-subgroup P. Let A be a weakly closed elementary abelian sub-
group of P. Then G'GPNA=N'NPNA where N=Ng(A).

3. Case I: The Sylow 2-subgroups are of Type A.

In the balance of the paper we operate under the following assumption
and notation.

G is a finite group having a 2-local subgroup N=Ng(A) such that

(i) A=E,, A is a Sylow 2-subgroup of Ce(A),

(ii) N/ON)=E - L(2), and

(iii) O(G)=1 and G=#N.

T denotes a Sylow 2-subgroup of G containing a Sylow 2-subgroup of Ne(A).

THEOREM 3.1. If the Sylow 2-subgroups of G are of type Ay, then G=Ay
or A

PROOF. Suppose G contains a normal subgroup K of index 2. Set N,=
NNK. Then N;/O(N)=N/O(N). As |K|,=2%, Theorem 2.1 yields a contradic-
tion. Hence G is fusion simple and now Theorem 2.2 is applicable. Since A
is a Sylow 2-subgroup of C¢(A4), G can not be an extension of an elementary
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abelian group of order 2% by A, Thus all we need to show is that G does not
have the involution fusion pattern of £2.(3).

In [12], it is shown that Z(T)=Z,, Z(T)=7Z,X Z,, the involution of Z(T) is
not conjugate in G to any involution of Z,(T)—Z(T) [12; Lemma 227, and
if G has the involution fusion pattern of 2,(3), then every involution of
T—Cr(Z(T)) is not conjugate to the involution of Z(T) [12; Theorem 6.5]. Since
all involutions of A* are conjugate in N and Cp(A)=A, AZLCH(Z,T)). But then
G can not have the involution fusion pattern of £,(3). This completes the
proof.

4. Case II: The Sylow 2-subgroups are of Type A4,,. The “approximate’
structure of the centralizer of the involution of Z(T7).

In the remaining sections of this paper we assume that the Sylow 2-sub-
group T of G is of type A,;. The main result of this section is:

THEOREM 4.1. If z is an involution of Z(T), then Cgl2)/O(Ce(2)) possesses a
section isomorphic to Cu (1, 2)(3, 4) --- (15, 16)), which is a split extension of an
elementary abelian group of ovder 2% by S,.

The proof of the theorem will be completed in a series of lemmas and
propositions. We need the following omnibus lemma about the structure of 7.

LEMMA 4.2. The following condition holds.

(a) T’:V(DggZz)gZz. More precisely, T is generated by involutions a,, by, u, v,
1=, =4 with the relations:

<ai,- bz>g<u) U>ED8) 1§l§4y

[<ai: bz>’ <aj7 b]>]:1; 1§1¢]§4‘y

[u’ <air bz>:|:1: 1:3) 4) ]:‘Ll, al]:a1a2; Eu) bl]:blbzy

Lv, ad=a a4 [v, b=bby, (v, a;)=a,a;, [y, byd=bhyb,.
Set  (a:b)*=z;, 1=i=4), (w)*=t, @a=0:0,0,0, b=bbsbsb,, Z=2120252,, L=
{2y, 29y 23y 290, D={a;, 2]1=Zi54>, E=<b;, z;|1=<i=<4)>, and [J,=<a,, b,y (1Z1L4).
Then Z(T)=<z>.

(b) T has precisely two conjugacy classes of self-centralizing elementary
abelian subgroups of order 16. The classes are represented by A=A,=<a, z, v, £
and A,;=<b, z, v, 1>. A, is conjugate to A, by an element of Aut(T).

(€) Np(A)=<A, a10,, 305, 2:25, 2525, u, ). Np(A) contains the unique extra
special subgroup Q=<b, a, t, v, 2,25, 2:2,0=Xb, a)={t, z;z,0x{vt, 7.2,y isomorphic to
Dg#Dex D,

(d) Np(Q)=(LQ, aias, asas, biby, bobs, u, z.0. N Q) is of ovder 2 and con-
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tains a unique elementary abelian normal subgroup I of the following properiies:
(i) [FNQ|=16,
iy |FNA|=2.
In fact F=<bby, bobs, bsby, 21, Zs, 23, Zu-
(e) The subgroup F of (d) satisfies:
(i) F«T,
(ii) E=Cp(F)=<F, b)> is an elementary abelian subgroup of order 28,
(iii) T splits over E and T/E is of type S,.

PrOOF. Omitted.

We shall keep the notation of Lemma 4.2 in the balance of the paper. In
particular, A={a, z, v, t>. The following lemma is a restatement of [6; Lem-
ma 4.17 which was essentially due to Kiernan [8].

LEMMA 4.3. The structure of Ng(Q)/<zD(Ng(Q)) is wuniquely determined.
Ne(Q)/ O(Ng(Q)) is a split extension of an elemeniary abelian subgroup of order
2" by Es-Ly(2). In particular, |Ng(Q)|=2%.

Set C=Cy{z)N\Ny(F). By Lemma 4.2 (e), T<C.

LeMMA 44. If C=C/O(C), then Cz(F)=E, C/E has Sylow 2-subgroups of
type Ss, and C/E contains a subgroup isomorphic to Eg-L(2).

Proor. By Lemma 4.2 (d) and Lemma 4.3, Nx{(Q) is a Sylow 2-subgroup of
Ng(@Q). By Lemma 4.3, N(Q) contains an elementary abelian subgroup F, of
order 27 with the property (Ng(FONNQ)HONLQ))=Ns(Q). We shall show
that Fy=F=-{bib,, bsbs, bsbs, 21, 2, 25, 2,0 which was defined in Lemma 4.2 (d).
We know that Ny(Q)/O(NH(Q)) is an extension of Q by E.-L,(2) [6; §3]. So
(NNNGQNWN{Q)=Ny@Q). Let ¢ be a 7-element in NNNgQ)—O(NQ)). Then
d/{c™> acts fixed-point free on A/<{z). As FISF,0(N Q) and O(NHQ)HEN,
we may assume F7=F,. Hence if FFNAD(z), F;DA. This is impossible, as A
is self-centralizing in 7. If |F\NQ|=£2% then [F\NQ|=2 must hold, as ¢/{c™
acts fixed-point-free on @/<z). Clearly then the 2-rank of Qut(DgxDxDg)= S,
is at least 6, which is false. Thus |[F;N\@]=16. Now Lemma 4.2 (d) shows
that F, is uniquely determined in T : i.e., Fy=F=<{b.b,, bsbs, bsbs, 21, Z2, Zsy Zup-
Since T is a Sylow 2-subgroup of G, C/Cz(F) has Sylow 2-subgroups of type
S, and E is a Sylow 2-subgroup of Cg(F) by Lemma 4.2 (e). Since |E/F|=2,
Co(FY=0(C)-E. Hence E=Cz(F). The last statement of the lemma is a direct
consequence of Lemma 4.3 and F,=F.

LEMMA 45. If C,=Cg(@)"\Ng(E) and C,=C,/0(C)), then C,/E=S,.
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Proor. Since (Ci/E) has Sylow 2-subgroups of type A, or Ss, the main
theorems of [4, Theorem A*, Theorem B*] and [5, Theorem AJ are applicable.
Since C,/E contains a subgroup isomorphic to Eg-Ly(2), we conclude that if
C,=C./E, C./O(C)=S,, S, A or Ay Since C, acts on E/<3, |Cil, divides
3:.5.7%-31-127. Thus C{O(C)=Lx0(C)) where L=A, A, Ay, or A, As A,
does not act on an elementary abelian group of order 27 [6, Lemma 2.87,
Z;Ag.

Suppose O(@l)il. Then T acts on CE(O(a))qﬁli[E—, O(él)]. Therefore,
Z(T) must be of order at least 4, which is not true by Lemma 4.1 (a). Thus
0(C)=1, which completes the proof of the lemma.

LEMMA 4.6. Under the notation of Lemma 4.4, CIECAs((l, 2)3, 4)--- (15, 16)
holds.

Proor. We first show that C, does not act irreducibly on E/<z>. Let &
be an element of order 7 of CNC,. Then F/<z>=[E/<Z), ]. Therefore, £/{z>
is invariant under the conjugation by N5, (K5>). Clearly <E, Nz, (Ka>), CiNN(Q)»
=C, and so F<C,. Thus C, normalizes the chain EDFOGOL. If T.=C:nT,
then Z(T,)=Z, Therefore C, does not have a 2-dimensional invariant space in
E. Thus, the action of C, on £ is indecomposable and uniserial: i. e, EDOF
2<% D1 is the unique composition series with the operator C,. We shall show
that E—F contains an element which has exactly eight conjugates under the
action of C,/E.

Let % be an element of E—F. Then by the structure of T, |T: Cz(%)|=8.
The equality holds if x=b, for example. Suppose that every element of £E—F
has more than eight conjugates. Then 120>(C,: Cz,(b,)|>8, as C,=C./E does
not act transitively on £E—#. We conclude that ]C51(51)1:24-k with £ odd and
3%-5-7>k>3-7. Thus k=57, 3%.5, 32.7, or 3-5-7. Since A, A, A, As, and
Ly(7) are the only nonsolvable simple groups involved in S,, we conclude easily
that £=3%-5 and so b, has 56 conjugates. Since 128—56 is not divisible by 16,
there must exist another element & such that |7 : Cx(5)|=8 and so & also
has 56 conjugates. Thus E—F has an orbit £ of length 16=128—2-56. Let
ief. Then |Cs,(%)|=25-32-5-7. One can conclude easily that Cp,(B)= A, Let
& be an element of Cy,(%) of order 7. Then Cx(5)=(3, ). Nz, (Kay) acts on
<z, ¥> nontrivially, as otherwise Cs,(£)=S;. Hence, x~%z. On the other hand,
one can check directly that no element y of E—F is conjugate to yz in 7.
This contradiction shows that £—F contains an element having precisely eight
conjugates under the action of 51. Since the eight conjugate must span E,
the representation of 51 on E is the natural permutation representation. This
completes the proof.
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5. The Structaure of Cg(z)/O(Cs(2)).

In this section, we show that Cg(2)/0(C¢(2)) is isomorphic to the correspond-
ing group in A, (or in Aj).

If ¢ has a normal subgroup K of index 2, then KN\N/O(KNN)=E - L(2)
and so K/O(K)=A,, or A, by Theorem 2.1 and Theorem 3.1. So we hence-
Jorth assume that G does not possess a normal subgroup of index 2.

Set 1=Cy(z) and [=1/0(I). Asin §4, we set C,=INNE). By Lemma 4.5,
the structure of C,/O(C,) is uniquely determined. Hence we may assume
that 7 contains a subgroup generated by involutions &, b;, z; (1=<i<4) and Gy
(1=7=3) satisfying the following relations:

(dj5j)35(¢7jdj+1)321, L6, Ej+I]EEj5j+1§jy 1=7=3,
[diy Ej]EEi; <l§l§_4)’ mOd O(Cl)

with all other commutators of pairs of generators being trivial mod O(C,) (Note.
O(C,) may not be in OU).). We also put #=5,(d,d.)5:, I =05,0s0:)55 E=0d,
(3,357, and p=£E"1F&. If we choose representatives a,, b;, u, v suitably, we may
assume that T=<(a,, b;, u, v|]1<i=<4)> is a Sylow 2-subgroup of G. We may also
assume that & is a 3-element in INNg()), J=<a, bI1=Si£4>= DX DgX Dy X Dy,
and that &: a,—a,—as, b;—by,—b,, a,—a., bi—b,. We note that J is so called the
Thompson subgroup of 7. The conjugacy of elements in Z(J) is controlled by
Ne( ).

LEMMA 5.1. The following condition holds:
(1) The representatives of the conjugacy classes of tnvolutions in N;(E) are
the following:

zy, Q1, by, 2120, D125, G12s, Q1bs, Q1Gs, 212,24, bi2:25, G305, 01042, Q12525
a,0503, Q:1byzs, 2, b1z, 012, A, A;G,052, Q1052, G1be2, 010,00, and a,a,b;z.

(i1) Ng(J) acis on the set {zi, 2., 23, 24 and any two of zi, 212, 21222, and z
are not conjugate in G.

(iil) If D={ay z;|1=Z21=24); then O(NG(D)/Ce(D)) is trivial or an elementary
abelian group of ovder 8l. If O(Ng(D)/Cx(D)=1, then a Sylow 2-subgroup
of Neg(D)/Co(D) normalizes no nontrivial normal subgroup of odd order. If
O(Ng(DY/Co(DN=LZ %=1, 1<iZ4> =T, X Z X Z, X Z,, then we may assume that
% zi—a—a.z; US024), (7, <aj, zpI=1 G#)), biZb=%" (1=i=4), [b;, =1
(=7, [§, %=1 and &: %,—F,—%,, where x;'s are suitable 3-elements.

Proor. (i) As N(E)/ON(E))=W(B,), we may apply [10; (1.3)].
(i) (resp. (iii)) follows from [9; (2.2)] (resp. [12; Lemma 4.47).
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LEMMA 5.2. N(E)/Ce(E)=S,.

PROOF. Set N=N4(E)/C4(E). Then T=D<a, #) is of type Ss and T'<&, o>
is of type A, Since &, centralizes a space of dimension 7 of E but no involu-
tion of 7<@, v> has this property, & is not conjugate to any element of
T, 5>. Hence NOOXN) by the Thompson transfer lemma. As N contains
S,, [4] yields O¥N)/O(O¥N)=A, or A, and so N/O(N)=S; or S, From
|GLy(2)], =3+52-72-17-31-127, we must have NOWN)=0(N)x L where L= A, or
A,. Since L contains a subgroup isomorphic to A, which comes from N(E)N
Cq(z), the same proof as in Lemma 4.5 applies to show that O(\N=1.

Suppose N=S,, Then N=NNCgz) and so N has a normal subgroup of
index 2 not containing E. As E is weakly closed subgroup of T, Theorem 2.3
shows that GDOXG). But this is not our case. This completes the proof.

LEMMA 5.3. The structure of Ng(E)/O(Ng(E)) is uniquely determined. More-
over, renaming the generators if necessary, we may assume that zi~by, z:12:~b12s,
212225~D1Z5Z4y ZrobiZ, G125~ 01Ds, Q105257 Q1A5h, 012525~ 01De2s, G1by2~012, 410505z
~QA1032Z, Q102050501020 52.

Proor. As T splits over E, so does N=Ny(E)/O(N&E)) over E. Since A,
can not act nontrivially on an elementary abelian group of order 27 [6, Lemma
2.81, N is irreducible on E. We already know that NNCe(z)/E=S; and so E
has 9 conjugates {Z, %;, %, ---, Xs} under the action of N/E=S, As NNCla)/E
=S, is transitive on {¥;, Xs, -, %e}, X F for all 1={<8. Since (z> and F
are the only N\Cglz) invariant proper subgroups of E, (X, Zs, -+, Zsp=FE and
Z=5%,+ - +x, Clearly then the action of N on E is obtained by the natural
permutation representation of S, on a 9-dimensional space modulo the unique
1-dimensional trivial space. Thus the structure of N is uniquely determined.
The fusion of involution may be obtained by a direct computation. We omit
the detail.

PROPOSITION 5.4. NG(D)/CG(D)553§S4. Moreover, renaming the gemerators
if necessary, we may assume zy~ay~Dby, 212~ 010~ A12e~b12o~~ A1D3, 2125237~ 01097,
12525~ 1Ay 3~bi 2324~ Q1A 5Dy~ 1Dy 2s, 22O~ 050 32 ~ Q10,27 b iz~ 0 bozr~
4,0b,~0 105052,

PROOF. Set N=N4D)/Cs(D). By Lemma 5.1 (iii), |O(N)|=3* or 1. In the
former case, [12; Lemma 4.5] yields N=S;\S,, since §& Ng(D)—Cg(D). Suppose
O(N)=1. The representatives % of the conjugacy classes of involutions in T
and the order of |[%, D]| are given below (Table I).
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|
I[%, D]II x
i 5,
4 ' bibs, biby by, @
8 ‘ bobgbs, byul
16 | b, ubshy, T, vt
Table 1

By the table above, one sees that b, is not conjugate to any involution of
{bibgy babs, bby, T, @, 0. Hence O} (N)CN.

Since Ng(E)/Ce(E)==S, and DZ Ny (EY, we see that NONZE) is an exten-
sion of an elementary abelian group of order 16 by S, If |N: O*N)|=4, then
the index must be exactly four and Q=<b.b,, boby, bsbs, 7, I>=<vb1bs, thibs>*
{vthyb,, thebs> = Qe*Q; is a Sylow 2-subgroup of OXN). Hence <b>=Z(N). Since
bib,#f in N, 9 does not divide |N5(J)/Cx(Q)|. Thus by [4; proposition 3.1]
applied to O¥N)#), we conclude that N=NNNzE). But then Ng(D) contains
a normal subgroup of index 2 which does not contain D. As D is weakly
closed in T, Theorem 2.3 yields a contradiction.

Thus we have shown |N: O*N)|=2. By Table 1, <bby, bsbs, bsby, I, @, 75,
which is of type A;, must be a Sylow 2-subgroup of OXN). Since 9 does not
divide |N#(Q)/Cx#(Q)|, N=S, or S, must hold by the main theorem of [4].

Suppose N=S,. We shall show that N(D)/O(Ng(D))=C 4,41, 2) -+ (15, 16)).
By the argument in Lemma 4.6, it suffices to show that N centralizes a non-
trivial subgroup of D. We know that NNNE)=Cx(b) centralizes z=D. On
the other hand, <5, #, 7> is a self-centralizing elementary abelian subgroup of
order 8 all of whose involutions are conjugate in N. Hence Ny(<b, , 70)/<b, I, 7>
=1,2). Since Cp{b, I, 0d)=<(2>, Cx(2)2(Cx(b), Nx(b, I, 0d)>=N, as desired.
Thus Ng(D)/O(Ne(D)=C, (1, 2) -+ (15, 16)). But then D is not contained in
some normal subgroup of N of index 2. Theorem 2.3 again yields a contra-
diction.

Suppose N=S,. Then N has the Sylow 2-subgroups of type A, and
N'=A, So we may apply [12; Theorem 4.9] to obtain z+a in G. This con-
flicts with A=<z, a, v, &> and N(A)/Ce(A)= A,. Hence stgga is the unique
possibility. The fusion pattern of involutions of G follows from [9].

Now we are in the position to prove:

PROPOSITION 5.5. Cg(2)/O(Col2))=2C (1, 2) --- (15, 16)).

ProOF. Set [=C4(2) and Q=T"u, v>. We have T>Q, T/Q=Z,XZ, and
T=<Q, a,, b,>. Since v~a=aa,a,a,T’ and u~a,a,x, x€T, Q is contained
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in 0¥I). As N (E)/ON(E)=C {1, 2)-- (5, 16)), b, 0%*(I) by Theorem 2.3.
Moreover, by Lemma 5.1 (iii) and Proposition 5.4, N(D)/C,(D) is an extension
of E; by S. In particular, Ni(E) covers N(D)/ON/(D)). As a,EN(EY,
a,¢0%I) again by Theorem 2.3.

Suppose that Q{a;b;> is a Sylow 2-subgroup of O*I). Then aib, is conju-
gate to an element of @ and by Lemma 51 and Proposition 5.4, we may
assume that aib,~z:12s, D12y 012, OF a;d, in [. It would then follow that z~
a,byz~(a.b)z with hel. Hence, z~z,2:2, bi2,2, 12,2 OF a;a,z. None of the
four conjugacies above is possible by Proposition 5.4. Hence @ is a Sylow
2-subgroup of O%I).

We next show that F=QNE is strongly closed in Q with respect to I.
The involutions of F split into four conjugacy classes under the action of
Ni(E). Moreover, a,a, and a,a,z; are the representatives of conjugacy classes
in N/(E) of involutions in @—F which are not conjugate to z in G. If (a;a5)*
=z,2, (resp. (a,0,2,)"=2,2,2,) for some x&I, then (a,a.2)"=z;z (resp. (a,a,2,2)°
—=z,). This is impossible by Proposition 5.4. Hence F is strongly closed, as
desired. Since N (E)/C(E)=S;, FO(I)<l by [3]. Put I=1/0(I). Then Cr(F)
af and EeSyLCr(F). As |E:F|=2, E=Cy(F)<l and [/E=S, This com-
pletes the proof.

REMARK. When all simple groups having involution z with O(Cs(z)#1 are
classified, we may quote the result to show that our group G is isomorphic to
Ag O Ag.

LEMMA 5.6. Cg(z1)/OCalz))=C (1, 2)3, 4)) or Cay((1, 2)3, 4).

PROOF. Put C=Cy(z,) and C=C/0(C). Crlz)=], X J:X(Js X J)<ut> is a Sylow
2-subgroup of C. By Theorem 6.1 (the proof is independent to the previous
sections) and Proposition 5.4 <@, Z,> is strongly closed in C#(z,) with respect
to C and hence <d,, 2><C by [2]. Gaschiitz’s theorem yields Cz(a;, 2>)=
(d,, 3,>%x X where X is a group with Sylow 2-subgroups of Type A,. Since X
contains T, %, %s, 75, 35 6, and X has the involution fusion pattern of A,
X=A, or Ay by [1,11]. Thus C=(a&, 2.>XX)Xbib»y=C, (1, 2)(3, 4) or
Ca,(d, 2)(3, 4)). The lemma is proved.

LEMMA 5.7. Co(2:2:)/0(Col2:2:))=C o, (1, 2) -+ (7, 8))  if and only if
Co(21)/ OCs(z))=C 4, ((1,2)(3,4)) where m=18 or 19.

ProOF. Put C=C4(z:z,). By Lemma 56 C=C/0O(C) contains a subgroup
isomorphic to A4,, or A, in which (/,X/X#f> is a Sylow 2-subgroup. Since
all involutions in <{Z,, Z., b1b.y—<Z,5,> are conjugate in C it follows from the
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structure of N (E) and Ny(D) that {7, 3,, b.b,> is strongly closed in C(z,z,) with
respect to C. The result follows from [2].

LEMMA 5.8. Cgl2:2:2;)/ O(Col2:2020))=C, (1, 2) -« (11,12))  if and only if
Ce(21)/ O(Co(2)y=Cy, (1, 2)3, 4)) where m=18 or 19.

PrROOF. Put C=Cg4(z,2,2,) and C=C/O(C). By Proposition 54 J, is strongly
closed in Cp(zy2,2,) €Syl,(C) with respect to C and <J{> has dihedral Sylow
2-subgroups. Since Co(z)2<J$> and Colz)™ = A, or A, by Lemma 5.6 we have
(JS=A, or A, by [3]. As (J?<C the result follows from Lemma 56. The
lemma is proved.

6. Localization of 2-fusion.

Let G be a finite group with a Sylow 2-subgroup 7 of Type A, and X be
a subgroup of G. The purpose of this section is to prove

THEOREM 6.1. Let P be a Sylow 2-subgroup of X. Suppose P=T, J{u) or
Ju, t>. Then the fusion of the subsets of P in X is controlled by Nx(DW\JNz(E)
\JC y(Z(P)).

We carry out the proof in a sequence of lemmas. Let 4(P) be the set of
subgroups H of P satisfying the conditions:

(1) H=PNQ is a tame Sylow intersection for some Q&Syl,(X),

(2) Cp(H)=H,

(3) HeSyl(Ou,o(Nx(H))),

(4) H=P or Ny(H)/H is 2-isolated.
Let ¥(P) be the set of all pairs (H, R) with He#(P) and R=Ny(H) if H=
Co(R2(Z(H))) or R=N(H)NCx(2.(Z(H))) if HCCHRL{Z(H))). Let F'(P) be the
set of pairs (H, Cx(H)) where H satisfies (1) but not all of (2)-(4). Then F(P)
UF(P) is an inductive family. Put N=Ny(H)/H and L=£2,(Z(H)). Suppose
HCP, Then by (4) either Np(H)/H has 2-rank 1 or N/O(N) contains a normal
subgroup of odd index isomorphic to one of the groups L,(2") (n>2), Uy2")
(n>2), S,2**Y (n>1). If HCCHL), then (2) yields R=Ny(H)NCx(L)E
Cx(2(Z(PY)=Cx(Z(P)). We shall prove this theorem by surveying these sub-
groups H=(P) such that Ny(H)ZNx(D)JNz(E). Since D and E are weakly
closed in T, DZH and EZH. Now HSCy(x) for some involution xe P—DUE
by (2). Our argument depends upon only the structure of P and hence we can
assume that x is a representative of Aut(P)-associated classes of involutions.
Put H,=Cp(x).

Case 1. P=T.
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It is CH{x)SCraby) for x & {ababs, aibsbshs, @:bezsh and Cr(x)ECr(a,by) for
1€ {abezs, a1a4sbs, aibsz}. Thus we can assume that x is one of the following

elements.

x Cr(x) Z(Cr(x))
u uty ([ X J) XK1y, b1bs) U, 2120, 23300
v v, (La184, bibe> XLasas bsby)) {v, z)
t <, ud(a18y, bibed> X <a3ay, bibid) {E oz
aybs Gup({@y, 21, by, 220X J3X W) Lay, 2y, by, 2,, 2320
abs {ay, 20X JexX<bs, 200X s {ay, by, Z5
a1a4b; up({ay, 21 s 25y bay 2y, bay 20X [0 a1as, 2125, by 23, 25
a,a:05b4 {u, 1Y4ay, 21, Qg 2y bsy Za, by 240 a1as, 2322, bobs, 2520
G1bobsay w¥ay, 2y, bay 25, by, 25, Qg 200 {a104, 2124, Dsbs, 22230

LEMMA 6.2. H is not an elementary abelian group of order 25

PrROOF. Suppose H=E,, Then H<J and (Ny(H): J)=2. This is impossi-
ble by (4).

LEMMA 6.3. HZCp(u).

ProoFr. As [z, H=<z.2.0 S H, z, stabilizes H,DH,/D1 and HCH, It fol-
lows that z,z.¢H and <{a.a. bb.)EH. We can assume b b,&H and HES
Cufa;a:)=C. As [t, Colzs)]=Ds and [2y, Ce(25)1=Z,, z,% L. Since R(ZIC)Y=E
and C'=E, HZC. Thus we may assume HZ<u, 10,18, 2:2:) X304 bsbs>)
=~ E, XD, This is also impossible since all involutions in N are conjugate.

LEMMA 6.4. HZCr).

PrROOF. As [z, H,1={z:z,0 S H, z, stabilizes H,DH/D1 and HCH, Put
F=<u>X<a,a,, bib>X<Lasas bsbyy and assume HEF. As FEZ(F)SH, HqF. 1f
H=E,, then [w, Hl=Z,xZ, for some involution weF—H, a contradiction
since [z,2,, H1=<z). Since zz, stabilizes FDOF D1, H=FE;xXD, As H#l,
L,(4) acts trivially on L, a contradiction. Now HNiF#@. If some conjugate
of # is contained in L, H=E,, or Z,XZ,;x D;. Clearly they are impossible. It
follows that (FNL=@ and LS, ¢, a, b). As HCH,, L=a, b, ta or th. Since
2.z, cannot stabilize any critical chain of H, L contains fa or tb. It follows
that H is a subgroup of Z,XZ,X D,, a contradiction.

LEMMA 6.5. H=C;({) and HZCy(t).

Proor. If H=H,, then Ny(HYSNy(H")=Cx(z). Thus HCH, By Lem-
mas 6.3 and 6.4 LN{({a,a,, bib:> X<{asa,, bsb>)#1l and we can assume that a or
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@1asbsb, is contained in L. Suppose HSCy (a). If H=Cy(a), then [{8, 2,25, H]
SH and L,(4) acts trivially on L=FE, a contradiction. Lemma 6.2 yields
vJ(Cr(a)NH+© and H=Cy,a), a contradiction. If HSCyx(a a,b5b,), then usL
which is impossible by Lemma 6.3.

LEMMA 6.6. (i) HZCplahy), (i) HZCplaiby), (i) HZCHa,asb,), (iv) HZL
Cr(aia:b3by), (v) HLCr{abbsa,).

Proor. (i) It is [<by, a,, HISH and L,4) is involved in N. This is
impossible since [Cy(b)| #|Cx(bianl. (i) As [Kby, as, v8>, H]S H,, HCH,. Lem-
ma 6.2 yields H=FE X D, a contradiction. (iii) Since [<a,, b,b;>, H, 1S H, and
icHo(a3>l¢(CHo<blbz>|: HCH, and H2{z,, z;>. As CHO(21>:CH0<22>: uJ(Crla,azbs))
ML+ which contradicts Lemma 6.3. (iv), (v) By the similar way as (i)-(iii)
we can prove (iv) and (v).

Case 2. P=Ju, ty=<ud(J, X Jo) X ut>(J5 X J o).

Clearly H#Es. For y=aib,a,, 010525, biasas, biaya:a,, uzy, uay, ubsay, f,
Cp(y) is contained in Cpb,a,), Cp(u) or Cpla,bsh). Thus we can assume that
x is one of the following elements.

x Ce(x) Z(Cp(x))
b1a, by, 21, s, 220 X(Je X JKuty Kby, 21, Gy, 2o, 23240
u @15, bibe> X <ud X (JoX Jo)lut> {2125, U, 25240
@by @y, 210 X J2 X< by, 250X 4 {ay, by, 27
a1bsby @y, 210X JoX<by, 25, by, z0<uty @y, 21, Zs, bsby, 2320
@185b35b, @i, 23, oy 220UD XKDy, 23, by, 20<Ut)>  {Q1a3, 2122, bsbs, 25240
a1a:05a, @y, 21, Ay Z2SUY X Kby, 23y Quy 200 a1as, 2123, by, 23, Ay, 24
a,a,ut ayy 21, G, 220U X AQy, beb> Xut) {018y, 2125, 2324, U

LEMMA 6.7. (1) HECH(b,a,), (i) HECHw), (iii)y HECp(ab,), (iv) HECplabshy),
(v) HECp(aia.b:by), (vi) HZCp(a,asbsay), (vil) HZCp(a a,ul).

Proor. (i) As [<ay, bs), HIS H, |Cyxla)|=I|Cx(aby)]. This is impossible.
(i) As [z, Hyl=<z12.0 S H/, z stabilizes H,2H,/21 and hence HCH, As
{z1z.pEH we may assume HSCp({u, a,a:0)=La,a4, 2:25, u> X{(JsXJ)<uty. This
is impossible since <{ay, bb,p =D, normalizes H. (iil) As [b,, as>, HISH,
1Ca(b)}=1Cx(b,a,)l, a contradiction. (iv)-(vii) By the similar way to (i)-(iii) we
can get a contradiction. The lemma is proved.

Case 3. P=J{ud>=<w(JiXJ)XJsXJs

Clearly H#Eq It is Cpla,a.b:b,)SCpa a.bs) and Cplhia,a,)=Cplbia,a,z,).
Thus we may assume that x is one of the following elements.
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x Co(x) Z(Cp(x))
a1b; {ay, 219 X J3X<bs, 2> X [, {ay, by, Z5
a,a3by lay, 20X JaXLas, 25, by, 240 {ay, as, by, Z>
183D, {ay, 23, g, Zop<ud X<y, 250X ], {a1ay, 2123, bs, 23y 200
a1a5a3b, {ay, 24, Qg 2o0{UY XKy, 2y, by, 200 {a1as, 2123, s, by, 25, 200
biasa, by, 20X Je Xy, 23y Quy 200 Kby, Gy, Q4 2>
biaya, by, 23, Qg 23, Gy 220X {by, Az, Qs 27

By the similar way to Case 2 we can prove Theorem 6.1. So we omit the
proof.

7. Subgroups of the minimal counter example.
Let G be a finite group with a Sylow 2-subgroup T of Type Ais.
LevMA 7.1 Put NAD)=N«(D)/Co(D) and NJB)=Ns(E)/Co(E). Let H (resp.

ﬁ) be a subgroup of Ng(D) (vesp. ]/\E(.é)) containing T (resp. . Then () H=T,
T, (Sngz)gZz or 53§54. G A=7, 74, Ss, S, or ségzz.

ProoF. (i) The representatives X of T-orbit on O(Ng(D)) are X, £1%,, Xi%e%s
and TEEE,. 1 ANONLD)+1, then A20ND). It HNONLD)=1, then
H=T or T<&>. (i) The result follows from [3] and Lemma 53.

LEMMA 7.2. Let H be a subgroup of G with a Sylow 2-subgroup J{u). Then
(1> NH<D>:lVH(D)/CH<D>E]<M>J ]<'l/£, €>: D8><S3><Z2, ZZ><S4XSSy (S3§S3>XZZ;

AP AR A ANCHVAREIR M R (S{S0xS, or (5|2 8,8 (i)

—~ S~
NH<E):1VH<E)/CH(E>;]<U>; ZyX Sy, Zy X Se, ZyXZyX S5, ZyXZy XS4, SsX S, SeX
ZyX Dy 0v S;X 73X S,

Proor. (i) Let % be the representative of J(u)-orbit of <(#;|1=i=4>. Then
we have Table II which shows <{x;|1=i=4>N\Ny(D).

(J<u> + CEONJ<uy) x
2 237 Z4
22 xl) JE152’ 9?3.7?4
23 21%3: flf‘i: _17527—53; flf2%4
2t X1%s% 0 XT1FoZa¥s
Table II

(ii) By Burnside’s argument zINZ(J<ud)=2FfNZ(J)={z}. Note that {3;|11=51=4}
S~ S~

= (e JCuyl#=1, I[%, EJl=2). Since [a,, E]=<z0, &6 n J<u>={a,} and Ny(E)
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=(C@)NNAEYONIEY) by Z*theorem. It follows that ONLJEN=Z, or 1.
S i

If OWNE)=1, then NyBE)=C@)N\NgB)SZ:xXS. If O(Nj(E)=Z, then

S

Np(EYSS:XS,. Now the result follows immediately.

LEMMA 73. Let K be a subgroup of G with a Sylow 2-subgroup J<{u, t>.
Then () NelD)=Ne(DYCeD)=Fn b, Dox(Sifz) or Sfzxs(z. i
S~ T—

N(E)y=Ng(E)/Cx(E)=]J{u, £, DsX Sy, DyX S5, SiX S, or S;x S,

Proor. (i) Straightforward since §& Ne(D). (i) It is Z(J<u, £)=<z12s, 225>
and z#zz, by Lemma 51. It follows that Ng(J<u, ))SCr(Z(J{u, t>)) and
Z12,72,2, by Burnside’s argument. As Ng())/JCx()=Z,XZ,, z,~2y*25~z, in
K. ‘Therefore {ziz,, 2,2} XM {z\2,, 2124, 2,25, 2,2, = . Since {37Ef<u7>/|372:l,
L7, EJ|=2} = {ii, 4a.d,, Uf, 4y, @,d;li+j}, <@, %) and <d,d,, il are strongly
closed in J(u, I> with respect to Ng(E). As d; (1=i<4) are the only involu-
tions in m which centralize 7-dimensional subspaces, (&, %> and <4, #f>

I~ o~ s
are strongly closed in J<u, ). By [3], <&, >V&® x{a,, 4/ >"xB S, xS,. The
lemma is proved.

Henceforth we assume that G is a minimal counter-example to our theorem.
We shall determine the possible structures of the proper subgroups of G con-
taining J<u> which depend only on N(E) and N(D) by Lemma 5.3, Proposition 5.5
and Theorem 6.1.

PROPOSITION 7.4. Let H be a proper subgroup of G containing T. Put
H=H/O(H). Then H is isomorphic t0 Sis, Siz, Ass, Ao, 58522, SQSZz, a subgroup
of Ng(E)/O(NG(E)) or a subgroup of Ng(D)/O(Ng(D)).

Proor. By Proposition 55 and Lemma 7.1 we can assume H=Cu(2)O(H).
If H is fusion simple, then by the minimality of G, H=~A,, or A, Thus we
can assume OH)CH. 1f Ny(D)SNy(E) (resp. Ng(E)SNy(D)), then E (resp.
D) is strongly closed in T with respect to H by Theorem 6.1. Proposition 5.4
and Lemma 7.1 yield DO(H)<H or EO(H)<{H by [2]. Assume Nyz(D)ZNy(E)
and Ny(EYENy(D). If Ny(E)/Cx(E)=S, and NH(D)/CH(D)EsggS,;, then H=S,,

or S;; by [12]. Finally suppose that NH(D)/CH(D)E(&SZQXZZ and Ny(E)/Cyx(E)

354522. Then a,a,E~uE~ua,a,E in Ng(E) and Foca(T)={Bibo, boba, bibs,
@, [>D. The element b,b, is not fused into D<5,b,, byb,, #, I>=Type AsX Type A,
so that (H: O%H)=8. Since the direct factors of a Sylow 2-subgroup of
O%H) are strongly closed by Theorem 6.1, [3, 41 yields O*H)=A,x A4, or
Ay X A, 1t follows that ﬁzSSSZz or SQSZZ. The proof is complete.

We can prove Propositions 7.5 and 7.6 by the similar argument to that of
Proposition 7.4. So we will omit their proofs.
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PROPOSITION 7.5. Let H be a subgroup of G with a Sylow 2-subgroup J{u>.
Then OH)/O(OXH)) is isomorphic to one of the following groups: (i) a sub-
group of Nu(D)/ONg(D)) or of Ng(E)/ONy(E)), (i) A; AiXA; 5=1=15, j=
4,5, (iil) A;x Ay, 1=12,13, k=6,7, (iv) A; X A;X Ay, 5=Zi=11, j, k=45, (v) A;X
AXAyX A, 1, j, k=45, m=5,6,7, (vi) O*W(D)XA; k=57, i=4,5, (vii)
OXW(Bg)X A;, 4<7<7, (vill) O (W(D )X As X Aj 1, j=4, 5.

ProOF. All possibilities of Ny(D) and Ny(E) are given in Lemma 7.2.
Noting Proposition 5.5 we can apply Theorem 6.1 and [2,3].

PROPOSITION 7.6. Let H be a subgroup of G with a Sylow Z-subgroup
Ju, t». Then O¥H)/O(O*H)) is isomorphic to one of the following groups: 1)
a subgroup of Nuy(D)/O(Ng(D)) or of Nu(E)/O(Nyx(E)), (ii) A;, A;XA; 8=1=1],
7=8,9, (il) AiXA;xX A, 8=iZ1l, j, k=4,5, (iv) O(W(B)x A, 4<i<11, (v)
OHW(DY)X A, 4220,

ProoF. See Lemma 7.3, Theorem 6.1 and [2, 31.

ProposITION 7.7. (1) If H is a proper subgroup of G which covers
Ce(2)/ O(Ce(2)), Co(2,)/ O(Colz,)), Co(2:22)/ O(C(2125)) o7 Ci(z12524)/ O(Cl2:2225)) then
H is 3-stable. (i) Let H be a proper subgroup of G having T, J<uy or J{u, t> as
a Sylow 2-subgroup. Then H=H/O(H) has the unique Jlup-invariant subgroup
W of odd order and [Wi=1 or S and W centralizes D<b.bs, bsbs, bsbs>. (iil) Any
two maximal J{u)-invariant 3-subgroup of G whose intersection is non-trivial are
conjugate by an element of Cg(J{ud).

ProOOF. (i) Let x be an element of order 3in H. Then H is 3-stable if we
can find an element .y conjugate to x in H such that <{x, 3> is not a 3-group
and involves no SL(2,3). By our assumption T, J{u) or J<u, is a Sylow
2.subgroup of H. The possible structures of O H)/O(O¥ H)) are given in
Propositions 7.4, 7.5 and 7.6. In each case we can easily verify that H is
3-stable. (ii) The result follows from Propositions 7.4, 7.5 and 7.6. (iii) See [4;
Proposition 8.6].

8. Existence of D-signalizer functors.

In this section we construct D-signalizer functors. Our arguments are
entirely the same as those in [4] and we omit the details.

Put [=1,=Cs(2), [,=Cs(zs), [s=Ca(z:2:25) and [,=Cq(z;z,). Then T eSyl(ly),
JuwpeSyLUI)NSyl,(I;) and Jlu, HESyLU,). It Is T2/ u, HD2/<uy2] and
Z<]<u>):<2122; Z3, Z4)-



112 Koichiro HarRapa and Hiroyoshi Yamaki

LEMMA 81. If I,/OU)=C4 {1, 2)3, 4), then O is a D-signalizer functor.
PrROOF. The result follows from Lemmas 5.5, 5.6, 5.7 and 5.8.

In the balance of this section assume I,/O(,)=C, ({1, 2)3, 4). It follows
from Proposition 5.5 that the order of O(,) is divisible by 3.

LEMMA 8.2. If the order of O(I,) is divisible by 3, then the order of O(I})
(7=3,4) s also divisible by 3.

PROOF. As <z, a){xs> S, |Calz)NOU,)| is divisible by 3. As CelzoN
OUpE],, OU)NCelz)S0(I,) by Lemma 57. It follows that the order of O(J,)
is divisible by 3. Lemma 5.8 yields O(/,)20{I)NC¢(z,). The lemma is proved.

LEMMA 83. If O(y) is a 3-group, then |O(I,)| is divisible by 3 only to the
first power and O, (j=3,4) is also a 3-group. In particular O¥O(I))=
04 (0)) and (O{I): Oy (0())=3.

Proor. Let ReSyl,(0O(,)) such that [S, R1SR and |R|=3. Put K=
N (R)/<z>. Then (%%, %z,><T and §:77—%%,—%2%. Now we can apply
directly the proof of [4; Proposition 10.27.

LEmMMA 84. If O(,) is a 3-group and for each x<D* we set G(Cqlx))=
O¥O{Cs(x))), then 8 is a D-signalizer functor.

Proor. See [4; Proposition 10.3].

Assume that the order of O(J;) is divisible by 3. Then a 3-local subgroup
K, of G is said to be a covering group of i-th kind if K, satisfies the condi-
tions: i) K,/O(K)=A,, and ii) K, covers I,/0,(O,)).

LEMMA 85. If OW,) is not a 3-group, then G possesses covering 3-local
subgroups of all kinds.

ProoOF. By Propositions 7.7-7.9, the proof of [4; Proposition 9.3] can be
applied directly for our case.

Let K; be a covering 3-local subgroup of i-th kind. Then we may assume
TESK, J{<upSK,NK; and J<u, DS K,.

LemMa 86. If OWy) is not a 3-group and for x=D* we set H(Cq{x))=
O3 (O(ColxDNOEINCe(x)) or O(Ce(x)) according as x~z or xz, then 6 is a
D-signalizer functor.

Proor. See [4; Proposition 10.4].
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9. Proof of the theorem.

We follow the notation in section 3 and assume O(G)=1. For a subgroup
B D we put Wy=<(Cs(x))|x € B¥>. Then Wy=W, provided m(B)=2.

LeMMA 91, 6Cs{(x)=1 for each x<D*.

PROOF. As NyD)=(NgD)NK)Co(D), NgD)SNe(Wp). As zi~a4~0sZs
Nelday, z0)SEN{W. It is OU,)S N{Wp) for j=2,3,4 and 1,S Ng(Wp) by Lem-
ma 5.6. O(1)=(Coz)NOUINCo(a JNOUI)ColazdNOUy) yields OI:)E Ne(Wp)-
It follows from Proposition 7.4 that Ng(Wy)/O(Ng(Wp)= Ay or A Now I,c
Ny(Wp) and Ng(Wp) is a strongly embedded subgroup. If follows that Wp=1.
The lemma is proved.

LEMMA 92. () If L/OU)=Ca (1,23, 4), then G=Ag (i) If 1/OT)
=C, (1, 2)3, 4), then G= Ay,

Proor. (i) The result follows from [10] and Lemma 9.1. (ii) Since I,=
OU Y NHEYNT,) and OU)NNyE)=1, Sylow 3-subgroups of I, are elementary
abelian of order 3°. Hence by Proposition 5.5 and [10] G=Ay,. The lemma is
proved.
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