A new characteristic number for almost free T’-actions
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§1. Introduction and Notations.

In [17, Atiyah and Singer have costructed an invariant ¢ for fixed point
free S*-actions.

Let M be a 4n—1 dimensional closed oriented manifold with fixed point free
Sl.action. Then we define F(M), Fi(M), --- by

a(M)ei?)= j§n<—1)12—2an+,-<M>e2f.

The purpose of this paper is to prove a vanishing theorem for Fy(A) when
the St-action of M can be extended to an almost free TZ’-action (see Theorem
in §4), to prove a residue theorem for F, as in Bott [4] (see Theorem in §6),
and to construct a new cobordism invariant for almost free T2-actions (see §7).
An almost free TZaction of M is, by definition, an action whose isotropy sub-
group at each point of M is a finite group.

In the sequel we shall use the following conventions and notations.

We work in C* category. [a, b] will denote the closed interval, any G-action
on [a, b] will be the trivial one, and [a, b] will be considered with its usual
metric.

Let N be a compact manifold with boundary M. Any vector field on N will
always be tangent to M on M. When we say, in each of the following three
cases, that N satisfies the boundary product condition, it will mean the follow-
ing context. Namely, when N has a G-action it means there exist a positive
number ¢ and a neighborhood of the boundary of N which is isometric to 3/X
[0, ] as a G-manifold; when N has a G-action and a G-invariant metric it
means there exist a positive number ¢ and a neighborhood of the boundary of
N which is isomorphic to M [0, ] as a G-manifold with invariant metric; and
when N has a metric and Killing vector fields X, -+, X, it means there exist a
positive number ¢ and a neighborhood V of the boundary of N which is isomor-
phic to MXx[0, ¢] as a Riemannian manifold such that the vector flelds X, |y, ---,
X.lv correspond to the pull-backs of X |y, ---, Xsls to MX[0, e].

If X is a vector field, i(X) will denote the interior product by X.
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If N, N, are manifolds with the same boundary Nl&ij2 will denote the

manifold which is constructed by identifying the boundary of N; and N,. Let
N be an oriented manifold. Then —N denote the manifold N with the reversed
orientation.

The author would like to express his heartiest thanks to Professor A. Hattori
for helpful suggestions.

The contents of this paper are part of the author’s Master Degree thesis at
the University of Tokyo presented in February 1978.

§2. ¢ invariant for fixed point free S*-actions.

In this section we explain the Atiyah-Singer ¢ invariant and its expansion
formula.

Let M be a 4n—1 dimensional closed oriented S'-manifold, and we assume
that the S*-action of M is fixed point free. Then there exist a positive integer
r and an oriented compact S'-manifold N such that ON=»M and N satisfies the
boundary product condition.

Let J denote the fixed point set in N and J=J,U -+ UJ, its decomposition
into connected components. Let &, be the normal boundle of J, (1=m=gqg).
Since &,, is a S*-vector bundle, we can give a canonical complex structure to &,,
in such a way that &, decomposes into a sum of complex vector bundles

En= 2 Enlk)
>0

where ¢**€S! operates by complex multiplication by ¢%#¢ in the fiber of &,(&).
Let

cEn®)="TT (+x,08 m)

be the formal factorization of the total chern class ¢(§,,(k)) where n(k, m) is the
fiber dimension of &,(k) over C. We define .£,4(&,(R) by

Laon)="T1" coth (15 +x 6, m)).
Let
HTT="1T (+3m)

be the formal factorization of the total Pontrjagin class (7 ],) where n(0, m)
is a half of the dimension of J,. We define £(T/,) by

L(TT)="18" 3,(m) coth (3(m)..



Almost free T?actions 169
Finally we define L(e*%, N) by

L(e?, Ny= 35 (£(TT ) T, L0l
and ¢(M) by
oMY )=—-(L(e*?, N)—sign N).

For more details concerning ¢(M) we refer to Atiyah and Singer [1].
Next, we expand o(M)e*?) at 6=0, and define Fy(M), Fi(M), -+ by

(M) )= 5 (— 1727 s (MF .

Then, by an easy calculation, we get the following formula

AV RN P— C7.3).
AP TOIL (—ktx,(k, m))

- k>0 j=1

§3. FExtension of the definition of F, to non-singular Killing vector fields.

In this section we extend the definition of F, to non-singular Killing vector

fields.
Let M be a Riemannian manifold, and let {,)> denote the metric of M. Let

X be a non-singular Killing vector field on M. Then, we define a i-form 7z Dy

X, 4

EX,M(A):W

where A ranges over the vector fields on M. We define w% » by
a)g(,M:(—Zﬂ)“n—lnX,M<d7rX.M)n .

When M is a 2n+1 dimensional closed oriented Riemannian manifold, we define
Fy(M, X) by

Fu(M, X)={, .

Next, we shall describe some properties of F(M, X). First, we shall prove
that the above definition is an extension of the definition in §2.

PROPOSITION 1. Let M be a 4n—1 dimensional closed oriented manifold. We
assume that M has a fixed point free S'-action and a metric invariant under the
given action. Let X be the Killing vector field on M which is generated by the
St-action. Then we have

F(M, X)=F(M).
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Proor. We construct N as in §2. Obviously we can give a Sl-invariant
metric to N which is an extension of the metric of the boundary »M, and we
can assume that N satisfies the boundary product condition. Let Y be the
Killing vector field on N which is generated by the S*-action on N. Then we
have 7y, y_slu=mx n. Moreover let £y be the Lie derivative with respect to
Y. Then

Lyry, w-7=0
and

Lyry, y-s=1Y N dry, y-s)+dUY )7y, x-s)
Zi(YXdﬂy, N—J) .

Therefore we obtain

(Y )dzy, w-7)=0
(see Bott [3]). Hence

Y )dry, y-s)""=0.

But (dzy, y-7)%® is a top dimensional form of N—J. Therefore we obtain

(dﬂ'y,N—J)zn:O-
This means that
doFy,=0.

Let N, be the e-tubular neighborhood of /. Then

1
FM, X)={ ogi=—| o,

=, dot ], owit))

Thus,

1. .
FM, Xy="1im | ozt

But, according to the formula in Baum-Cheeger [2, Corollary 4.3], we have

WESE

1
n{k.m

q
tim | afat,= 3 :
¢ B (=t xR, m))

e=0 m=1

k>0 =

Comparing this with the last formula in Section 2, we obtain the desired resuit.
Next, we shall prove that Fy(M, X) does not depend on the choice of metrics
of M.
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PROPOSITION 2. Let M be a 2n+1 dimensional closed oriented manifold. We
give two metrics on M which we denote by <{,> and {,) respectively, and let
M., M, denote the oriented Riemannian manifolds with these fwo melrics respec-
tively. Let X be a non-singular vector field on M which is a Killing vector field
with respect to these two metrics. Then, we have

Fo(My, X)=Fo(Ms, X).

Proor. From the two metrics on M, we can induce two product metrics on
Mx1I denoted by {,>, and <, >/ respectively. Then, we can construct a new
metric <,>7 on MXI by

=t A=D M

where f is the standard coordinate of I=[0, 1]. Let X be the vector field on
MxI which is the pull back of X from M. Then, we can easily see that X is
a Killing vector field for the metric <{,>7. Let MXI be the oriented Riemannian
manifold MxI with the metric {,>]. Then, as in the proof of Proposition 1,

we have
dw},m—,:O .

Thus, it follows that

FiMs, X)=FMy, X)={ ki, =( o,

=5Mx1dw}.,m:0.
This completes the proof.
Finally we show that Fy(M, X) is a cobordism invariant.

PROPOSITION 3. Let N be a 2n+2 dimensional compact oriented Riemannian
mantfold with boundary M. Let X bea non-singular Killing vector field on N
and we set )?]M:X. Then

Fy(M, X)=0.

Proor. As in the proof of Proposition 1,

dw y=0.
Hence,

FM, X ):ngg,Mz gN day=0.

This completes the proof.
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§4. Vanishing theorem for F,.
In this section, we shall describe a vanishing theorem for F,.

THEOREM. Let M be a 2n-+1 dimensional closed oviented Riemannian mani-
Jold, and X, Y Killing vector fields on M. We assume that X, Y are linearly in-
dependent at every point of M and [ X, Y1=0. Then, we have

Fy(M, X)=0.

PROOF. The proof of this thecrem follows easily from the following two
Lemmas and Proposition 2.

LEMMA 1. Let M be a 2n+1 dimensional Riemannian manifold, whose metric
is denoted by {,). Let X, Y be Killing vector fields on M. We assume that X,V
are linearly independent at every point of M, [X, Y1=0 and <X, Y>=0. Then
wa,MZO.
PrOOF. Let £y denote the Lie derivative with re'spect to Y. Then, from
[X, Y1=0, we can easily deduce that
Iyﬂ'X,M:O .
From (X, Y>=0, we can see
IWVwgu=0.
Therefore we obtain

Ndrrum)=Lyryy—d((Y 7wz u)=0,
and
(Y )0kw=(—27)"" (Y ) g u(d7g,2)"} =0.

But %,y is a top dimensional form on M and Y is a non-singular vector field.
Therefore

%, »=0.
This completes the proof.
LEMMA 2. Let M be a Riemannian manifold and X, Y Killing vector fields
on M. We assume that X, Y arve linearly independent at every point of M and

[X, Y1=0. Then, we can construct a new metric <,Y on M such that X, Y are
Killing vector fields for this new meiric and <X, Y =0.

Proor. Let {,) denote the given metric on M. For any vector field A on
M, we can define functions a(A), b(A) and vector field Z(A) by

A=a(A)X+b(AY +Z(A)
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where <Z(A), X>=(Z(A), Y>=0. Then we construct a new metric ¢, > on M by

(4, BY'=a(A)a(B)+b(A)b(B)+<Z(A4), Z(B)»
for any vector field A4, B.
Using [X, Y]=0 we can easily obtain the following formulae :

()= Y, VXX, A>—<X, V)XV, A
- <X, X><Yy Y>_<Xy Y>2 !

<X: X><Y: Y>—<X) Y>2 ’

X-a(A)=a(lX, AD), X-a(B)=a(X, B,
X-b(A)=b{X, BY), X-0(B)=b(LX, B]),
0X, Z(AJ=Z([X, A, [X, ZB)1=Z(X, B]).
Using these formulae, we have
X-{A4, BY'=(X-a(A)a(B)+a(A(X- a(B)+(X-6(A)b(B)

+o(ANX-b(B)+X-<Z(A), Z(B)»

=a([X, ADa(B)+a(A)a([X, BN)+b(LX, ADB)+b(AM{IX, BI)
X, Z(A)], Z(B)y+<Z(A), [X, Z(B)T»

=a(lX, ADa(B)+b([X, ADb(B)+<Z([X, AT), Z(B)>
+a(Aa(LX, BD+b(Ab[TX, BN+<Z(A), Z(LX, BI»

=<[X, 4], BY+-{A, [X, B].

Therefore X is a Killing vector fleld with respect to the metric ¢, ). Similarly,
Y is a Killing vector field with respect to the metric ¢,>. It can also be shown

that <X, Y)'=0. Thus, the new metric <,)’ satisfles the desired properties.
This completes the proof.

§5. A new characteristic number.

In this section we shall define a new characteristic number.

Let N be a 2n+1 dimensional compact oriented Riemannian manifold with
boundary M and X, ¥ Killing vector fields on N. We assume that [X, Y]=0,
X is a non-singular vector field, and X|,, Y|, are linearly independent at every
point of M. We assume moreover that N satisfies the boundary product condi-
tion. Then, we give a new metric <,)/, such that X, Y are Killing vector fields
for this new metric, the oriented manifold N with this new metric (denoted by
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N,) satisfies the boundary product condition, and <X, Y>’=0 at some neighbor-
hood of M. Using Lemma 2, we can easily see that such a metric exists. Then,
we define a(X, Y ; N) by

alX, Y ; N):SNlm},Nl .

Now, we shall show that XN % n, does not depend on the choice of new
1

metrics as above. Thus, a(X, Y ; N) is well defined, independent of the choice
of metrics of N.

PROPOSITION 4. Let N be a 2n+1 dimensional compact oviented manifold with
boundary M, and X, Y vector fields on N. We assume that [X, Y]=0, X is a
non-singular vector field on N, and X|y, Y|u ave linearly independent at every
point of M. We give N two metrics {,> and <,)', and assume that X,Y are
Killing vector fields for both metrics. We also assume that the oriented manifold
N with each of two metrics above, which we shall denote by N, and N, vespectively,
satisfy the boundary product condition, and <X, Y)=<X, Y>'=0 at some neighbor-
hood of M. Then,

Wk.n :S W, ¥y -
|, o=, ok,

Proor. First we consider the case where dN, and N, have the same metric.
In view of the boundary product condition, we can construct Riemannian
manifolds Klleij(——Ng, KzzNz%J(—NZ). Then,

SNIQ)HX,NI_‘SNzﬂ)}Z:,Ng:(Sle},N1+S_Nz(l)nx,_w)“(SNzw"X,Ng‘f'S_Nzw},Nz)
=Fy(K, X)—FyK,, %),

where X is the vector field on N&bj(—N) equal to Xon Nand —N. From Prop-
osition 1, we see that

Fy(K,, X)=Fy(K,, X).

This completes the proof of the case that 9N, and dN, have the same metric.
Next, we shall consider the general case. Set oN,=M,, dN,=M,. There are
positive numbers ¢, ¢’ such that we can identify some neighborhoods V, and V,
of M, and M, with M, %[0, ¢] and M, X [0, ¢ respectively, where M, and M, are
identified with M,X0 and M,x0 respectively. We may assume that V,CV.,.
We can construct a smooth function f: [0, €] — [0, 17 so that f([0, ¢/41)=0 and
F([(3/4)e, ¢])=1, and construct a new metric {,>” on N such that {,>"=<{,> on
N—V, and {,>=fX >+{A—f)X,> on V; where we identify V; with MX
[0, ] as above and ¢ is the standard coordinate of [0, ¢]. By the assumption,
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we have (X, Y>=<(X, Y>'=0 on Mx[0, ¢]. Hence <X, Y)»”=0on V;, and X, Y
are Killing vector fields for the new metric <{,)”. Let N denote the oriented
manifold N with the new metric {,>”. Then, from Lemma 1, % 7=w% y,=0 on
V.. Therefore we obtain

%, =S Wk, x =S_ wi’y.z—v=§_w" -
SNI Ny Ni-Vy 1 N-vy F o

But, since N and 9N, have the same metric, from the first part of this proof,
it follows that

_ WX —:S W% Ny .
SN X, N N X, Ng

Therefore

CU},N:S Wy
SNI 1 Ny X2

This completes the proof.

§6. Residue theorem.

In this section we construct a differential form ayy y such that dayxy y=
w% y where X, Y are linearly independent, and prove a residue theorem similar
to that of Bott [4].

Let N be a 2n+1 dimensional Riemannian manifold, and let X, Y be Killing
vector fields on N. We assume that [ X, Y]=0and X, Y are linearly independent
at every point of N, Let {,> denote the given metric on N, and let <, )’ denote
the new metric which is constructed in the proof of Lemma 2. N, denote the
manifold N with the new metric {,)’. Then, we construct Riemannian products
IXN, IXN, Let {,> and {,)} denote the metric of IXN and IXN, respec-
tively, and we construct a new metric on I XN denoted by {,>?, by setting

<’ Y:i< > >1+<1_‘2‘)< H >£

where 7 is the standard coordinate of I=[0, 1]. Let IXN denote the manifold
IXN with the metric {,>%, and let X be the vector field on I XN which is the
pull back of X from N. Then, Xisa Killing vector field for the metrics {,>,,
{,> and {,>7. Let w4« denote the integration over the fiber on I XN with re-
spect to the projection /XN — N. Then, we define ayy vy by

;- —_ 7
Ax, v, N —TxWg 77 .

PROPOSITION 5. Let N be a 2n+1 dimensional Riemannian manifold, and let
X, Y be Killing vector fields on N. We assume that X, Y are linearly independent
at every point of N. Then,
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dayy,y=0%x -

PROOF. As in the proof of Proposition 1,
dw},m—:O.

Let i, 7; be the mappings N — IxN which identify N with 0XN, 1 XN respec-
tively. Using <X, Y»'=0 and Lemma 1, we obtain

li‘)ﬁw}’mzo .
But, by the definition,

ifwf%,m:wnx,zv .
Therefore by the formula dry+mwd=1f—7%, we obtain
(s oyt ws(d 0} r2)

=i} ey — 150} o s
that is
daX,Y,N:CU"X,N .
This completes the proof.

Now we shall describe the residue theorem. Let N be a 2n-+1 dimensional
compact Riemannian manifold with boundary M and let X, Y be Killing vector
fields on N. We assume that [X, Y]=0, X is a non-singular vector field and
X1y, Yl are linearly independent at every point of M. Let K be the subspace
of N where X, Y are linearly dependent. Then, using the fact that X and Y
are Killing vector fields such that [X, Y]=0, and the following Lemma 3, we
can easily see that K is a closed submanifold of N, and we decompose K into
connected components K=K,\UK,\J -+ \UK,.

LEMMA 3. Let N be a 2n+1 dimensional compact oriented Riemannian mani-
fold with boundary M, and let X, Y be Killing vector fields on N. We assume
that [X, Y1=0, X is a non-singular vector field, and X\y, Yy ave linearly in-
dependent at every point of M. Let K be the subspace of N where X, Y are
linearly dependent. Then K is a closed submanifold of N.

Proor. For any point x&K, we can find a real number a, such that ¥.=
a.X, where X,, Y, are the vectors of X, Y at x, because X is a non-singular
vector field. Fix x and let K, be the zero set of Y—a.X. Since Y—¢,X is a
Killing vector field, K, is a closed submanifold of N,

Ly-g xX=[Y—a.X, X]=0.

Therefore X is tangent to K, at any point of K,. Let N, be a tubular neigh-
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borhood of K, and regard it as a disk bundle over K,. We may assume that
Y —a,X is tangent to the fibers of the disk bundle. Therefore X and Y —a . X are
linearly independent at some neighborhood of K, outside of K,. Then X and
Y are linearly independent at some neighborhood of K, outside of K,. This
shows that K, and K coincide near the point x. Thus K is a closed submani-
fold of N. This completes the proof.

Let N,,. . be the e-tubular neighborhood of K, (I=m=g). Fix a small posi-
tive number ¢; and let ¢ be a number satisfying 0<s<e¢,. Then,

aX,Y,N—K'_S Ax,y, N-
gaNm.el 5Nm,e £y £

*71

Hence,

lim &\ Ay, v, N-K
Np, e

2t}

“ Oy v, y-x—lim ( &% N-K
Jor e, 20 JNpm e -Nm,e

= aX,Y,N—K—S Wk, v-x -
Sazvm,el Nm,s1

Thus, we have proved the convergence of

lim S Ay, v, N~-K -
s=0 JONp e

Then, we define Res(X, Y ; K,,) by

Res (X, ¥; Ky=tim (~  axrvx).

We shall prove the following residue theorem.

THEOREM. Let N be a 2n+1 dimensional compact oriented Riemannian mani-
fold with boundary M, and let X, Y be Killing vector fields on N. We assume
that [ X, Y1=0, X is a non-singular vector fleld, X|y, Yy are linearly independ-
ent at every point of M, and N satisfies the boundary product condition. Let K
be the subspace of N where X, Y are linearly dependent, and we decompose K into
connected components; K=K\JK,\J - \UK,. Then,

a(X, Y; N)= 3 Res (X, V; Ky).
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If N is a closed manifold, then

FN, X)= 3 Res (X, ¥ ; Kz).

Proor. Let ¢,) denote a new metric on N having the same properties as
the one we used when we defined «(X, Y ;N) in §5, and let {,> denote the
given metric of N. N, denote the oriented manifold N with the new metric O
We can easily see that we can assume that {,>=(,)’ at some neighborhood
of K. By the boundary product condition we can identify a neighborhood of the
boundary of N, with M;x[0, ¢] where ¢ is a positive number and M,=0N,.
M, is identified with M;x0, and X, Y restricted on M, X [0, ¢] are the pull backs
of Xy, Yy, from M, From this fact we can easily see that 740} rymsms is
the pull back of zso"_ ___ from M, Let {,>{ denote the metric of <M,

Xy T7H1
Then, by the definition, we have <Xl Y|x >71=0. Therefore from Lemma 1

we obtain

I =0.
X&Ml’j XMy
Hence
Ty @~ =0
X‘Ml’IXMl
and

Tx0%, rearpema =0 -
It follows that

aX.Y,Nl—KZO

on some neighborhood of M. Let N, . be the e-tubular neighborhood of K,.
Then,

g
=\ axv.y,-x+ 1im<——g ax.y, -)
SM X,Y, Ny-K Z aNm,e X, Y, Ny-K

m=1 -0
=3} Res(X, Y ; Kn).
If N is a closed manifold, then, by definition,

a(X, Y ; N)=F(N, X).

This completes the proof.
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§7. A new cobordism invariant for almost free 7TZaction.

In this section, we construct a new cobordism invariant from «(X, Y ; N).

Let N be a 2n+1 dimensional compact oriented Riemannian manifold with
boundary M, and let X, Y be Killing vector fields on N. We assume that
[X, Y1=0, X is a non-singular vector fleld, X|4, Y|, are linearly independent
at every point of M, and N satisfies the boundary product condition. Then, for
any real number ¢, X, Y+41X satisfy the above condition for X, Y. So we can
define B(X, Y ; M)(#) by

B, Y ; M)t)=a(X, Y+1X; N)—a(X, Y ; N).

We shall prove that the right-hand side does not depend on the choice of N
with boundary such that dIN=M.

PROPOSITION 6. Let N, N’ be 2n-+1 dimensional compact oriented Riemannian
manifolds with the same boundary M, X, Y Killing vector fields on N, and X', Y’
Killing vector fields on N'. We assume that X|y=Xlwu, Y]u=Y"l1, [X, Y1=0,
and [X', Y"]=0. We assume moreover that X, X' are non-singular vector fields,
Xy, Yy ave linearly independent at every point of M, and N and N satisfy the
boundary product condition. Then,

alX, Y+ X, N)—a(X, Y ; Ny=alX', Y+t X' ; N)—a(X, Y'; N).
Proor. We form N’kbj(—N). Let X” be the vector field on N’&bj(—N) which

coincides with X on —N and coincides with X’ on N. Then, from the residue
theorem, we obtain

FO(N’LbJ(——N), XNy=a(X, YV+1X ; N)—a(X, Y+tX; N)
and .
Fo(N’ka(-N), XN=a(X", Y ; N)—a(X, Y ; N).

Hence we obtain the desired equality.
Now, we shall prove that 8 is a cobordism invariant.

PROPOSITION 7. Let N be a 2n+1 dimensional compact oriented Riemannian
mantfold with boundary M, and let X, Y be Killing vector fields on N. We assume
that [ X, Y1=0, X, Y are linearly independent at every point of N, and N satisfies
the boundary product condition. Then,

B(X, Y ; MY(H)=0.

Proor. This is clear from the residue theorem.
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Furthermore B(X, Y ; M)(¥) does not depend on the metric of M, because
a(X, Y ; N) does not depend on the metric of N.

Let M be a 2n dimensional closed oriented almost free T?-manifold. We give
a T?-invariant metric to M. Regarding 7% as a product 72=S!xS} let X,V
be Killing vector fields which are generated by S!, Si respectively. In this case

we can consider B(X, Y; M) as a cobordism invariant for almost free 7T2-
actions,

§8. Examples.

Let M be a 2k+1 dimensional closed oriented Riemannian manifold and let
X, be a non-singular Killing vector field on M. Let D?**% denote the unit disk

in R*"*2 and S*"H1=0D**2, Let (x,, x5, -*-, Xspss) denote the standard coordinate

of D*"*%, We give the standard metric on D***2, We define a Killing vector
field X, on D?**+ by

n+1 J 0
Xo= le aj('_xzj aX2j—1 + X251 axzj)
where ¢; (1<;7<n-1) are non-zero numbers. Let X,, X, be the pull backs of
X,, X, respectively on the Riemannian product MxD?**%, and set X=pX,+¢X,,

Y=p"X,+¢'X, where p, t’, q, ¢’ are real numbers such that pg'— p’g>0 and p=0.
Then, with some calculation, we get a formula

a(X, Y ; Mx D*™+?)

(Bt n+D! (1 (tp+H(I—t)g)*(tgA-1—H)p)"
=T hrg PP lim f (PP A+ (A —D)F

dt
X Fo(M, X)X Fy(S*™+, X,)

] ﬁ’ q,
DZ, c/ b
ﬁl ql

n+1 9 9 N
A= Z; aj(X2j—1+x2j) .
i=

Note. In proving the above formula, we had better normalize the metric
of M so that X, has the unit length all over M.

Specifically, we set M=S'=gD?. Denoting by (x{, x4) the standard coordinate
of D?, we set

d 3

p S T
! ? 9x! ax}

Then, we have the formula
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'n+
a(X, Y ; S'x Denety—(— 1y P

(pq/_p/q)n+1p FO(S2n+1: XZ) s

and

(p/+tp>n+l_p/n+l
X, Y ; S* X S () =(—1 e VIt e e P
A ~ J=(=1) (pg'—2p'9)"*'p

e (p/+tp>n+1_p/n+1 1
(PT—P' Q"D @10y Gney

Fo(S2r, X)
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