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1. Introduction

In this paper we are concerned with the asymptotic stability of stationary
solutions for semilinear parabolic equations. H. Fujita [8] showed that the mini-
mal stationary solution of the initial boundary value problem

%—:Av—ke" (xef,t>0),
@D v(zx, 0)=v,(x) (xel),
?]20=0 (t>0),

is stable while the others are unstable, where £ is a bounded domain in R" with
a smooth boundary 32. It seems interesting to ask whether any solution » for
(1.1) with the initial value v, close to the unstable stationary solution w goes
away from it with time. Since the difference w—=v—w satisfies

%%:(A+ew)u+ew(ea_1_u) (xe2,t>0),

(1.2) w(@, 0)==uo(x)=vo(x)—wlx) (xe),

ul30=0 t>0,

this question can be reduced to the decay problem of solutions for the initial
boundary value problems (1.2).

Similarly the stability problem of the non-trivial stationary solution w for
the initial value problem

ov

—=Adv—mv-+gvd (xe R, t>0),
(1.8) at ve )

(2, 0)=v,(x) (xe R,

(m, g>0 are constants) is equivalent to that of the trivial solution for the initial
value problem

ou

—=(4—m+3gw*)u-+3gwu+gu’ (xeR%t>0),
(1.4) ot gw?®) )

u(zx, 0)=uy(x) (xe R%) .
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We regard the above problems as the decay problem of an abstract evolution
equation in a Banach space and show, as the application of the abstract theory,
that there are many initial values with which the solution for (1.1) [or (1.3)]
converges to the (unstable) stationary solution.

In 1976 H. Kielhofer [5] showed the stability of stationary solutions for semi-
linear parabolic equations, but his results cannot be directly applied to the above
problems (1.1) and (1.8) (see section 3); the present work is a part of the author’s
master’s thesis [7]. '

Stability theorems on the trivial solution for the abstract equation are given
in section 2, and section 3 ig devoted to the proof of the theorems. The tool for the
proof is the Lyapunov method which is well known in the theory of ordinary
differential equations. In section 4 we shall apply the abstract stability theorems
in section 2 to the stability problem of w for the problem (1.1) [or (1.8)].

2. Stability theorems.

Let us consider the stability problem of the trivial solution #=0 for the
semilinear evolution equation ' ’ '

du _ v »

#(0)=a
in a Banach space X with norm || ||, where a € X. Throughout section 2 and
gection 3 we assume that

(A1) —A is a generator of a holomorphic semigroup;

(A.2) there is a positive number §, such that Z(4)N{2: Re 2<d,} consists of a
finite number of eigenvalues with finite multiplicity and with non-positive real
part, where Y(A) is the spectrum of A4.

Further we make one of the following assumptions:

(A.3) the nonlinear operator F:[0,+o0)x X — X satisfies

1) F(t,00=0 t>0),
(2) for each uwe X, F'(t,u) is Holder continuous in ¢,
3 1F @, w—F ¢ »]<c(ul*+lv]9lu—v]

whenever [ull, [|v]| are sufficiently small, where ¢ and « are positive constants
independent of %, v and ¢;

(A.3’) the nonlinear operator F:[0,+o0)xX — X satisfies (1), (2) in (A.3) and
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(8’) for every p>0, there exists 7(p)>0 independent of ¢ such that |[F'(¢, u)—F (¢, v)|
=pllu—v], whenever fjul, {|vll<n(p).

We call the map u:[0, T) > X a solution for the initial value problem (2.1)
if weC{o, T); X)nCW0, T); X), u(t)e D(A) for all te(0, T), and satisfles (2.1).
Moreover, we call it a global solution if T=-oco.

Let us define the stability of the trivial solution w=0 as follows.

DEFINITION 1. The trivial solution is said to be conditionally stable if there
exists a non-trivial subset S in X (called a stable set) with the following property;
for each ¢>0, there exists a positive number () such that, whenever the initial
value a with [la]<é(c) belongs to S, the initial value problem (2.1) has a global
solution u(¢) satisfying [u(¢)]<e for all £>0. If a stable set S is a manifold then

we call it a stable manifold, and if there is no stable set that includes properly
S, then it is said to be mazximal.

DEFINITION 2. The trivial solution is said to be stable if it is conditionally
stable and if its stable set contains some ball with the origin as its center and
with a positive radius; and otherwise it is said to be wunstable.

Now stability theorems can be stated as follows.

THEOREM 1. If A has an eigenvalue with negative real part, then, under
assumptions (A.1), (A.2) and (A.3’), the trivial solution of the initral value
problem (2.1) is unstable.

[For the proof of Theorem 1, see [4].]

THEOREM 2. Under assumptions (A1), (A.2) and (A.8), the trivial solution
for the initial value problem (2.1) is always conditionally stable, and there
exists a stable manifold S with the following properties:

(&) For each ac S, (2.1) has a global solution u(t) satisfying
lu®li=ecllalle? (t>0),
where ¢, and B are positive constants;
(b) For every £>0, there exists £&>0 suc_h that if a solution w(t) for (2.1) satisfies
lu@=&.04-¢)- We-e (t>0)

then w(0)eS. Here N is the maximal order of square matrices in the Jordan
normal form of the restriction of A on the eigenspace corresponding to
etgenvalues on the imaginary axis. ‘

REMARK 1. If A has no eigenvalue on the imaginary axis, then S in the
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above theorem is maximal in the neighborhood of the origin.

If we assume (A.8’) instead of (A.3), then Theorem 2 has to be replaced by
the following one.

THEOREM 2/. Under assumptions (A1), (A.2) and (A.3"), the trivial solu-
tion for (2.1) is elways conditionally stable, and there exists a stable manifold
S’ satisfying (a) in Theorem 2 and the following property:

(b)) For every >0, there exists £>0 such that if a solution u(t) of (2.1)
satisfies
flu@®l=¢le~ t>0)

then u(0)e 8.

COROLLARY 8. Under the same assumptions as in Theorem 2/, +f A has
no eigenvalue with non-positive real part, the trivial solution for (2.1) is
stable.

3. Proofs of the stability theorems.
By the assumption (A.2), the spectrum J(A) can be separated into three parts:

21=2(A)ﬂ{11 Re 2<0}:{2}y M) 21151} )
2,=3(4)N{2: Rea=0}={a2, ---, 2},
2=2(4)N{2: Rea=d,},

where 1} 1=j=<k,, =1, 2) are eigenvalues with finite multiplicity. Set

_1
22V —1

PaZI—P1_P2 ’

P=— S (2—AydI’ (=1,2),
s

where I'; (t=1, 2) is the simple closed curve which encloses the open set contain-
ing %, in its interior and 3(4)\2, in its exterior. Then P, (:=1,2,8) is a pro-
jection on X, and X, (=P.X) is an invariant subspace of A. Therefore A can be
decomposed into three parts A,=A|;, (¢=1,2,3)and S(4)=2,. Since X; (1=1,2)
is finite dimensional, the operator —A,; is bounded and generates the one-para-
meter group {¢"*4i},c». On the other hand, the operator —A; generates the holo-
morphic semigroup {e*4s},»,. Bquations (2.1) can be decomposed into

du,
dt

u(0)=a, (1=1,2,8),

=—Au,+PF, u) t>0 (i=1,2,3),
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where u,=Pu and a;=P,a. By (A.1) and (A.3) or (A.8'), » is a solution for the
above initial value problem if and only if u; (4=1,2,8) are in C[0, T') and satisfy
the system of integral equations

3.1) w,t) =e““1ai+ye‘ G=24; P F (s, wy(S)+ua(8)+us(s))ds (1=1,2,3) .
0

Considering the matrix-representation of e 4 (4=1,2) with respect to the
Jordan basis of A; and noting Re 1=4, (1€ X (4;)), we have
(i) There exists y>0 and K;>0 such that

(3.2) e sl = Ke7* t=0) .

(ii) For every ¢ satisfying max {Re 1}: 1=7=k}<—0<0, there exists K,>0 such
that

3.3) e~ 4| =K,e (t=0) .

(iii) There exists a polynomial @ of degree (N—1) and with positive coefficients
such that

(3.4) fle~t42i =Q({t]) (—ooLt<+o0),

In what follows, we fix ¢ as 0<¢<y, and denote max (K;, K,) by K.

LEMMA 8.1. Assume (A.1), (A.2) and (A.8) [or (A.3)]. If ||b]] is sufficiently
small, then the system of integral equations

PAt: b)=——§+we““‘“iPiF(s, Os: b)ds  (i=1,2),
t

(3.5)
Pat; b) = e‘“sb—;—ste"“‘“sPsF(s, o(s; b))ds
]

{t>0,be X;) has a solution 6(t; b) satisfying
(8.6) llo(¢; b)l|<2K]jblle~ T (t=0) .
And the map b — 6(t; b) is continuous for each t=0.

2K

~1
Proor. Let 7 be small enough to satisfy 2077"<2”‘(—;— +L> , where a and

¢ are constants in (A.8), and L=§wQ(t)e’(T‘”>‘dt (L=0 if X,;=@). [In the case of
0

(A.8%), let p be small encugh to satisfy (%K—E—L) o <é~, and take p=7{p) as it satis-

fies (A.87) with this p.] When [[b]|< 5% we define the iterative sequence {#/(£; b)};-1,z...
by the following equations



263 Masayuki Ito

05t B)=0
Poit, b):——g+we*<”‘s>AiPiF(s, 0-4(s; B))ds (i=1,9),
¢
¢
P0i(t; b)=e *4sb +S e LD F (s, 6774(s; b))ds (J=1,2,--+).
]

From (3.2), (8.3) and (3.4), it follows that the sequence converges uniformly in ¢
and its limit 6(¢; b) satisfies (8.6). The last part of the claim is true for each 67
in the sequence, and is so for ¢ by the uniform convergence. [Q.E.D.]

LemMMA 8.2. (i) Under assumptions (A.1), (A:2) and (A.8), the solution for
the system of integral equations (8.5) is unique within the class {u € C([0, +o0); X):
lu@® =9/ A+t)-F/P- for t=0}, where ¢ is an arbitrary positive number and
7' is a positive number satisfying

2cr/a<2K + g:wQ(t)(1+t)’N*“edt><1 :

[

(ii) If 2,=@, then, under assumptions (A.1l), (A.2) and (A.3) [or (A.3)],
it is unigue within the class {u € C([0, +o0); X): u@)|=y for t=0}, where 7
is the constant defined in the proof of Lemma 38.1.

PrOOF. (i) Suppose that (38.5) has two solutions 4(¢; b), w(f; b) in the class,
then

l6(t; B)—olt; HI< X Smﬂe“’*‘“iPi(F(s, (s; b)— F'(s, o(s; b))|ids
1=1,2 )¢
+ Stne—“*wsps(p(s, B(s; b)) —F (s, wis; b))l ds .
[i]
Hence M (= Sup. 16(s; B)—w(s; b)]]) satisfies

2K

M§2cn’“(7+§:m Qs)(1+s) s )M .

This implies that 6(¢; b)=w(t; b) for all t=0.
(ii) When X,= @, similarly and more easily we can establish the claim in
virtue of @=0. [Q.E.D.]
PrROOF OF THEOREM 2. We define the manifold S by S= {0(0, b):be X, |bll <§Z—{} ,
where 4 is the solution for (3.5) constructed by the iteration: note S is_homeo-

morphic to {best I[bll<%{-}. Since 6(¢; b) is the solution for (2.1) with the
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initial value 6(0; b), by Lemma 3.1, S is a stable manifold. Hence the property
(a) in Theorem 2 directly follows from Lemma 3.1 as S=y—¢ and ¢,;=2K.

‘We shall show (b). Suppose that the solution u(t) for the initial value prob-
lem (2.1) satisfies

lu@®=¢c.0+1) @/ t=0)

7 1/(a+1)
where £, z[min(—z—f, 4 )] . Then
[ F(, w@)]| Sclef1-+t) - @a-ajern

and hence e4:P.F (s, u(s)) (1=1,2) is integrable in [0, +cc). Set
dizgwe”i P.F (s, u(s))ds (:=1,2),
[}

and the equations in (8.1) (i=1, 2) can be rewritten in the form

3.7 Pau(t) = e 4(Pa+d;)— S +°oe’ G945 P(F (s, u(s))ds t=1,2).

t

The left-hand sides and the second terms of the right-hand sides of the equations
8.7) (3=1,2) decay as £{—oo. On the other hand, if Pa-+d,#0 (i=1,2), then
¢~t4y(P,+d,) grows up exponentially and e *42(P,a-d;) does not decay as £ -— co.
Indeed, with respect to the Jordan basis, they can be represented by

* 0 0
n—1
e 4t e }t(n D1 (Pia’—.{_di)vﬂl
0 0
0 s (Pa+do,rn
0 o ok

(=1, 2), where n is the order of the square matrix in Jordan form of A, corre-
sponding to 2%, v is the sum of multiplieities of ¢, -+, 2\, and (Pa+dusr, +- v,
(P.a~+d,),.. are components of P,a+d,. Hence we must have Pa+d,=0 (=1, 2)
and u(f) satisfies equations (3.5). By Lemma 3.1 and (i) in Lemma 3.2, we have
u(t)=6(t; Psu(0)) and u(0)e S. [Q.E.D.]

When 2,=¢, in the above proof the role of (i) of Lemma 3.2 can be re-
placed by (ii) of that, and we obtain that if the solution u(¢) for (2.1) satisfles
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u@®ll < 2%{ for all t>>0, then %(0)€ S. This shows Remark 1. We note that this

holds under (A.l), (A.2) and (A.3’) since Lemma 8.1 and (ii) in Lemma 3.2 are
also true under these assumptions.

Proor OF THEOREM 2/. As we mentioned above, Theorem 2’/ holds when 3,=
@. So we assume Z,x@. Without loss of generality we may assume 0<s<% .

Set v(t)=e*u(t), then v satisfies

dv____ — 23 —£g
. { Y ——(A—eJv-+e"F(t, &%) >0 ,
20)=a .

The operator A—¢ satisfies assumptions (A.1) and (A.2), and has no eigenvalue
on the imaginary axis. The map ({, v) — ¢*F(t, ¢ **v) satisfies (A.3). Therefore,
using estimates

(3.9) e 2| =K"e" (t=0), (A'=A4:+A4,),
(8.10) et 2 | < K7e= o (t=0),

(0<o’<e, K'(>0) depends on ') instead of (8.2)~(8.4), we obtain a stable mani-
fold S, of the trivial solution for (8.8) satisfying the following properties:
(a) If the initial value a € S,, then the solution »(¢) for (3.8) satisfies

v =2K’[| Pyalle~Teo"t t=0);
(b)) if a solution »(t) for (8.8) satisfies
o)=L =0

2K’
(77' :v(4—I,{’>>, then »(0)€ S..
I

Set §'= U ; S.. Since w(t)=e*u(t), properties (a’) and (b’) follow from (a,)

0<£<?
and (b,) respectively. To complete the proof, it is sufficient to show that S’ is a

manifold. Let o<e,.<—;— (§=1,2). Then

5,={o.0i0: vex, pI=Z)

where 77 and K are constants determined by o} (0<s)<¢,) in the same way as
7" and K’ respectively, and ¢; is a solution for the system of equations

L=~
e—(t—s) (A’—sj)P'es-"’F(S, e_si’ﬁj(s; b))ds ,

¢

(P’Hj(t; b)=—§+
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t
@8.11) Pyf,(t; b)==e "4 + S eV U Pt (s, 670 ,(s; b))ds
[

We note that the solution for the system (8.11) is unique in {u: [u(®)] =7}
(Lemma 3.2 (ii)). Wemay assume 7/<7,. Then the function e%“:~2%9,(¢; b) satisfies
the system (8.11) (j==2) and

lleteame2t6,(t; BY| 2K’ ||blle~ 7 e1mop)e+ Gegmeyde
=
<since 2K bl <7l =71, 0{<51<% and ¢, < %) By the unigueness of the solu-

tion for the system (8.11) (=2), we have
e, (t; b)=0,(t; b)

4 4
whenever }|b] = min (”—1 , L2 ) This shows that one of stable manifold S,, and
2K! ' 2K}

8., is an extension of the other. Therefore S’ is an extension of all S, (O< e< %) ,
and it is a manifold homeomorphic to a ball in X.. [Q.E.D]

ReEMARK 3.1. H. Kielhofer [5] showed Theorem 2’ when X,=@ and F is in-
dependent of ¢. For problems (1.2) and (1.4), however, it is difficult to verify
that (4-+¢¥) and (4—m+38gw? have no eigenvalue on the imaginary axis. There-
fore we cannot directly apply his results to the stability problem of stationary
solutions of (1.1) and (1.3).

REMARK 3.2, When F is independent of ¢ (F (¢, w)=F (u)), the exponential de-
cay of the solution for (2.1) implies u(t)€ S’ for large .

REMARK 3.3. The stable manifold S [or S’], given in Theorem 2 [or Theo-
rem 2’], is tangent to X.

PrOOF. In the case of S, by (3.6), we have

+co
3 1P00; DI = 3 | Tl PE s, 0663 B)ds
i=1, =1, I3
=@K-+L)|bjlr*=.
In the case of S’, similarly, we have

[P’6(0; DI <2K’pllb] , and  p—0 as [b[|0.
[Q.E.D]
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4, Application.

LEMMA 4.1. Let uy(@), -, uy(®) € W(RY, If multiindices v, -+, v
k
satisfy _Z}l w1 Z[n/2]+1, then
=

iyi._a_yz .....iyk 2({ Pn
(8x> Uy (aw> Us (aw) U, € LR,

and

where C depends on n,v;, ++, v
For the proof, see S. Mizohata [6].

Ezxample 1. We first consider the initial value problem

ov

—=dv—mv+gv® ze R3,t>0),
(1.3) { at g (

v(2, 0)=v,(2) (e R?,

where m and g are positive constants. (See Section1.) M. S. Berger [1] showed
that the equation

dw—maw-+guw*=0 (x e R®)

has a countably infinite number of non-trivial real valued classical solutions, and
that they decay exponentially as lz| — 4-co. In order to study the stability of
Berger’s solution w, as we stated in Section 1, we rewrite (1.3) into

ou

u(2, 0)=v,(@®)—w(2) (xeRY .
Let X be Wi(R®) and || =]l {:.., where WR®) is the usual Sobolev space

with norm || |.,,. We define the operator 4 as follows:
D(A)={ue X: Auc X},
Au=A4A.u for all ue D(4),

where A, is the Friedrichs extension of —(d-—m+38gw? in L3 (R®). Then (i) A is
a densely defined closed operator in X; (ii) the eigenvalue of A, is also that of
A, and (iii) the resolvent set of A includes that of A,.

LeEMMA 4.2. The operator A satisfies assumptions (A.l), (A.2), and has at
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least a negative eigenvalue.

PrROOF. By the exponential decay of w at |x| — oo, as is well known, 4,
is a self-adjoint operator in L*R® and has only a finite number of eigenvalues
with finite multiplicity in {1:A<m}. In virtue of (ii) and (iii), this shows that A
satisfies (A.2).

Since norms [[(AsB80)-llz2, I+ll2,2 are equivalent in X for a positive number
B,, we have

1@+ 4 tul
flaell
(A B0+ A) ull,2
=050 T AuH Bl
— 1A+A4,) (Aot B)ul,2
it S TV ISR P
Zeofla+A40) M 221

Ha+A4) = sup

for all 2 in the resolvent set of —A,. Hence we obtain (A.1) by (), (i), (iii)
and the fact that —A4, generates a holomorphic semigroup in L*(R®).

In order to show the last part of the lemma, it is sufficient to show that A,
has a negative eigenvalue. The Berger’s solution w satisfies

(Agw, w) 2=(—dw-+mw—3gws, w)2
=—2g(w*, w)2<0 .

This implies that A4, has at least a negative eigenvalue. [Q.E.D.]

Set F (w)==3gwut—gu® for all weX. Then F satisfies (A.3). Indeed, by
Lemma 4.1, we have

[F (w)—F ()| =5Cg(lull+|lvDlu—vl]

whenever [lul, [v]|<|wl. Thus, by the theorems established in section 2, the
trivial solution is unstable and conditionally stable in [-].,. (also in maximum
norm). Let S be a stable manifold for #=0. Then w is conditionally stable in
the sense: for all ¢ with a—we S, the solution v for (1.83) converges fo w as

t— +oo.

Example 2. Next we study the initial boundary value problem (1.2) stated
in section 1. Here the stationary solution w for (1.1) is “unstable” in the fol-
lowing sense (H. Fujita [3]). If w,=w (v,%£w), then the solution for (1.1) blows
up or grows up, and if v, =w (v,%£w), then it converges to the minimal sta-
tionary solution.
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Let X be W%(Q)ﬂﬁ’é(!)) and || =l [,2, where W’%(Q):{ue WHD): ul30=0}.
And set
DA)y={ue X: d+em)uec X},
—Au=(d+e"u (ue D(4) ,
F(u)y=e*(e*—1—u) (e X).

From the boundedness of the domain 2, it follows that the spectrum of A con-
sists of only eigenvalues. Hence, by the procedure similar to the example 1, we
obtain that A satisfies assumptions (A.1), (A.2). By Lemma 4.1, we have

IF (w)—F (v)]| =|e"(e*—e"—u—0v)]|
é(C‘(‘eﬂlwﬂ)( fi Cn_l(”'u;?lll'_k “'U“)n )Hu___,v”

for all u, ve X. Hence, for every M >0, we have
1F () —F )| £C(ull-+ ol | u—ol] (lel, o =30)

where C’ depends only on M and [wl. Thus F satisfies (A.3).

From Fujita’s results and Theorem 2 in section 2, we obtain that the “un-
stable ” stationary solution w —non-minimal stationary solution— of (1.1) is condi-
tionally stable, and that @ with a—w € S (a stable manifold for 4 =0) must cross w.
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