Congruence relations and Shimura curves II
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0.1 Introduction

The main purpose of this paper is to supply details for the previous abstract
[8] (referred to as [CS]). The readers are assumed to be familiar with [CS1.

In [CS], several statements are given either without or with only outlines of
proofs. We shall give detailed proofs and explanations for them all but for the
two isolated exceptions; Theorem 1.6.1 and a remark §8.13, as they are inde-
pendent from other part and belong to different frameworks.

Although we are assuming the knowledge of [CS] in principle, we shall restate
each assertion of |CS] before giving its proof. The numbering and the naming
of chapters are the same as in [CS], and the details of each statement of [CS]
can be found in the corresponding chapter of this paper. However, the proofs
of Main Theorems I~III are summarized in §5. In §4, we shall give more
general results than the ones announced in [CS] §4. There is no §6 here, be-
cause there are no more details to be supplied to [CS] §6 “ The case of Shimura
curves ”. So, in this paper, Shimura curves will not appear explicitly.

0.2 Notations and terminologies

[General rules] For any field F, F is its algebraic closure. If Z is an F-
scheme, we write Z=2 (;9 F. (Thus, Z depends also on F, but it is clear each
time what F is; in most cases either F=k or F=F, (see below for k, F,).)

Vi, Vo>: the group generated by V, and V, (in a bigger group in consider-
ation).

If X is a scheme and Y is a closed irreducible set in X, Oy is the local

ring of X at the generic point of Y. When B;,r is a discrete valuation ring,
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ordy denotes the corresponding normalized additive valuation.

The group actions on the geometric objects (such as points of curves, places
of fields) are from the left, £—g& with (gg/)é=g(g’%), while the actions on arith-
metic objects (such as elements of function fields) are from the right, f—f7 with
F@”=(f7'. The two are connected by (g&,f)=1(5, f9. (The tree J is con-
sidered as an arithmetic object.)

olp:  the restriction of ¢ to Y.

[Specified objects] (ef. [CS] §§1~2)
0: a complete discrete valuation ring of characteristic 0 with finite residue
field F,;

p=(z): the maximal ideal of o;

k: the quotient field of o;

Spec 0={z, s} (y: the generic point, s: the closed point):

If Z is an o-scheme, Z,=Z ®nk is its fiber over 7 (the general fiber) and Z,=
Z @ F, is its fiber over s (the special fiber). Similarly, if ¢ is an o-morphism, then
Pr=0 @k, 0. =¢ & F,.

k. (Ck): the unique unramified extension of k with degree d over k;

0s: the ring of integers of k,;

[g]: the Frobenius automorphism of Uk, over k;

We shall fix an isomorphism between the residue field of %, and F,.

X: a proper smooth (relatively) irreducible algebraic curve over F,;

Z ={X1£~Xo—§iz—>X2}: a CR-system w.r.t. (X, 0);

K;=k(X,): the function field of X, (=0, 1,2), so that K,=K,K;;

L: the simultaneous Galois closure of K, /K, (3=1,2); i.e., the smallest Galois

extension of K, such that L/K, (7=1, 2) are both Galois extensions;

V.=Aut (L/K,) (¢=0,1,2): the Galois groups;

Gi=<V, V> (in Aut(L/K));

G,={G},2> in the case where & is symmetric, where ¢ is an extension of the

involution of K, defined by the symmetry;

T = (G}; Vi, V2): the tree associated with &2 (cf. [CS] §2, or §2 of this

paper).

T =G, V1, V2):  the base point-set (Vi\G})LI(V,\G;) for .

1 Congruence relations

In §1, we shall give some remarks on automorphisms, symmetries and twisted
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base changes & 0, associated with a CR-system &7

1.1 Let o be a complete discrete valuation ring of characteristic 0 with
finite residue field F,, and X be a proper smooth irreducible algebraic curve over F,

L
Let %z{thl—XO&Xz} be a CR-system with respect to (X, o) ([CS] §1.1). Then,
the two o-schemes X, and X, have the common special fiber X; in other words,
the definition involves the identifications X,,=X,,=X, where X,,=X, ® F, (i=1,2).

Let &2/ ={X§<—¢1—-—X5~—%—>X 5} be another CR-system with respect to the same
(X, 0). By an (X, 0)-isomorphism ¢: 252" between two such CR-systems, we
mean a triple e=(e, &, &) of o-isomorphisms ¢;: X;3X! (4=0,1, 2) such that e;,:
X,s—X}, (1=1,2) induce the identity map of X and that ¢jos,=¢0p; (=1, 2).
When £27/=2, ¢ is called an (X, o)-automorphism of 27 it is called trivial when
e, is the identity map of X, for all 1=0,1, 2.

ProposiTioN 1.1.1 Let & be any CR-system with respect to (X,9). Then
Z has no non-triviel (X, o)-automorphisms.

PROOF. For each n=0, put 0™ =0o/p"*!, where p is the maximal ideal of o.

Consider the system
(n) H{nd

b
W = PR o = X (W X s X W}

where X{"=X,®0™ (1=0,1,2) and ¢{”=¢, ® 0™ (1=1,2). Let e=(e, &, ¢,) be an

(X, v)-automorphism of &, and consider the triple
s(n):(€§n)’ 5gn)’ sén)) s

where £=¢, @™ (3=0,1,2). We shall write ¢ =1 when & is the identity
map of X f:)r all t=0,1,2. It is enough to prove ¢»=1 for all #=0. The
proof is by induction on n. First, let n=0. Then, by the definition of (X, 0)-
automorphisms, &% and & are the identities; but then, & must also be the
identity map of X{¥=X,,, because it stabilizes the generically injective morphism
X,,— X% X defined by (¢, ¢{). Now suppose that ¢» =1 (r=1). Fix a prime
element = of 0. Then for each 7=0,1, 2, £» determines a global section §; of
the tangent sheaf (the sheaf of derivations) of X=X in the following way.
Take any affine open set of X{, and let A be its affine ring (which is a flat
0™ glgebra). Put A®=A/zA, and for each ac A, let ¢®cA® denote the
residue class of a¢. Since &P=1, £ acts identically on the base topological space
for X, and induces an automorphism of each affine ring 4 of X{ which is
trivial modulo z*4. Let a—a+z"-b® (o e 4, b¥ e A®) be this automorphism of
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A. Then 5 depends only on a, and the map ¢ —b® is a derivation of 4©.
It is clear that these derivations of the affine rings A of X,, are compatible
with localizations, and thus defines a global section d, of the tangent sheaf of
Xis.  Since @,ogp=¢,00p; (i=1,2), we obtain d,o¢t =0}, (1=1,2), where ¢¥ is the
system of local ring-homomorphisms associated with gDis:@,;@Fq. Now let a be
any local section of the structure sheaf of X,,. Then ¢¥(a), and hence also
dopfi{a), are local sections of the structure sheaf of X,,. But since ¢y, is insepara-
ble on I, 0¥ (a) vanishes on II (cf. [CS] §§1.1, 1.4, for the definition of two
irreducible components I7, *II of X,). Therefore, ¢¥d,(a) vanishes on *JI. Since
0, maps *II onto X, this implies that 6,(a)=0. Since a is arbitrary, this gives
6,=0. Moreover, ¢, vanishes on II, because §yo¢¥(=¢¥05,)=0 and ¢;, induces an
isomorphism II~X,,. In the same way by using ¢.,, we deduce that §,=0 and
that J, vanishes on ‘7. Therefore, §,==6,=08,==0, which implies that ¢®=1.
q.e.d.

¢ [%
Let %:{Xﬁ——lXO——Z—*XZ,} be any CR-system w.r.t. (X,0). Define

(2] (23
1.1.2) 12 ={Xy— XX},

which is again a CR-system w.r.t. (X,0). Recall ([CS] §1.5) that 2 is called
symmetric if “X;=X, and *T=T", or more precisely, if there exists a pair (e, ;)
of mutually inverse o-isomorphisms ¢,: X3 X;, &: X, X, that lift the identity
map of X and that satisfy (e;Xe)(T)=!T. It is clear that the last condition is
equivalent with the existence of an o-automorphism ¢ of X, such that ¢,oe=
g0, and @ioe,=¢e,00,. Therefore, &2 is symmetric if and only if there exists an
(X, )-isomorphism e=(ey, &, &2): 22 such that soe,=c,0e,=1. But the last
additional condition follows automatically, because, by Prop. 1.1.1, the composite
tgog of & with ‘fe=(e;, 2, 61): 2 ~2 must be the trivial automorphism of &2
Therefore, we obtain

COROLLARY 1.1.83 & 1s symmetric if and only if there exists an (X, o)-iso~
morphism ¢ BN,

An (X, v)-isomorphism e=(ey, &, &3): Z 32 will be called a symmetry of &2
By Prop. 1.1.1, a CR-system &2 can have at most one symmetry . It is also clear
that ¢, is an involutive automorphism of X,.

1.2 Recall that each CR-system &2 w.r.t. (X,0) belongs to either of the
following two cases; [Case 1] for each 1=0, 1, 2, the ring of global sections of X,
is o; [Case 2] for each 7=0,1,2, the ring of global sections of X, is n,, the
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unramified quadratic extension of o (ef. [CS] §1.2).

Now, to each CR-system & w.r.t. (X,0), we shall associate a CR-system Z°*
belonging to Case 2, in the following way. First, when £~ belongs to Case 2,
we put Z*=2", Secondly, let &2 belong to Case 1. Then £Z°* is obtained

%
from & by the twisted base change ® 0, defined as follows. Put Z={X,«—
@
X, ~—2—>X2}, and let ¢ be the involutive automorphism of k./k. Then Z*=

{X7{ <———-X +—-—-’X } is defined by:

X=X, ®0 :1=0,1,2) as p-schemes ,
(1.2.1) o

of=p; X1, OF =@y X ¢ .

Then &#£* is a CR-system w.r.t. (X ® F,0) belonging to Case 2. Note that
the «twist for one of ¢f (1=1,2) is necessary, and that if we put ¢f=¢;X¢ and
of=p,x1 instead, then the system obtained is again a CR-system which is
(X, v)-isomorphic with 2+, It is obvious that if & (resp. ©*) denote the sets of
special points for &2 (resp. <2°*), then ©* consists of all those F;-rational points
of the Fcurve X O . lying above &, sc¢ that &*—S ig a 2-te-1 projection. If
£ is unramified, then so is &7%, and vice versa. If &2 is symmetrie, with the
symmetry s={e;, &, ¢:): 232, then 27+ is again symmetric, with the symmetry
ete==(ef, eF, &F), where ef=e; X1, ef=ex1, and ef=¢Xc. (In general, if 2% is
any symmetric CR-system belonging to Case 2 and e*=(sf,cf, ef) is a symmetry
of &%, then ¢ induces an involution ¢ of k./k, as can be checked immediately
by the definition of CR-systems.)

2 The first Galois theory

The purpose of §2 is to supplement [CS] §2 with detailed proofs. We start
with some group-theoretic preparations.

2.1 In general, let G be an abstract group, and H,, H, be two subgroups of
G which generate G. Put Hy=H,NH,. Let N (resp. M) be complete sets of
coset-representatives for H\H, (resp. H,\H,) containing the unit element of G.
Since G is generated by H, and H., every element of G can be expressed in the
form:

2.1.1) g=hemim, -« mim; ,

with ki, € Hy, m; €M, mie I, m,#1 (1), m}*1 (j%r). The following two con-
ditions (F) and (U) are equivalent:
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(F) G s the free product of H, and H, with amalgamated subgroup H,.

() The expression (2.1.1) is unique for any geg@.

Indeed, the implication (F)=(U) is shown in Kurosh [9]. Conversely, if G
denotes the free product of H, and H, with amalgamated subgroup H,, then (U)
implies that the canonical homomorphism G—G is bijective.

Consider the disjoint union (H\GYU(H,\G) of two left coset spaces as a
point-set, and call it 9 °=5"°(G; H,, H,). Two points H,g, H,g’ (belonging to
different coset spaces) are called mates (or adjacent) if HgNH,g'+o. Con-
sider the diagram 7=.9(G; H,, H,) obtained from this point-set .Z7° by con-
necting each pair of mates by a segment (“edge”). Then G acts on .7~ by the
right multiplications. It is easy to verify that (i) 9 is connected, and (ii) above
conditions (F), (U) are also equivalent with

(T) 7 is acyclic (i.e., contains no cycles).

For this verification, consider any sequence of points A Ay, -+, of T7° starting
from A,=H, satisfying the conditions that A4, A, are mates (¢=20) and that
A+ A, (¢21). Then each such sequence can be expressed uniquely as

2.1.2) H,, Hymy, Hmim,, Hym,mim,, - -

(m; €M, mjeM; ml, m,, ---#1). Conversely, each sequence of the form 2.1.2)
satisfies the above conditions for the 4s. Since every g€ G can be expressed as
(2.1.1), this implies that 7~ is connected, and the uniqueness for the expression
(2.1.1) is equivalent with that the sequence of the form (2.1.2) connecting H,
with H,g is unique. Therefore, (U) is equivalent with (T). Thus,

PROPOSITION 2.1.3 The conditions (F), (U), (T) are equivalent.

When 7 is acyclic and A, B are points of 7°, the length ! of the unique se-
quence A=A4,, A, -++, ;=B (4, A,.,are mates (0=<7=<[—1), A F AL (I=iZI-1)
is called the length (or distance) between A4 and B, and denoted by (4, B).

Let G and H; (:=0,1,2) be as above. As a temporary notation, we shall use
a symbol — instead of < for the inclusion relations between subgroups of G.
Denote by £* the set of all subgroups G* of G satisfying G=H,G*, and by &*
the set of all systems {H¥—H¥—H¥ of subgroups of G satisfying H*—H,
(@=0,1,2), H=H,H¥ (:=1,2), and H¥=H,NH* (=1, 2);

H¥ « Hf —» H¥
(2.1.4) | | ]
H, « H, — H,.

Note that H¥=H,NH{=H*NH,=H¥*NH¥.

ProposiTION 2.1.5 Let G be a free product of H, and H, with amal-
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gamated subgroup H,. Then (i) the mapping

a; Gt {H,NG*—H,NG*—H,;NG*}
gives a bijection between Z* and *; (i) let G* correspond with {Hf«H§—
H#}; then G* is a free product of HY and H ¥ with amalgamated subgroup
H%, and (G:G¥=(H,:H¥) (1=0,1,2); (iii) G* is o normal subgroup of G if and
only if H¥ (:=0,1,2) are normal in H;; moreover, when this is so, the factor
groups GIG*, H/H* (1=0,1,2) are canonically isomorphic.

PROOF. First, it is obvious that a(G*) e &* for G*e T*. Let B: F ks TH
be the mapping which associates to each {H¥—H{§—H¥} € & * the group <H¥, HD
generated by H¥ (i=1,2). That <H¥, H}> belongs to “* follows immediately
from the decomposition (2.1.1) for McCHF, MW CH¥. That fea is the identity
map of ¥* also follows immediately from this decomposition. To check that aof
is the identity map of &%, take any element {H¥—HfF—H3} of S7* and put
G¥=<H¥, Hf>. Choose M, M as M HF, W N H¥. Then since H¥= Y, H¥m,

meM

F¥= Z} ,H *m’/ and H¥=H¥NH¥, every element geG* can be expressed as
(2.1.1)m ;mith hoc H*. (The point is that we can choose h,€H *, and not just
h,€ H,NG*.) Therefore, in the unique expression (2.1.1) for g, geG* implies
h,e H¥. In particular, H,NG*=H¥ (1=0,1,2), which implies that aof is the
identity map of & *. This settles (i). The assertion (ii) follows immediately from
the above argument and the equivalence (F)~(U). The last assertion (iii) is
obvious because G=HG*. q.e.d.

When G*e &% corresponds with {H¥*H¥{—H¥e S *, J(G*; HY, HY) can
be identified with .7(G; H,, H,) through the canonical bijections H NG*~H\G
(1=1, 2).

The following proposition is not so basic as the above two, but will also be used.

PROPOSITION 2.1.6 Suppose that I =3 (G; Hi, Hy) is acyclic, and that
(H,: H)=3 (i=1,2). Suppose moreover that, for any points A, B, A’, B of 7 °
such that (A, B=U(A’, B') and that A, A’ belong to the same G-orbit, there
exists ge G with A/=A%, B'=B. Then (i) H, 1s ¢ maximal subgroup of H,
(i=1,2); (i) H,, H; are maximal subgroups of G.

PrOOF. (i) Let 4 be a point of 7 °, and H, be the stabilizer of A in G.
It is obvious that H, acts transitively on the set of mates of A. We shall show
that this action is doubly-transitive. For this purpose, let B, B/, B” be mates of
A with B’#B, B"#B. Then (B, B')=UB, B”")=2; hence there exists g€ G with
B'=B, B"=DB".
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B’
. Co—<: )
BI/

But then A4?=A, as 7 is acyclic. Therefore, H, acts doubly transitively on the
set of mates of A. For A=H, (i=1, 2), this implies that H, is maximal in H,.
(ii) Let H’ be any subgroup of G with GODH'2H,. Take gec H’, g¢ H,, and
put I(H,;, H,g)=21>0.

Let C, D be as in the above diagram. Then, since (4, C)=IU(D, B)=2, there ex-
ists g,€G such that D=A°’t, B=C". Since (4, A°Y)=2l=l(A, B), ¢, is con-
tained in H,gH,; hence g, € H'. Put h’=ggr!. Then A*=C. Therefore, H’ con-
tains an element A’ such that (A, 4*')=2. Since H,h'H, consists of all 1" G
satisfying I(4, A¥)=2, H’ contains all such A”. Let A=A, 4, A;, 4, be a
sequence of mates with A,#A4,, 4,7#A4,, and take A”c H’ with A,=A", A,=A}".
Then for any m=0, (A, A*"™)=2m. Therefore, H’ contains all g€ G with
UA, A%)=2m. Since m is arbitrary, H’ must coincide with G. q.e.d.

2.2 Proofs of Theorem [CS] 2.3.1, Cor. [CS]2.3.2. Let 2’:{Xl<—%—Xo—&X2}
be a CR-system w.r.t. (X,0). For each ¢=0,1,2, let K; be the function field of
X;, and consider K; and K, as subfields of K, via ¢, and ¢,. Then K,=K.K,
and [K,: K,]=q-+1 (1=1,2) (cf. [CS] §1). Let L be the smallest Galois extension
of K, such that L/K, (i=1,2) are both Galois extensions, and put V,=Aut(L/K,)
(1=0,1,2), so that V,=V,NV, and (V,: V)=¢+1 (=1,2). Let G; be the sub-
group of Aut (L/k) generated by V. and V,, acting on L from the right. Put
T=T(Gy; Vi, V), T°=T°G;; Vi, Vs) (ef. §2.1). Then Theorem [CS] 2.3.1
and Cor. [CS] 2.8.2 read as follows.

THEOREM [CS] 2.3.1 (i) 7 s connected and acyclic. (ii) Let A, B, A’, B’
be points of 7 ° such that l(A, B)=I(A’, B') and A, A’ belong to the same coset
space, V\Gy or V,\G;. Then there exists g€ G} such that A’=A?, B'=Ps,

COROLLARY [CS] 2.3.2 G} is the free product of V, and V, with amal-
gamated subgroup V,.

REMARK 2.2.1 Since (V;: V)=¢+1 (2==1,2), each point A of .Z°° has ex-
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actly ¢-+1 mates. If we assume the first assertion (i) of the theorem, then for
each 1=1, there are exactly ¢*--¢'~* distinet points of Z7° with distance I from
A, and the second assertion (ii) is equivalent to saying that the stabilizer V, of
A in G acts transitively on these ¢'+-¢*~* points of 77 °. Since l=1 is arbitrary,
the theorem implies in particular that V, is an infinite group; hence V; and V,,

and hence also V,, are infinite groups.

Now, as a preparation for the proof of the theorem, let v, (i=1,2) be the
discrete valuation of K, whose valuation ring is the local ring Oy, x,,, and let
w, (resp. w,) be the discrete valuation of K, whose valuation ring is O, (resp.
@Xo,tﬂ).

v} "V

N

Then w;, w, are all the extensions of v, or v, to K,, and we have e(w,/v,)=1
(1=4, §£2), flwgv)=f (wslva)=1, flw,/v:)=Ff (w,/v.)==q, where e(/) is the ramifica-
tion index and f(/) is the residue extension degree. These are obvious from the
definition of CR-systems. In particular, K, is w;-adically dense in K,, and K, is
wy-adically dense in K,. As noted in [CS] §2.5, the proof of the theorem is
based only on the existence of such valuations. (The foilowing obvious facts
will also be used, but later. The valuations wv,, v., w,, W, are extensions of the
p-adic valuation of %k with ramification index 1. Moreover, the residue field ex-
tensions for w,/v., w./v; are purely inseparable.)

LEMMA 222 Let F be a field and E/F be a finite separable extension.
Let v be a discrete valuation of F. Suppose that v has exactly two distinct
extensions w,w’ to E and that F is w-adically dense in E. Then for any
non-trivial F-isomorphism p of E into the separable closure of F, we have

[E-E*:E1=[E:F1-1.

PrOOF. Let E*/F be the Galois closure of E/F, G be its Galois group, and
H be the subgroup corresponding to E. Let w* be an extension of w to E*,
and D be its decomposition group over F. Then the assumption on w implies
that DCH. The extensions of v to E are of the form (ow*)|z (0 € G); hence they
correspond bijectively with the elements of H\G/D. Therefore, |H \G/DI-Z
Sinee DC H and H-+#G, this implies that |[H\G/H|=2. 8o, if we write G= Z} Hp;,
(0,=1), then H acts transitively on E* (1=i{=q). Therefore, [E-E’:E]= q for
1#0. q.e.d.
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COROLLARY 2.2.8 The notations and assumptions being as in Lemma 2.2.2,
suppose that [E: F'1=3, and let T be any extension of v to the Galois closure of
E/F. Then there is precisely one isomorphism p of E over F for which E° is
contained in the decomposition field of © over F.

Proor. We keep the notations in the proof of Lemma 2.2.2. Since all exten-
sions of v to E* are mutually conjugate, we may assume that 7=w*. Since
[H\G/D|=2, D acts transitively on {Hp,, -+-, Hp,}. Since ¢=2, this implies that
none of Hp, (:=1) is stabilized by D, or equivalently, none of E? ({=1) is con-
tained in the decomposition field of w*. q.e.d.

COROLLARY 2.2.4 The notations and assumptions being as in Lemma 2.2.2,
there 18 no proper intermediate field im the extension E/F.

Proor. Since |[H\G/H|=2, H is a maximal subgroup of G. q.e.d.

Now we proceed to the proofs of Th. [CS] 2.8.1 and Cor. [CS] 2.8.2. First,
" is connected, because G; is generated by V, and V,. Secondly, by Prop.
2.1.8, Cor. [CS] 2.3.2 is reduced to the main statement of Th. [CS] 2.3.1 (i)
saying that 7 is acyclic. To prove this statement in (i) together with (ii), con-
sider any sequence A=A, Ay, ---, A,=B (I=1) of points of 7 ° such that A4,,
A,.; are mates (¢=0) and that A, #A,; (@=1). Let V, (resp. V) be the
stabilizer of A (resp. B) in G;. Then it suffices to prove that

(2.2.5) (Va:VanVe)=¢'+¢ .

Indeed, (2.2.5) will imply firstly that V,#Vs; hence A+#B; hence that 7 is
acyclic. Secondly, (2.2.5) will imply that V, acts transitively on the set of all
points of 77 ° with distance I from A; hence the second assertion of the theo-
rem.

Thus, all we need is to prove (2.2.5). First, note that when I=1, (2.2.5) is
a trivial consequence of definitions. So, let [=2. Let V®=V,, be the stabilizer
of A; in G}, and K% be the fixed field of V@ in L (0={=l). Since A, and
A,; are distinet mates of A, (A=i=l—1), we have A4,,;—A7:; with some
6;€V®, g V4P, For each 1 1=1=1—1), o, induces a non-trivial isomorphism
KeVKO~NKWPK Y gyer K@, which maps K% onto K. TFor each 4
(0=4=1), there is a unique index s(#)€{l,2} and an isomorphism z,: K,,,SK®,
determined by the conditions that A,=V,g; (9:€G;) and r; is the restriction of
g: to K,. Since A; and A4,,, are mates (1=¢=<]—1), z; and z,,, extend simul-
taneously (and uniquely) to an isomorphism r;,..;: KK PK%Y, Now let v,
Vo, Wi, Wy be the discrete valuations of K, K,, K,, K, (respectively) described
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above, and let @ be the discrete valuation of K@ corresponding with v, via
;. For each ¢ (0=i¢=l—1), let w® denote the discrete valuation of K@K G+»
determined by the following two conditions (a) and (b):
(a) w® corresponds with either w, or w,, via 7;,.41;
(b) K4V is w®-adically dense in K @K ¢*v,

By the basic properties of w; and w, deseribed above, the second condition (b) is
equivalent to that K® is not w®-adically dense in K@K% and determines
one of the two choices of w®. The other valuation of K® K%Y gatisfying (a)
will be called w®’. Then w® and w®’ are all the distinct extensions of #®@,
and also of v, to K¥K %V,  Now, for each 1 (0<i<Il), define the subfield
M® of L as the composite of K@, ---, K@ and let w be any extension of w
to M®. Then, obviously, the restriction of w to K@ coincides with v® for each
1. We shall show, by induction on %, that the restriction of w to K®K G+
coincides with w® forall 7 (0=<¢=1—1). For =0, the statement is trivial. Suppose
that the statement is true for ¢—1. Then K@ is w-adically dense in K¢ VK®,
But since ¢ K¢ PEKPXK®K%? is a non-trivial isomorphism over K@, Cor.
2.2.3 says that K @ cannot be w-adically dense in K @K @+, Therefore, the restric-
tion of w to K@K Y must be w®. In particular, for each ¢ (0=¢=<]—1), K @+v
is w-adically dense in K@K% and the residue field of K%Y ig an extension
of the residue fleld of K with degree g. By the repeated use of the first fact,
we see that K% igs w-adically dense in M “*V, In particular, the residue field
of M@? coincides with that of K “*?, Therefore, f (M “*V/MP)=g for the
residue extension degree f{/). Therefore, f (M ®/K®)=¢*. Since K® is dense in
M®, this shows that f(K ©K®/K®)=¢". Now we claim that [ ® : K ©]=¢'+
g*~*. In fact, we have [M® : M @]=[K®K® : K®]=¢-1, and for i=1, we have
[M(i+1) : M(i)] — [M(i)K(i+1) : M(i)] é [K(i—l)K(i)K(i-H) : K(i—l)K(i)] é [K(i—l)K(i) :
K ®]—1=q, because K“ VK@K% is the composite of K¢ PK® with its ¢,
transform. But on the other hand, [M ¥ : M ®]= f (M /M ®)=q. Therefore,
[M©0 : M®]=q for i=1, which proves the above formula for [M® : K ©®].
Therefore, [K®K® : K] is on one hand a divisor of ¢*4+q* %, and on the other
hand, it is no less than f(KPK®/K®)=q*. But since —;—(q‘+q“1)<q‘, such a

number must be equal to ¢*+¢*. Therefore, [K PK @ : K @l==¢'+-¢*?, or equiv-
alently, (Vi: Vi0Va)=¢+¢"*. This proves (2.2.5), and hence completes the
proofs of Th. [CS] 2.3.1 and Cor. [CS] 2.3.2.

2.3 We shall now give a proof of the following

ProrosiTION [CS] 2.6.1 For any g,9 € G; and 1=3, j<2, k, is algebraically
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closed in K{K¥; in other words, Gi=[(g*V.g)N(g’*V,;g"G;.
(Recall that k&, is the common exact constant field of K, (:=0,1,2), and that
¢=1 or 2. Recall also that G is the kernel of the action of Gi on k,=ENL.)

ProoF. This is obtained easily by looking at the valuation w in the above
proof of (2.2.5). In fact, since the residue extension of K@K ¢+ /K G+V {g {rivial
and that of K@K ®VY/K® ig purely inseparable (with degree ¢), the residue ex-
tension of KWK®/K® is purely inseparable (with degree ¢%. Therefore,
K@®K® cannot contain a non-trivial unramified extension of k.. On the other
hand, since the ramification index of K PK®/K® js 1, KOK® ecannot contain

a ramified extension of %,. Therefore, k. is algebraically closed in K@K ®, q.e.d.

2.4 More details about [CS] §2.9.” As in [CS] §2.9, let &2° be an almost
unramified symmetrie CR-system, ¢: £XGC be an embedding of k into the complex
number field €, and X be the set of all those places & of L into CU{o)
extending ¢ whose valuation rings are either L itself or disecrete. The group
Aut (L/k) acts on X2 by &;—qf;, where (gé)(a)=¢£(a®) (geAut(L/k), aecl).
Recall that G, is the subgroup of Aut (L/k) generated by G; and ¢, where ¢ is an
extension of the involution of K, defined by the symmetry of 2 (cf. [CS] §2.7).

() The complex structure of X is defined as follows. Let M/k be a
finitely generated subextension of L/k for which L/M is a Galois extension.
Since £ is almost unramified, at most finitely many prime divisors of M/k are
ramified in L. Some of the prime divisors of M/k may be ramified in L with
finite ramification indices, but if M is sufficiently large (with respect to the in-
clusion relations) there are no such prime divisors. Let M=M,; be sufficiently
large, and M,CM,C--- be a sequence of finite extensions such that UM,=L.
(By the definition of L, L is a countable union of finite extensions of K,.) For
each 7, let 2] be the set of all places of M, into CU (o) extending ¢, and <7,
be that of all elements of 2/ that are unramified in L. Then the projection of
& to M, gives a surjective mapping ¥—%,, and ¥ consists of all extensions of
elements of %, (to the places of L). If Z, is the proper smooth irreducible
algebraic curve over k with function field M, then <2/ can be identified with
the set of all closed points of the complex algebraic curve Zi@C (where ® is
w.r.t. ¢). By this identification, 2/ can be regarded as a finite disjoint union
of compact Riemann surfaces. Note that the connected components of “#/ cor-
respond to distinet extensions of ¢ to the algebraic closure of k in M,. Since
%, is a complement of a finite set in S/, 2, is also a one-dimensional complex

D The argument of §2.4 is essentially the same as that of [3] (a) Vol. I, Chap. 2.
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manifold. Now, each element of ¥ can be identified with a projective system
{P+—P,---} of points P,e &%, Take any point &,={Pj}<Ple---} of ¥, and let
#,C %, be any simply-connected open neighborhood of P?. Then for each ¢=1,
there is a unique connected neighborhood %,C.%Z;, of P! lying above %, and
%, is canonically isomorphic to %;. Therefore, by taking # ~{Z i« ZUe—---}
as a coordinate neighborhood of £&., we can define a complex structure on ¥, by
which 5 is a one-dimensional complex manifold. It is obvious that this complex
structure of ¥ is independent of the choice of the sequence M,CM,C---, and
this also shows that the complex structure is Aut (L/k)-invariant, and hence in
particular, Gy-invariant.

(IT) Put k,=FEkNL, the algebraic closure of % in L. Then k; is G,-invariant,
and G, induces all automorphisms of k./k. (In fact, V, induces all automorphisms
of k,/k,, and the symmetry ¢ induces the involution of k./k when ¢=2.) Call G,
the kernel of the action of G, on k;, so that G,/G,~Aut (k,/k), canonically. The
first datum which classifies the connected components of ¥ is the complex em-
bedding &: k,CC extending . If X, is a connected component of 2 and &€ 2,
then &=¢&cl,, is independent of &,. We shall say that X, belongs to &. We
claim that

(2.4.1) for any i and any open subgroup U, of G,, U, acts transitively
on the set of all connected components of 3 belonging to &.

To check (2.4.1), let M,CcM,C--- be as above, and take a suffix 4, such that
Aut (LIM, k) U, Let X,,3} be two connected components of X belonging to
g, take any E,={PyP,«---}€2,, and let &,={Pl«Ple---}c 3. Then for each
2, P, and P/ belong to the same connected component of <%,. In particular, P;
and P/ can be joined by an arc on £%,. Therefore, we can choose & €2} in
such a way that P/ =P,. But then, & and & are the transforms of each other
by an element of Aut (L/M,k;)C U,,. This settles (2.4.1). Since G, induces all
automorphisms of k;/k, (2.4.1) implies that

(2.4.2) G, acts transitively on the set of all commected components of 2.

(III) Now let 2, be any connected component of X belonging to &, and let
I" be the stabilizer of the component X, in G,. Then (2.4.1) implies that

(2.4.8) I is a dense subgroup of G,.

We shall now check that the action of I” on %, is effective. Suppose that
ve I’ has a property that y6,=¢&. for all &€ X,. Take any ac€ L. If ack,, then
a’=a. Suppose that a¢k,. Then by (2.4.1), 3, covers all those places of
ki{a,a”) extending ¢ and unramified in L. Therefore, &(a)=¢&.(¢’) holds for
almost all places &; of k,(a, a’) extending z. This implies that a’=a. Therefore,
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7=1; whence the effectivity.

(IV) We shall now prove that the complex manifold X, is isomorphic to
the complex upper half plane. Let us now use the notation <%, (:1=0,1,2) for
the set of all places of Kk, into CU(oo) extending z, considered as a compact
Riemann surface. Let 9,: %,—<Z; (1=0,1,2) be the projections. Since L/Kk,
is a Galois extension, @, is a Galois covering with the covering group 4,=I"NV..
Let ¥,—2, be the universal covering of 2, and E be the covering group. Let
Aut (Z;) (resp. Aut(3y)) be the group of all complex analytic automorphisms of
Z, (resp. £). Then Aut(S,) can be identified with N (E)/E, where N(E) is
the normalizer of E in Aut(¥)). Put I'*=I'NG, and let 4, (=0,1,2), [}, ['*
be the inverse images of 4,, I', I'* (respectively) in N(E). We shall prove and
use the following properties (A) and (B):

(A) ANZ (1==0,1, 2) are infinite groups acting properly discontinuously on
5., and they are commensurable.

®) I'* s generated by 4, and 4y, and (F'* : d)=co (1==0, 1, 2).

To check (A) , recall Prop. [CS] 2.6.1. It says that G;‘ is nearly as big as
G} in the sense that, in Th. [CS] 2.3.1 (ii) (see §2.2 above), g can be chosen
from Gi. In particular, if we put V.= VinGi=V,nG, (i=0,1,2), then for any
1=1, V, (resp. V,) acts transitively on the set of all points of 77 ° with distance
{ from A, (vesp. A,), where A, (resp. A,) is the point of Z° corresponding to
the coset V,; (resp. V,). Since the cardinality of this point set is ¢*-+¢*%, and
since ! is an arbitrary natural number, V, (1=1,2) (and hence also V,) are
infinite groups. Therefore, [L : Kk;]=c0 (¢=0,1,2). Therefore, 4, (1=0,1,2);
hence a priori J;, are infinite groups. The rest of (A) is obvious.

To check (B), first note that GY =VOG;‘. Since I" is dense in C?;,, I'* ig dense
in G¢; hence G;=V,['*. Therefore, (I'* : 4)=(G; : V,)=oc0; whence the second
assertion. On the other hand, since Gi=V,I'*, Prop. 2.1.5 (applied for G=G;,
H,=V,) shows that I'* is generated by 4, and 4, (and moreover that it is the
free product of 4; and 4, with amalgamated subgroup 4,). Therefore, I is
generated by 4. and J,. This settles (B).

Now since 5, is a simply-connected Riemann surface, X, is isomorphic to
either the Riemann sphere, or the complex plane, or the complex upper half
plane $. But by the above two properties (A) (B), it follows easily that X, must
be isomorphic to . Moreover, since Zﬂ is a fuchsian group of the first kind
(being the covering group of X,—<2), and since (IN"'+ : Z):OO, '+ must be dense
in PSL,(R)=Aut (9) (by the Borel’s density theorem). Therefore, E is normalized
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by a dense subgroup of PSL,(R). Since E is moreover discrete, & must be
normal in PSLy(R). Therefore, E={1}; hence 5,=3%, and ['=I". Thus, we
have shown that £, is isomorphic to the complex upper half plane 9, that I” is
a dense subgroup of Aut(9)=PSL.(R), and that I'* is the free product of 4,
and 4, with amalgamated subgroup 4,. When £ is unramified, 4, (i=0,1,2) is
the fundamental group of £%. In this case, since 4, are torsion-free and I'* is
the free product with amalgamation, I"* is also torsion-free (cf. Cor. 4.4.5 of
{10)).

(V) We conclude this section by proving some elementary properties of I’
which will be used later.

ProrosiTION 2.4.4 (i) 4, is a maximal subgroup of 4, (3=1,2); (i) 4., 4,
are maximal subgroups of I'*.

Since I'* is dense in G;, this follows immediately from Prop. 2.1.6, Th. [CS]
2.8.1 (ii), and Prop. [CS] 2.6.1.

PROPOSITION 2.4.5 Let I'* be any subgroup of I't with finite index. Then
[r=4.0%,

ProoF. Let I™* be the greatest normal subgroup of I'* contained in I™*.
Then I'** ig of finite index in I'*, and it suffices to prove that I'*=4,I**. 8o,
we may assume from the beginning that I'* is a normal subgroup of I'*. Put
A¥=Ir*n4, (t=0,1,2). First we have

(2.4.6) I''=A4,I*=4,T"*%,

as 4,, 4, are maximal subgroups of I'* with infinite indices. We shall show that
4, cannot contain both 4¥ and 4%¥. Suppose on the contrary, that 4, contains 4¥
and 4¥. Then 4¥=4¥=4%; call this group N. Then N is a normal subgroup of
I'*. But N is a fuchsian group of the first kind, so that N must be of finite
index in its normalizer in PSL,(R). Since (I"*: N)=oo, this is a contradiction.
Therefore, 4, cannot contain both 4% and 4%. Suppose that 4, 54F (resp. 4,54F).
Then 4,04,4%24, (resp. 4,04,45224,). Since 4, is maximal in 4, (resp. 4;) by
Prop. 2.4.4 (i), we obtain 4,=4,4% (resp. 4d,=4,4%). Therefore, by (2.4.6), we
obtain I =4,I*. g.e.d.

3 The canonical liftings

The purpose of §3 is to give detailed proofs for [CS] §38. Throughout §3,

%:{XI&XO—&XZ} is a CR-system w.r.t. (X,0), and other notations as-
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sociated with &2 are as in §0.2. In §3, G will generally stand for G;; but also
for Gy in the symmetric case.

3.1 Preliminary remarks on the rivers on 7. Let =5 (G;; Vi, Vo).
If A, B are two points of .77°, there is a unique sequence A=A, 4, -+-, A;=B
of points of Z° such that A4,, 4,.. are mates (0=¢=[—1) and that A, A4,
(1=Z1=<1—1) (Th. [C8] 2.8.1). The path connecting A and B, denoted by AB, is
by definition the sequence of segments A Ay, -+, 4,.A,. The point-sequence on
AR is by definition the sequence A, A;, -+, 4, Let G=G; or Gy, and geG.
Then, by definition ([CS], §83.2), Deg (g) is the minimum value of I(4, A?), where
A runs over all points of .Z7°. If A is any point of .77° and A=A4,, 4;, +++, A=A’
is the point-sequence on AA?, then it is obvious that Deg (¢)=<I, and that Deg(g)
=l when [=0 or 1. When [=2, we have

PROPOSITION 8.1.1 Deg (9)=l if and only if AiFA, ..

Proor. If A/=A,_;, then Deg (¢9)=<1—2<l. Conversely, suppose that Deg (g)
<1, and take a point B of 7 ° such that (B, B)<<l. Then, the last segment in
BA must coincide with AA,, and the first segment in A7B? must coincide with
A, ,A°. Therefore, A, ,=Al. q.e.d.

COROLLARY 3.1.2 Let g€ G be such that Deg (9)*1. Then
Deg (g®)=In|Deg{g) (neZ).

The assumption Deg(g)+#1 in Cor. 3.1.2 cannot be dropped; in fact, if &£ is
a symmetric CR-system and ¢€ G, is an extension of the symmetry of K,, then
Deg (©)=1 while Deg (¢*)=0 because € V,.

Let p be a river on 7 ([CS] §8.5). For each g€ @, the g-transform gp of p
is defined by the rule: the orientation of AB with respect to gp is A—§ (resp.
;1_]—3) if that of A'B’ with respect to p is 4B (resp. :@). In the following,
the stabilizer of a river p in G will be denoted by G,. For a point A of F°,
the stabilizer of 4 in G will be denoted by V,. Thus, V, is a conjugate of V,
or V, in G§, and V=V, when A corresponds with V, (:=1,2).

PROPOSITION 8.1.3 If p, o’ are two rivers on 7, and A is a point of 7 °,
then o'=wvp holds for some ve V.

PrOOF. Let A=A4,> A, — -+ (resp. A=A4}—> A{—> ---) be the downstreams
of A w.rit. o (resp. o/). Then by Th. [CS] 2.8.1 and by the compactness of V.,
there exists ve V, such that A=A, for all 4=0. Since a river is determined
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by an infinite flow going downstreams, this implies that o’=v-p. q.e.d.
COROLLARY 3.14 G=V,-G, for any Ac 7 ° and a river p on 7.

Let o be a river on .Z". Then p determines a canonical homomorphism 6 : G, —
Z, in the following way. Take be G,. Take any infinite flow 4,—> A;— --- going
downstream in p. Then since beG,, A}— Al— -+ is also a flow in p. So, they
must join somewhere in their downstreams, i.e., A2=A,.ssy Wwith some d(b)e Z
for sufficiently large . It is clear that d(b) is independent of the choice of 4,
— A;— +--, and that b—6(b) gives a homomorphism.

PRroPOSITION 8.1.5 If beG,, then Deg (b)=|5(b)i.
Proor. Let Ae.97°, and let the p-flow between A and A’ be as

A eie e A,
——————— e
U 1o
Since b<G,, b maps the i-th point on the downstream of A to the i-th point on
the downstream of A?, for any ¢==0. Therefore, by Prop. 3.1.1, Deg (b)=|l,—1L.!.

Since d(b)=l,—1,, this proves our assertion. q.e.d.

COROLLARY 3.1.6 If H is a subgroup of G,, then the subset H° of H
formed of all elements he H with Deg (h)=0 is a normal subgroup of H, and
either H°=H or H/H'=Z. In the latter case, if h; is & representative of a
generator of H/H®, the degree of elements of H°h? is given by |n}Deg (k).

3.2 The symbols K, v, (A€.27°) and Riv(p,). Let 7%, (resp. %3) denote
the set of subfields of L formed of all isomorphic images of K, (resp. K,) by
elements of G;;

Z={Ki;9€ Gyl (1=12).

Then ¢, and %, are disjoint, and V,g — K? induces a bijection V\Gi=~ 7, for
each 1€{1,2}. These are immediate consequences of Th. [CS] 2.3.1. Indeed, the
second assertion of this theorem implies that if A4 is any point of .7 °, then A is
the only common fixed point of V, (see also Remark 2.2.1).

Therefore, the distinct points of 77 ° have distinet stabilizers. In particular,
first, V; and V, cannot be the Gj-conjugates of each other; hence 7] and 2,
are disjoint. Secondly, the normalizer of V; (¢=1,2) in G§ must be V, itself;
hence VA\Gi~ 7.

From now on, we shall identify 227, %, and Z7U.2%; with V\Gy, Vo\Gy
and 77 °, respectively. The field corresponding to 4A=V,ge .7 ° (1=1,2) will be
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denoted by K,; it is canonically isomorphic with K,. Let {4, B} (A< V,\G;,
Be V,\G}) be any pair of mates. Then A=V.g and B=V,g with a common
geG;. The left Vy-coset V,g is determined uniquely by {4, B}, so that the
isomorphism
Ko KA.KB

/SN2 N
—
.Kz K KB

A4

K,

of K, is uniquely determined. This isomorphism will be denoted by gz, and
called the standard isomorphism associated with {A, B}.

As in §2, let »; be the discrete valuation of K, (1=1,2) corresponding to the
local ring Ogx,,x,, and let w; (resp. w,) be the discrete valuation of K, cor-
responding to Ox,,; (resp. Ox,,t;). For each point A of 7 °, the standard p-adic
valuation v, of K, is defined as the valuation of K, corresponding with v; via g,
where A=V.,g (¢=1 or 2). Note that the residue field of K, modulo y, is canoni-
cally isomorphic to the function field of X.

PROPOSITION 8.2.1 The set of all extensions of p, to L is tndependent of
the choice of Ac .7 °.

PRroOF. The set of all extensions of v, to K,, and also that of all extensions
of v, to K,, are both {w,, w.,}. Therefore, the set of all extensions of p, to L is
invariant when A is replaced by any one of its mates (use the isomorphism ¢4, 5)-
Since .77 is connected, our assertion follows. q.e.d.

Let & denote the set of all extensions of p, to L which, by Prop. 3.2.1, is
independent of A. The group G (=G} or G,) acts on & in a natural way as p, —
gr. (g€ @), where gy (a)=y.(0%) (a€ L), v, being considered as a place of L. Note
that g(g’v)=(99")p. (9,9"€G).

Each element p,c F determines a river p=Riv (v;) on 7, in the following
way. Take any pair {4, B} of mates with Ae V,\G{, Be V,\G{, and let g5 be
the isomorphism defined above. Then the restriction of p; to K,-Kj; corresponds
via gu,s with either w, or w.. If it is w,, give AB the orientation 21—%, and if
w,, give it the other way ;1—1_3 (In other words, if A=V,g, B=V,g, the orienta-
tion of AR is determined by the restriction (gp.)| x, 0f gy, to Ki; it is ZZ? if and
only if (go)lx,=w:.) By Cor. 2.2.3, this satisfies the condition of the river.
Moreover, Riv (g’y.)=g¢’ Riv (p,) holds for any ¢’ €@G.

Since G acts transitively on the set of all rivers on 7~ (by Prop. 8.1.8), every
river p corresponds with some p,€Z. In general, p; is not uniquely determined
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by p, although it is so in some special important cases. If G,, denotes the stabi-

lizer of p, in G and if A is any point of Z7°, then we have G=V,-G,, (by de-

finitions), which is (generally) stronger than Cor. 8.1.4, ag G,,CG, for p=Riv (p,).
The following proposition is obvicus from the definition of Riv (p,).

PROPOSITION 3.2.2 Let A, B be any two points of 7 °, and let j,c K, and
Jn € Kz be such that the residue classes j, (modyp,) and jz (mod pg) correspond
canonically with o same element of the function field of X. Let v, be any
element of 7, and let the Riv (p,)-flow between A and B be as

A5 eve e—evve— B
———————
A l
@, 1.=0). Then

lg

F2=73"" (mody,) .

3.3 The schemes X, and 7(A4, B). For each point A=V,ge.9° (11,2},
g€ G}), we denote by X, the o-scheme which is identical with X, as an abstract
s-scheme but whose function field is identified with K, through the canonical k-
isomorphism K;~ K, induced by g. Thus, the affine rings of X, are considered
as subrings of K,. The special fiber X, ® F, of X, will be denoted by X,. It is
canonically Fiisomorphic with X. )

Take any two points 4, Be .9 ° with A+B, and put Z=X, X Xz. Let ¢ be
the scheme-theoretic point of Z corresponding to the kernel of the homomorphism
KA®KB—>KA K; defined by Zh Rre —)Zr -rZ. Let T(A, B) be the unique
closed integral subscheme of Z whose support is the closure of ¢t in Z. As an
o-scheme, T(A, B) is proper and flat, and its general fiber T(4, B), is an alge-
braic curve over k with function field K, -K,. Since T(A4, B) is proper over o,
each point of T4, B), has a specialization on T(A4, B),; hence T(4,B) is 2-
dimensional.

As an abstract o-scheme, T(A, B) is determined only by the “parity of A7
(.e., ©€{1,2} for which A€ V\G;) and the length I=I(4, B). This is obvious by
Th. [CS] 2.3.1 (ii). Define je{1,2} by the congruence i—j=l (mod2). Then j is
the parity of B. Let T,,(p") be the closed subscheme of X, >o< X; that corresponds
with T(A4, B)CXA>D< Xz through the canonical o-isomorphisms X,=X,, X, =X,.
Then T,;(¢") depends only on ¢ and [/, and it coincides with the previous definition
(ICS] §3.9) of T;(v"). Note that T(p) coincides with the closed subscheme T of
X X X, defining the CR-system &2 (ef. [CS] §1.1).
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ProposiTION [CS] 8.9.2 Let T,;0), be the special fiber of T.{s). Then
T, is a closed subscheme of X >< X determined by the following two prop-
erties; (1) 4t is locally defined by a single equation ; (ii) its irreducible com-
ponents and their multiplicities are given by the following formula:

B3.1) Ty@)=(T+M)+ 5 g q—DUI =+ -)+0a T g—14,

k<=
1_k<2l

where II" is the graph of the q’-th power morphism of X, 1" is its transposed
graph, 4 is the diagonal of X ;< X, and (1)=1 (resp. 0) according to 1: even
(resp. l: odd). !

Proor oF Pror. [CS] 3.9.2. We shall prove the “AB-version” of Prop. [CS]
3.9.2, i.e., the corresponding statement for T(4, B),. Since T(A4, B) is a 2-dimen-
sional integral closed subscheme in a 3-dimensional regular scheme Z=X, X Xz,
it is locally defined by a single equation. Hence T(A, B), is locally defined by a
single equation in Z,=ZQ F,. Since Z, is regular and hence normal, T(4, B), is
determined by its irreducgble components and their multiplicities.

To check (ii), let III be any irreducible component of T(4, B),, let O yC K, -Kp
be the local ring of T(A4, B) at I, and let O, be a valuation ring of L which
dominates Op;. Since I dominates at least one of (X)), and (X3);, O, dominates
at least one of O, and O, where O, (resp. Oz) are the valuation rings of the
standard y-adic valuations p, (resp. pz) of K, (resp. K3). Therefore, O, dominates
both O, and Oy (Prop. 8.2.1), and is the valuation ring of an element p, of &,
Now let j be any rational function on X with which the function field F(X) is
separable over F,(j), and choose any rational functions j, on X, (resp. jz on Xj)
whose restrictions to X, (resp. X3) correspond with j through the canonical
isomorphisms X, =X (resp. Xz=X). Let v, 1=a=¢'-+¢"?) be a complete set of
representatives of the left VN Viz-cosets in V,, so that B’ are all the distinet
points of 77 ° with distance [ from A. Consider j, (resp. j5) as elements of K,
(resp. K3), and put

V(Jy=T(J—355% e KlJ].

Since the restriction of v.p, to Kz is again pp (Prop. 8.2.1), 7:° are p,-integral;
hence ¥(J)eO,J]. By Prop. 8.2.2, we have ji*=342° (modyp,) with 7r,=l;—.,
where [;, l, are non-negative integers determined by the Riv (p.)-flow

(3.3.2) A-)..._).g_...(__B”a

l1 lg
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between A and B"*. On the other hand, for a given decomposition I=I,+1; of
I, the number of distinet indices « for which the Riv (p,)-flow between 4 and B*-
is as given by (8.3.2) is equal to 1 or (¢—1)¢"*™" or ¢*, according to l,=I or 0<l,
<l or l;==0, respectively. Therefore,

(3.3.3) P=(—51) T (J—jg e

1
1<kg L
!

X I (I )t T e (J—G,) mod pO,LT] .

1
1Sk
=k< 2l

IA

Therefore, if we substitute J by 7z on the right side of (3.3.3), the result belongs
to p0,0z. Therefore, the element of O,® 0, obtained by the substitutions J—
1®js and j,— 7.1 on the right side oof (8.3.3) belongs to the ideal defining
T(A,B), on U, X Uz, where U, resp. Uz are sufficiently small affine open sets of
X, resp. X5 containing the generic point of (X,), resp. (X3);. Therefore, if 113,
‘II; and 4; denote the positive parts of the divisors on X >< X, of IRQJj—j"®1,
J®1I-1®J7 and j ®1—1&J, respectively, then we have

{3.3.4) T(A, By=(+UI)+ X ¢ Yg—L)UT 415

1<k<—~l

Fel)g TP (g 1), .

According to our assumption on j that F/(X)/F,Jj) is separable, II7,tII", 4 are
contained in IT5, *IT;, 4; (respectively) with multiplicity 1. Moreover, IT 5 UG (=
1,2,--+) and 4; are mutually disjoint, because they are distinguished by the degree
of inseparabilities. Since the greatest common factor of I73, ete., as j runs over
all separable elements of F(X), is obviously /77, ete., we conclude from (3.3.4)
that T(A4, B),<D, where D=(II'"-*II")+etc. is the divisor on the right side of
(3.3.1). But since the degree of T(A4, B), over X, is equal to [K K, : K,]=¢*-F¢",
and since the degree of D over X, is also ¢¢+¢*! by a straightforward calcula-
tion, we conclude that T(A4, B),=D. g.e.d.

COROLLARY 8.83.5 T,;(v") s finite over X, and X,.

Proor. It is proper, and guasi-finite over X; and X, by Prop. [CS] 3.9.2.
q.e.d.

REMARK 8.3.6 In view of Prop. [CS] 8.9.2 and Prop. 3.2.2, the following
statement is obvious. Let Il be an irreducible component of T(4, B);, Oy be the
local ring of T(4, B) at 1L, and O, be any valuation ring of L dominating Oy.
Then O, corresponds with an element p, of &, and if the Riv (y,)-flow between
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A and B is given by

Ao v e e B
————— ———

l1 lz
then IU=[T°""2 or 7?71 or 4, according to I,>1,, or [,<l, or I,;=l,, respectively.

3.4 The schemes Y(4, B). We denote by Y(A, B) the normalization of
T(A4, B). (As in the case of T(A, B), we also use the symbol Y,{(y"). Note that
Y..(p)==X,.) Then by the general theorem on the finiteness of normalization ({11}
36.5; [1]1 IV Ch. 0 §23, Ch. 4 §§7.6-7.7), Y(A4, B) is finite over T(A4, B). There-
fore, by Cor. 3.3.5, Y(A4, B) is finite over X, and X,. Since Y(A4, B) is the
integral closure of X, and also of Xz, in K,K;, the irreducible components of
Y(A, B), and their multiplicities are described precisely by the extensions of p,
(or pg) in K Kz and their ramification indices. In general, we cannot say anything
about the behavior of each irreducible component of T(4, B), under the normaliza-
tion of T(A, B) (it depends on the choice of the constant ring o), and this
knowledge is not necessary for our present purpose. What we need is the following

ProprosITION 3.4.1 (M. Ohta) Two irreducible components of Y(A, B), lying
above the distinct components of T(A, B), do not meet outside the special points.

(Since the components of T(A, B), are of the form II", ‘II* or 4, a point of
Y(A, B), lies above a special point of (X)), if and only if it lies above a special
point of (X;),. Such a point of Y(4, B), is also called special.)

ProoF. Let p, and p} be two elements of & whose restrictions to K,-Kg
correspond to the two irreducible components of Y (A4, B), in question. Since they
lie above the distinct components of T(A, B),, the remark at the end of §3.8 shows
that the flows between K, and K3 are not the same for the two rivers p=Riv (p,),
o’ =Riv (v;). Take two adjacent points C, D on AB for which the orientations of
CD with respect to ¢ and p’ are different. Look at the canonical projection
Y(A, B)—»> Y(C, D). Since C and D are adjacent, Y(C, D) is o-isomorphic to X,;
hence Y(C, D), consists of two irreducible components crossing only at the special
points. (Note that a point of Y (A4, B), is special if and only if its projection on
Y(C, D), is s0.) By our choice of C, D, the projections on Y(C, D), of the two
components of Y(A4, B), in question are distinct. Therefore, they cannot meet
outside the special points. q.e.d.

Now put [=Il(A, B). Then II' and */I' are simple components of T(A, B)..
Therefore, there is a unique component of Y(4, B), on each of them, which will
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also be denoted by II' and */I' respectively. Note that the projections II' > X,
and :[T*-—> X, are isomorphisms. On the other hand, by Prop. 3.4.1, II* does not
meet other components of Y{(A4, B), above an ordinary geometric point (£,); of X,.
Therefore, the unique point of II* lying above (£,), is of multiplicity 1 in the fiber
of Y(A4, B), over (£, Therefore, for any geometric point &, of (X,); whose
specialization on X, is ordinary, there is a unique geometric point {, of Y{(A4, B),
whose projection on (X,), coincides with £, and whose specialization on Y(A4, B),
lies on II*. We shall call &, the point of Y(A, B), above &, and II'. The point
of Y(A, B), above &; and /I’ is defined in the same manner.

PROPOSITION 3.4.2 Notations and assumptions being as above, the pro-
jection of L4 on (Xp)y is equal to ¥(E,), where X is the mapping defined in
[CS] §8.7.

Proor. Let A=A4,, A, ---, A;—=B be the point-sequence on AB. Denote by
D the projection of &, on X, (0={=l), and by {® the projection of {, on
Y(A, A,.;) 0=i=<l—1). Then {® is nothing but the point of Y(A, A,.,), above
£@ and II, because the projection of II* on Y(A4,, 4,.,) is II for all 4. There-
fore, £4+0=3(e®) for all 4 (0=i=I—1), which implies that £¥=X&,).

g.e.d.
Y(4, B)
/ AN
/ Ny
Y(4, Ay Y(A;-,, B)
VRN VRN
v N e N
XA XAl XAZ—I XB

3.5 Riv(¢) for £e PU(L/k), &: ordinary. Let -# denote the set of all those
subfields M of L that are finitely generated over %k and that contain some K,
(Ae 9°). TFor each Me.# with MDK,, let Xy be the integral closure of X,
in M. Then Xy is independent of the choice of 4, because if MDK,K;, then
X, must be the integral closure of Y(4, B) in M. Let & (M) denote the set of
all extensions of p, to M, which is also independent of A and can be identified
with the set of all irreducible components of (Xu);.

As in [CS] §3, PUL/k) will denote the set of all places £: Lk U () over k,
on which Aut (L/k) acts as £ — gz, where (g&)(a)=£(a?) (@ c L). For each &¢ PlIL/k)
and Me ., denote by &, the projection (restriction) of & to M, usually considered
as a geometric point of (Xy)y, and by (£x). the geometric point of (Xy). obtained
by the unique specialization of 2y on (Xy),. When M=K, (resp. K,; i=1,2), we
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also write as &4, (£,); (resp. &, &) instead of £y, (£4).. Note that &, and &, are
two geometric points of X correlated by &,=¢%;". As before in [CS], we call &
ordinary (resp. special) when &, (or equivalently, when &) is so.

PROPOSITION 8.5.1 For each £e PULjk), there exists some v, € F satisfying
the property that, for every Me #, the point (&x); lies on the irreducible
component of (Xy). that corresponds to the restriction of vy, to M. Moreover,
when & 18 ordinary, the river Riv (p;) is uniquely determined by E.

PROOF. Let F(M, ¢) be the subset of (M) formed of all irreducible com-
ponents of (X)), containing (éyx).. Then the inclusions MC M’ induce the pro-
jections P (M, &)~ P (M, £). Since F(M, &) is a finite non-empty set for each M,
we can find an element p; € <° whose restriction to M belongs to (MM, &) for all
Me #, If & is ordinary, P (K, Kz, &) consists of a single element for any pair
{A, B} of mates in 7. Therefore, the restriction of p, to K,K; is uniquely
determined by &; hence Riv (p;) is uniquely determined by £. g.e.d.

In the situation of Prop. 3.5.1, we say that & belongs to p;, and call Riv (p,)
(for £: ordinary) the river associated with & (notation: Riv (£)). Note that this
coincides with the previous description of Riv(§) [CS] §38.6. It is clear that
Riv (g&)=g Riv (§) holds for any g€ G (=G5 or Gy).

Let us now recall some basic definitions given in [CS] §§8.2~8.8. For each
&e PUL/k), define the subgroups D}, I} of G§ by

i={geGy; gé~&, Ii={geGy; gé=¢t,
where ~ 18 the equivalence of places. They are called the (transcendental)
decomposition group and the inertia group, respectively. When £2° is symmetric,

define the subgroups D, I: of G, just by dropping the superseript +. Moreover,
define a subset I? of I} by

I{={reI}; Deg (5)=0} .

Finally PI(L/k; [A]) is a G}-stable subset of PI(L/k) formed of all those £ € PI(L/k)
satisfying the condition:

[A] I? forms a subgroup of I} with infinite index.
In view of Cor. 3.1.2, [A] is equivalent to that I} forms a proper subgroup
of If{. When £ is unramified, we always have I{={1}; hence [A] is equivalent
with |I}}=oco.

Now let ¢¢€ PI(L/k) be ordinary, p=Riv (§), and J: G,— Z be the associated
homomorphism (§8.1). Then since I} <G,, Cor. 3.1.6 gives the following
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PROPOSITION 3.5.2 If £e PUL/k) is ordinary, I is always a normal sub-
group of It, and either I3=If or I{/I§=Z. The condition [A] for & is equi-
valent to that & belongs to the latter case. When 2~ is symmetric, I} can be
replaced by I in these statements.

Finally, the following interpretation of the x-mapping will be often used.
Let £e PI(L/k) be ordinary, and let A=A4,— 4; —- -+ be the downstream of a point
A€.77° in the river Riv (¢). For each 120, let £€¥=£,, be the projection of £ to
K,,, considered as o geometric point of X.,U1X,, through the canonical isomor-
phism X, =X, or X,. Then:

PROPOSITION 3.5.3 (i) We have XHe@)=£® for any 1=0; (ii) for a fized
even I, £9=£9 holds +f and only if there exists v It such that A=A,

ProoF. Immediate from the definitions. q.e.d.

3.6 Reviews and further details about [CS] §§83.10~3.11. As before, let
ks (d=1) be the unique unramified extension of degree d over %k, o; be the ring
of integers of ki, and [q] be the Frobenius automorphism of Lgkd over k. Let
=1, and x be an ordinary geometric point of X with degreel I over Fp. For
each t€{1,2}, define je{1,2} by the congruence 1—j=I[(mod2). Then

(38.6.1)  (x,x%) is an Fyrrational ordinary double point of Ty, .

In fact, first, (x, x%) is a geometric point of X >< X at which IT* and ‘II* intersect
transversally. Secondly, it does not lie on II7, ‘]I’ 0<r<l) or 4. Therefore, by
Prop. [CS] 8.9.2, (x,x%) is an ordinary double point of T./(p"),. On the other
hand, since x is ordinary, Prop. 3.4.1 says that the two irreducible components of
Y.;(");, one above II' and the other above /I, do not intersect above (x,x%).
Therefore,

(3.6.2) (x,x7) is not normal on the two-dimensional scheme Ty .

(Thus, Prop. [CS] 8.10.1 is a direct consequence of Prop. 3.4.1.) Therefore, by
(8.6.1), (3.6.2) and by Th. [CS] 3.10.3 (already proved in [CS] §38.10), (x, x%) lifts
uniquely to a lcu-mtional point (&, &) of Tyl (an’z,,, 556)2‘,,7) which 18 not
normal. Moreover, (£,£) 18 a ky-rational ordinary double point of T.{(p")y.
The point &; is called the canonical lifting of x on Xm. These are reviews of
[CS] §3.10.

Now, we are going to prove Th. [CS] 3.11.1, which reads as follows.

THEOREM [CS] 8.11.1 Let x be an ordinary point of X. For each i=1,2,
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let &, be the canonical lifting of x on X',-,,. Put d=Deg (x/F,). Then (i) & s
krrational, and is of degree d over k; (i) £9 is the canonical lifting of x°
on Xy (D) X&) (resp. 1(&)) is the canonical lifting of x% on X, (resp. X
(iv) & 4s the unique point of X'M which specializes to x and satisfies 12%(&,)=¢&,;
(v) when & is symmetric, we have £,=&,.

Proor or TH. [CS] 8.11.1 except (iv). (The assertion (iv) will be proved later
(§3.15).) The Frobenius automorphism [q] of Uk, over %k induces a transforma-
tion of the space of all ky-rational points of T,,(v"),, and thus (5%, &) is again
a ky-rational point which is not normal. Since this is a lifting of (x2, x¢*Y), &
must be the canonical lifting of x? on X'i,] (by the uniqueness in Th. [CS] 3.10.3).
This settles (ii), and (i) follows immediately from this.

To check (iii), we first show that &==X¢,) and &=x%¢}). Since /T* and *II*
are simple components of T;;(p"),, there is a unique component of ¥,;(y), on each
of them denoted also by II' and ‘II*, respectively. By Prop. 3.4.1, they do not
meet above (x, x*), so that there are exactly two geometric points (), (&), of
Y., (o), lying above (x,x%), and we may assume that (3,),€ I, (&), € Il'. Since
(&, &) is an ordinary double point of Tij(pl),,%)kzl, there are exactly two geometric
points of Y,(y"), lying above (£, £)). Each of them specializes to either (£, or
(s)s, and the two must have the different specializations, because ({), (resp. (&)s)
is of multiplicity one in the fiber of Y,,{(1’), over x (resp. x%). Let £, and &, be
these two points of Y,(p"), lying above (¢, &), the index being chosen to be com-
patible with specializations. Then by Prop. 8.4.2, X&) (resp. ¥X&})) is the pro-
jection of ¢, (resp. {;) on X, (resp. X,;). Therefore, ¥{&,)=¢}, ¥(¢)=¢. In par-
ticular, ¥*(¢,)=¢,. Now, to check (iii), define the indices I, Je {1, 2} by {1, 2}={3, I}
={7,J}. It suffices to see that (x(£,), ¥**1(¢,)) is a non-normal point of T,,(p‘)ﬂ(?ku.
Let £ be the point of Y, (»"), above x(¢) and II', and let £} be the point of
Y1,y above x*1(&,) and /7' (see §38.4). Then by Prop. 3.4.2, the projection of
¢ on X, is X*4(&), and that of & on X, is X(X***(£))=x() by the same reason.
Therefore, £ and ¢, have the same projection ((&), ¥**'(&)) on T/ (»"). On the
other hand, by Prop. 8.4.1, we have ({{),#()).; hence Z/+#{,. Therefore, the
normalization Y,,(v),— T, (¢"), produces at least two points &, & above (x(&),
¥*4&)). Therefore (x(&), ¥*71(&,)) is not normal. This settles (iii). The assertion
(iv) will be proved later (§8.15). The last assertion (v) is obvious, because when
& is symmetrie, T;,(pYCX, X X, depends only on [ (under the identification X,
=X,). g.e.d.

3.7 Now we are going to give a detailed account of the proof of Th. [CS]
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3.4.1 (whose outline having been given in [CS] §3.12). First, let us reproduce
the theorem.

THEOREM [CS] 8.4.1 (i) For each i=1,2, the reduction map & —§&; induces
a bijection between the set of all Gi-orbits in PUL[k; [A]) and that of all Fg-

conjugacy classes of ordinary points of X; i.e.,
red,: GP\PUL/k ; [A]) = {ordinary closed points of X Fp}.
Fq
Moreover, Deg*(&)=2 Deg (£,,/Fp2).
(i) When & is symmetric, red; (1=1, 2) induce one and the same bijection
between the set of all Gy-orbits in PUL/k; [Al) and that of all Frconjugacy

classes of ordinary points of X: i.e.,
red: G\PUL/k; [A]) S {ordinary closed points of X}.

Moreover, Deg (§)=Deg (&,/F,).

(i) For any ze PUL/k;[AD, I? is a mormal subgroup of It such that
I:;/18=Z, and D}/I; is canonically isomorphic to the full Galois group of
£(L) over k.NE(L), where &(L) is the residue field of L w.r.t. & When &7 is
symmetric, I} is also normal in Iy, L/12=Z, and Dyl is canowically isomorphic
to the full Galois group of &L) over k.

A preliminary reduction step. Fix 1€{l,2}, and consider the following two

mappings:
3.7.1) 0.+ Gi\PULj/k)— {closed points of X b® Fpl,
q
(3.7.2) 2, : {ordinary closed points of X ® Fp}— Gi\PUL/k) ,
¥q

where p; is the reduction map induced by &—&, (cf. [CS] §8.1), and 2; is the
map induced from the canonical lifting as follows. Let x—¢; be the canonical
lifting of an ordinary geometric point of X to a geometric point of X,;. Then
by Th. [CS] 8.11.1, it induces the lifting

(3.7~3) (xy xqzy tty xq21f2) - (Ez’y quzz’ tt S%q;2l_2)

of an ordinary closed point of X 1@ Fp to a closed point of X,; @ k., where [ is
3 3

the degree of x over Fpe. Since SEng:XZ(Ei) (by Th. [CS] 3.11.1), the extensions

of &, £90% ... to the elements of PI(L/k) belong to one and the same G;-orbit

iy 5%

which we denote by Gf-2 (z¢ PIL/k)). Then 2, is the mapping defined by

(8.7.4) (x, xqg, v, xq?lfz) _i_> G;g .
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It is obvious that p,o%; is the identity map. Therefore, 4 is injective and s
induces a bijection between the image of 2, and the set of all ordinary closed
points of X ® Fpz. Therefore, the first part (i) of Th. [CS] 8.4.1 is reduced to

the followmg

THEOREM 3.7.5 The image of 1, coincides with G;\PUL/k; [A]). Moreover,
Deg*(¢)=2-Deg (x/Fy).

Moreover, as will be shown immediately below, the rest of Th. [CS] 8.4.1 aiso
follows from Th. 8.7.5.

Proor oF TH. [CS] 8.4.1 (ii) (ili) assuming Th. 8.7.5. The first statement of
(ii) follows from that of (i), because the action of the nontrivial element of G,/G;
on Gi\PUL/k) corresponds (via p,) with the natural action of the involution of
Fp2/F, on the closed points of X ® Fp. The second statement Deg (£)=Deg &,/ Fy)
follows from the equality Deg* (5)—2 Deg (£:/Fp2) of (i). In fact, let 6:D;— Z be
the homomorphism defined by Riv(£), so that Deg (g)=[é(g)] (g€ Ds). Since
¢e PU(L/k; [A]), o induces the isomorphisms I}/I¢ =5 Deg*(£)- Z and I/I? ~ Deg (¢)- Z.
In particular, Deg (&)=(I;: I't)* Deg* (¢). But 2(I;: I'f)™ is equal to the number
of Gj-orbits in G,-&, which is also the same as the number of Fgz-conjugacy
classes in the closed point of X determined by &,. Therefore, 2 It t=
Deg (¢:s/Fy)-Deg (&:/F2).  Therefore, Deg (£)=Deg (£,,/F)).

(ili) Since we are assuming Th. 3.7.5 and hence also its consequence Th.
[CS] 8.4.1 (i), £ must be ordinary. Therefore, the assertions on the inertia groups
are obvious by Prop. 3.5.2. In proving the assertion on the action of D} on the
residue field, we may replace & by any other element of G;-£; so we assume that
§:=§lg, is the canonical lifting of some ordinary point x € X. Let &(K,) be the
residue fleld of K; at & Then by Th. [CS] 8.11.1 (i), we have &(K,)=Fk,, where
d=Deg (x/F,). On the other hand, since L/K, is a Galois extension, the residue
field extension Z(L)/&(K,) is also a Galois extension, and all automorphisms of
&(L)/¢(K,) are induced from the elements of the decomposition group DinvVy.
So, the point to be shown is that there exists g € D} which induces the Frobenius
automorphism [¢]* of %, in &L). But this follows immediately from the equality
P —y2(z)) (Th. [CS] 8.11.1 (ii) ii)). Indeed, by the definition of %, there exists
g’ € Gy such that (¢’8)|,=2*&,). Since &, and £%? have the same valuation rings
in Ky, & and (¢’¢)lx, have the same valuation rings. Therefore, g'=v,0 with
vi€ Vi, ge Di. Since (g5)lx,=1%", ¢ induces [¢]* on k,. When 2 is symmetric,
the equality &9=yx(¢;) (Th. [CS] 8.11.1 (i) (iii) (v)) gives the surjectivity of the
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canonical homomorphism D;— Gal (§(L)/k).
Thus, Th. {CS] 3.4.1 is reduced to Th. 3.7.5.

3.8 The first step in the proof of Th. 3.7.5. In §3.8, we shall prove the
following “easy part” in Th. 3.7.5.

(8.8.1) The image of 2; is contained in Gi\PU(L/k; [A]),
and Deg*(é):Z Deg (x/Fp) .

Let x be an ordinary geometrie point of X with degree [ over Fp, &, (i€{1,2})
be the canonical lifting of x on X},,, and &£e PI(L/k) be an extension of &. Put
0=Riv (6), and let V;=A4,—>A,->--- be the downstream of V; in p. Put K,
=K, (v=0), and £¥=¢,. Since 1*¢)=¢;, we have K., =K}, with some ye I
(Prop. 3.5.8). But then, 6(y)=2l; hence Deg (;)=21>0. Therefore, by Prop. 3.5.2,
it follows that €€ PI(L/k; [A]). Moreover, Deg*(£)=2l by the definition of Deg™ (&)
(ICS] §8.3). Now it remains to prove that y represents a generator of the factor
group I:/I8. Suppose on the contrary that y=eyf with ec I, r,e I}, r>1. Note
that KLy =K am (0>0), 8(r)=2l/r, and that (K ey 1=K neourn (for n: large). So,
(K&)' 1=K gin+as» holds for n: large. Let be large, and put 7.=7"77"" Then
K{3=K . But this implies that X®/”(£,)=¢&;, and hence that x:% =x, Since
ol/r is even (being equal to Deg (7)), this implies that x is of degree l/r over
F_p, a contradiction. Therefore, y represents a generator of If/I8. This settles
the proof of the assertion (8.8.1).

3.9 Reduction to the Main lemma. As for Th. 8.7.5, it remains to prove
that every element of PI(L/k;[A]) is contained in the image of 4. We shall
reduce this to a certain lemma, the Main lemma below.

For each £e PUL/k) and the points 4, B€ 7 °, we denote by €. (resp. £4,5)
the geometric points of (X)), (resp. Y(4, B);) defined by the projection of & to
K, (resp. K,Ks). When A=V, (:=1,2), write £,=&;, as before. We shall call
&e PULIk) quasi-canonical, when Gy-& belongs to the image of the lifting map
i, of §3.1. Thus, ¢ is quasi-canonical if and only if there exists g € G} such that
(g&), is the canonical lifting of some ordinary point of X. By Th. [CS] 3.11.1 (iii),
this definition is also independent of i€ {1,2}. Obviously, quasi-canonical implies
ordinary.

Now let 4,7€{1,2} and I=1 be such that ¢—j=l(mod2). Put C=V;e 7.
Let A, B be two points of .77 ° such that (4, B)=2l and (4, C)=U(C, B)=l.

X X X
Koy kg ks

7
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Consider the following system of o-schemes and the canonical morphisms (pro-

jections) :
T(A, B)
AN
7 N\
(3.9.1), T4, C) T(C, B)
v NS N
4 X XB

One obtains a similar diagram (3.9.1); by replacing T(*, %)’s by their normalizations
Y(% #)’s. As abstract o-schemes, X;=X,, X,=X,=X,, T(4, B)=T,,®, T(4,C)
=T,:(¢), T(C, B)=T;;(s)='T;(s"), and the same type of equalities holds for the
Y’s. Take any g€ G; which transforms A to B, and B to A. Such an element
exists by Th. [CS] 2.8.1 (ii). Then g leaves C invariant, and induces an involu-
tive automorphism of K,K; which we denote by ¢. Note that ¢ is independent
of the choice of g. Let £e PI(L/k). We shall consider the following two sym-
metricity conditions for its projection £, ;.

Symm. 1) &, and & correspond with each other by o;

(Symm. 2) &4¢ and &,z correspond with each other by o.
In other words, & satisfies (Symm. 1) (resp. (Symm. 2)) if and only if the inertia
group I} contains an element 7 such that A”=B (resp. A”=B and C7=C).
Obviously, (Symm. 1) is weaker than (Symm. 2).

MAIN LEMMA. For those £e PULJk) that are not quasi-canonical, the two
conditions (Symm. 1) and (Symm. 2) are equivalent.

Completing the proof of Theorem 8.7.5 assuming the Main lemma.

Let ¢ be any element of PI(L/k; [A]). Our goal is to show that & 1s quasi-
canonical. Suppose that £ were not quasi-canonical. Since &e PU(L/k; [A], there
exists some ye€I} such that Deg (;)>0. Put Deg (y)=2I=I(4, A") with a point
AeZ7°, and let C be the midpoint of AA4°. Replacing ¢ by some other element
of G;&, we may assume that K,=K, with i¢ {1,2}. Put B=A". Then & satisfies
(Symm. 1) w.r.t. 4, B. By the Main lemma, £ must satisfy (Symm. 2); hence
there exists 7/ € It with A”"=B, C""=(C. Since 7’ stabilizes C, Deg (7/)=0. On
the other hand, since 777! leaves A invariant, we also have Deg (77/7*)=0. There-
fore, y/ and 77/~ both belong to I2. But 7] ¢, because Deg (y)>0. Therefore,
I¢ does not form a subgroup of 7 ¢. This is a contradiction to the assumption
&e PUL/k; [A]). Therefore, & must be duasi-canonical. q.e.d.
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3.10 Preparations for the proof of the Main lemma. Let 4,71 be as in
$3.9 and put S=X; X X,. Let 4 be the diagonal subscheme of S, and put T{(p*)
=T;,;(0*)<S. Then their general fibers 4, and T(»*), are distinet irreducible
curves on the surface S;=X, >k< X;,. Let T(p*)y-d; be their intersection product.

We shall show that its degree over k is given by the following formula
-1
(3.10.1) deg (T(p*)y- 4p)==2{N,+ kél ¢ Hq—DN,_,+¢" Hg—-1){1—g)},

where N, (r=1) is the number of Fpr-rational points of X. For this purpose,
consider the special fibers 4, and T(»%), as divisors on the surface S,=X >< X.
Since T(p”)s contains 4, as an irreducible component, the intersection product
T(p?),-4, is not defined. But the linear equivalence class of T(p*),-4, on 4, is
well-defined in the usual way as the class of T7-4,, where T is a divisor on S,
which is linearly equivalent with T(p®), and which is coprime with 4,. Let
deg (T(p%),-4,) denote the degree over F, of this linear equivalence class. Then
(8.10.2) deg (T(v*)y- 4y) =deg (T(p*);4,) .

(In fact, put T/=Tu%,—(f,), with a rational function f; on S, whose order at
4, equals the multiplicity of 4, in T(ﬁp”)s Extend f, to an element f of the local
ring Os,s. Replacing f by f-t= if necessary, we may assume that f is a unit of
Os.s.  Put T=T(p™;—(f)s, where (f), is the divisor of the restriction of f on
S,. Then the intersection products T7-4, and T%-4, are both defined; therefore,
by Shimura [12], Ti-4, is the reduction of Tr-4,. In particular, deg (T;-4,)
=deg (T-4,). But since Tj-4, and T(¥),-4, are linearly equivalent on 4, their
degrees coincide; therefore, (3.10.2) follows.)

Now, deg (T(»*),+4,) can be computed immediately by Prop. [CS] 3.9.2, and it
coincides with the right-hand side of (8.10.1), because deg (/I*"-4,)=deg (*II*"-4,)
=N, (r=1) and deg (4,-4,)=2(1—g). This settles (3.10.1).

For each d=1, let N¥ denote the number of ordinary geometric points of
X with degree d over Fpz. Then

(3.10.8) N,=( 3: NH+H (rz1),
Ir

where H is the number of special geometric points of X. Combining (3.10.3) '
with (8.10.1), we obtain

LEMMA 38.10.4 We have

-1
deg (T(v*),-45)=2{ 2, N+ Z dl(;ﬂ_k) ¢ Hg— DN+ H—(g—Dg—1)} .
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3.11 Reduction of the Main lemma to four counting sublemmas. We
shall compute deg (T(»®),-4;) in another way and compare with (3.10.4), which
will lead to the conclusion of the Main lemma. With the notation of §3.9, identify
T*y=T;,(p*) with T(4, B). Let &, be any geometric point of ¥Y{(A4, B),, let
&%,5 be its projection on T(A4, B)y=T(p*),, and let &, (resp. &) be its projections
on (X, (resp. (Xz);). Then (Symm. 1) is equivalent to that £, and &, correspond
with each other under the identifications X,=X,=X; as o-schemes, and hence it
is also equivalent to that &%, lies on the diagonal subscheme 4 of S=X; X X;.
Thus, each &,,5 satisfying (Symm. 1) determines a geometric point &%, of T(p¥),-4,.
Let p(&%,5) denote the intersection multiplicity of T(y®), and 4, at &5z, and #(&4.5)
denote the contribution of &5 to this multiplicity. Then p(€,5)=1, and p(&5.5)
is the sum of x(£,,5) where &, runs over all geometric points of Y(A4, B), lying
above £% ;. Therefore,

(3.11.1) deg (T(Dw)v‘dﬂ)zgz a8

where &,,; runs over all geometric points of Y(4, B), satisfying (Symm. 1). We
are going to show that:

(8.11.2) the number of distinct geometric points &4,8 of Y(A, B)y, satisfying
(Symm. 1) and an additional condition that &5 1S either quasi-canonical or
satisfies (Symm. 2), is already equal to the right-hand side of the formula (3.10.4)
Sor deg (T(p™)y-4y).

This would show, on one hand that p(&,,z)=1 for all &4,8, and on the other
hand the conclusion of the Main lemma, because those £4,5 that are neither quasi-
canonical nor satisfies (Symm. 2) ecan have no contributions to deg (T(p*")y 4y), and
hence such £, cannot satisfy (Symm. 1). To prove the above assertion (8.11.2),
we shall count the number of £,, with the given central projection & (the
projection of &4, on (Xp)y=X,,).

For each geometric point ¢ of (Xo)y=Xiy, let A;() (resp. As(£)) denote the
set of all geometric points &,,; of Y(A, B), having { as its central projection and
satisfying (Symm. 1) (resp. (Symm. 2)). Call £ ordinary (resp. quasi-canonical)
when its extensions to the places of L are ordinary (resp. quasi-canonical). When
£4,5 18 such that { is ordinary, consider the set of all irreducible components of
Y(A, B), containing the specialization (£,,5),. Then by Prop. 3.4.1, these com-
ponents lie above the same irreducible component of 7(A, B),. In this way, £,
determines an irreducible component of T(4, B),. Thus, when £ is ordinary, we
can divide 4,() into the disjoint union
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AQ=_%_APQ,

where A{({) consists of all those £4,z € A,({) with which the irreducible component
of T(A, B), determined by £,,5 is II™ (m=1), 4 (m=0), '™ (m=-—1). Now the
basic sublemmas for counting the cardinalities | | of these point sets 4,), ete.
are as follows.

SUBLEMMA A Let { be ordinary and m+9. Then
A =0 cee PO L,

=1 s O=C,  Iml=t,
=g g—1) - O =L, 0<|mi<].

SUBLEMMA B Let { be ordinary. Then
APQ)=4,0) .
SUBLEMMA C For any geometric point § of X,,, we have
[4:0]=¢"©) ,
with 3Q)= 2 (ell’)—1), where ' runs over all geomeiric points of X such
that gow(C')zE, and ell’) is the ramification index of ¢, at ¢'.

To deduce the Main lemma from the Sublemmas A, B, C, we need two more
things. One is the equality

3.11.3) ; 0Q)=2{H—(qg—1)}{g—1)},

where { runs over all geometrié points of X,,. This is equivalent with the already
established formula [CS] (1.4.3) for H.

The other is a weaker version of Th. [CS] 3.11.1 (iv) which still remains to
be proved:

SUBLEMMA D Let n be a positive integer and { be a quasi-canonical
geometric point of X,y Then { is ¢ canonical lifting of some ordinary Fpn-
rational point of X if and only +f @) =C.

PROOF OF THE MAIN LEMMA assuming Sublemmas A, B, C, D. As we ex-

plained above, it suffices to show that the number

(3.11.4) 2 ADI+ 2 A0
{#q.can

Zig.can

is equal to the right-hand side of Lemma 3.10.4, where the first (resp. second)
summation is over all geometric points { of X,, that are quasi-canonical (resp.
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not quasi-canonical). In the first summation, decompose |A,({)] into the sum of
JAME) for all m (—IZ<m =), and note that 4P()=A4,() (Sublemma B). This
gives another expression of (8.11.4), as

(3.11.5) £ I ACPQHAFIOI T IAO

where the second summation is over all geometric points { of X;;. But by Sub-
lemma C and (8.11.3), this second term of (3.11.5) is equal to

2¢"{H—(g—1)(g—-1)} .

On the other hand, in the first term of (8.11.5), we can restrict £ to the canonical
liftings of some ordinary Fpu-s-rational points x of X, in view of Sublemmas A,
D. Therefore, we can rewrite the first term as the summation over x, and then
it follows immediately from the formula of Sublemma A that the first term of
(8.11.5) is equal to

—1

B
0L Ni+ X X ¢ Hg—1N¥.
it k=1 41 (T—k)

Therefore, (3.11.5), and hence also (3.11.4), is equal to the right-hand side of the
formula for deg (T'(p*)y-4y) in Lemma 3.10.4. This settles the proof of the Main
lemma assuming the four Sublemmas A~D.

3.12 In this section, we shall prove Sublemmas B and D.

Proor oF SUBLEMMA B. Let { be ordinary, and &4, be an element of 4™ ()
(—I=m=l). Let £¢ PUL/k) be an extension of 4,5, and p be the river determined
by & Then the flow of p between A and B is determined by £,,5 and is given
by

(3.12.1) B> see b>k soe b ¢ ¢ <]
A CT B

Since &, 5 satisfles (Symm. 1), there exists an element y€ I} such that B=A".
But such an element ;7 maps the n-th point on the downstream of A to the n-th
point on the downstream of B. Therefore, 7 leaves C invariant if and only if
m=0. On the other hand, by the definition of (Symm. 2), &,z belongs to A.({)
if and only if at least one of yeI; satisfying B=A" also satisfies C"=C; there-
fore, if and only if m=0. q.e.d.
ProoOF OF SUBLEMMA D. By Theorem [CS] 3.11.1 (iii), the “only if” implica-

tion is obvious. To prove the converse, let £ PI(L/k) be any quasi-canonical
place of L, and consider the set (G;€); (i=1,2) of all geometric points of X,
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obtained by the restrictions of elements of G;-£ to K;. Then the disjoint union
(G38):11(G;8), can be canonically identified with (V\Gi/I1H)I(V\G;{/I}); hence
also with 77°/It. By the definition of ¥, the action of % on (G}8), (G, is
illustrated by the arrows on 77 /I} induced from the river Riv(§) on 7. Since
any two infinite flows of Riv (¢) going downstream meet somewhere in their
downstreams, we conclude that, for any points £, &’ of (G:£).1J(G}&),, there exists
some m, m’=0 such that x™()=x»'(¢). In particular, let £ be such that y*»¢)=¢
with some #>0, and let ¢’ eXi,] be the canonical lifting of an ordinary point of
X. Then the two sequences C, x(©), -+, and ¢/, (&), -+ are both periodic and
have some points in common. Therefore, {=%"({’) with some »=0. (If both ¢, ¢’
are chosen from (G;&); for the fixed %, then » is even.) Therefore, by Th. [CS]
38.11.1 (ii) (iii), { is the canonical lifting of some ordinary point x of X. That
x is Fpn-rational is obvious. g.e.d.

3.13 This section is for the proof of Sublemma A. For this purpose, it is
more convenient to fix an extension £¢€ PI(L/k) of { and, instead, move A and B.
In this case, we shall use the letters « and f, instead of A and B. The proof of
Sublemma A will be reduced to counting the number of equivalence classes of
some finite diagrams in Z=22711.%,~7 ° (cf. §3.2).

Let & be an integer with 0=k<{. Fix any place &< Pi(L/k) which is ordinary,
and let p=Riv (£) be the associated river on % (~.97°). Take a flow of length
2(l—Fk) with respect to p, and name it as:

(3.13.1) Kop—=>-o>Kgy—>-—2>Kqun.

Assume that the inertia group I; contains an element ¢ which maps K, ; to
K. These being given, consider the ordered pairs [K,, K3 (¢, 35€-9 °) satisfying
the following conditions [¢8 1]~[af 3]:

s 1] (i) K4y is the k-th point downstream from K, ;
(i) Kg-p is the k-th point downstream from K,;

[a3 2] Kg_p is the first point at which the downstreams of K, and K; meet;

[a3 3] There exists an element «*€I; which maps Kz to K,. (Note that such

=% maps Ky-p» to Ka p.)

K,

Y A
E \\
\ 4 P,

K(k -1 —> d —*K([ x)

2(l k)
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The two pairs [K, K;] and [K;, K] satisfying these conditions are called
equivalent if there exists ee I'; such that K;=K; and K;=Kj. (Note that such
¢ must leave the points K., *+, Kq—p invariant.)

SUBLEMMA A* The number of equivalence classes in the set of all ordered
pairs (K, Kl satisfying [af 1]1~[ap 3] is given by:

1 - k=0
¢ Hg—1) --- k=1.

Proor. Since the assertion is trivial for k=0, we shall assume that k=1.
Let H denote the stabilizer of K, in If. Then H leaves the downstream
Kyy—+-—>Kqyy—--- invariant. Consider the set {Kj} of Kye %" satisfying
the conditions [af 1] (ii) and [af 2]. The cardinality of {K,} is obviously equal
to ¢**(g—1). First, fix any K, satisfying [of 1] (ii) and [af 2], and count the
number a(Kj3) of nonequivalent pairs [K,, K,] with the second component K,. As
before, let = be an element of I} which maps K4 to Ky, define ay€ .7 ° by
K.,=Kj, and let H; (resp. H,,) be the stabilizer of § (resp. @) in H.

We shall first show that

8.13.2) a(Kp)=(H : Hy) .

To check this, observe first that [K,, K,| satisfies [af 1]~[af 8]; then that [K., K]
also satisfies [a8 1]~[«f 3] if and only if K,=K}, with some h € H. But [K}, K]
and [K%, Kg] (h, b’ € H) are equivalent if and only if h and A’ represent the same
element of the double coset space H, \H/Hz. Therefore,

a(K)=|H \H/H,| .

Now, a delicate point! Since H is the inertia group of & in L/K4.p,
and since L ts of characteristic 0, H is abelian and is topologically generated
by a single element. Therefore, a(Kp)=(H:HpH,). On the other hand, the
elements of H leave K, ;, invariant, so that HCtHr™?, or equivalently, :*HrC H.
But since H is topologically generated by a single element, this implies that the
inner automorphism % —c~'zr of I{ maps every closed subgroup H’ of H into
itself. In particular, take H’=H,,. Then t *H,;cC H,,. Therefore, H,,C(cH, =) NH
=Hp. Therefore, HyH,,~Hg. Therefore, a(Kp)=(H : Hg), which settles (3.13.2).

Now we can calculate the number of equivalence classes for [K,, Kg]. Recall
that [K,, K] and [K;, K;] are equivalent if and only if Ky=K;, K;=K} with
some ¢€ ;. But since such ¢ must necessarily belong to H, the condition c€ I}
can be replaced by :€ H. Now, the set {Kg is H-stable. Let K, (=1, -+, n)
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run over the representatives of H-equivalence classes in {Kg}. Then the total
number of equivalence classes of [K,, K] is equal to the sum of a(Kp) for all 4.
But a(Kp,)=(H : Hp,), and it is nothing but the cardinality of the H-orbit in {Kj}
containing Kjp,. Therefore,

% a(Kp)= 5 (H: Hp)=1{Kall=¢**(q—1) .

This settles the proof of Sublemma A*.

Proor oF SUBLEMMA A. Let £ be an ordinary geometric point of (X, and
m be an integer with —I=<m=l, m+%0. Put k=Il—|ml, so that 0=k<l. First,
suppose that A() is non-empty, and take any &,,,€ A™(). Let &e PUL/k) be
any extension of &, 5, and put p=Riv (§). Then the flow of p between A and B
is as given by (8.12.1). Since £, satisfies (Symm. 1), there exists yel; with
A’=B, and 7 maps the downstream of A to that of B; in particular, it maps the
L-th point down from A to the k-th point down from B. This implies that
()= (cf. Prop. 8.5.8). In other words, if x*™({)#(, then A{™(() is empty.

Now assume that ¥*™'()=¢. Let £e Pl(L/k) be any extension of {, put
p=Riv (&), and let K4y >+ > Ky be a flow of length 2|m| with the midpoint
K,. Tt suffices to show that there is a bijection between the set of equivalence
classes of [K,, K] satisfying [{af 1]~{[a8 3] and the set A™(). For each [K,, Kgl,
take ge Gy such that K{=K,, K§=K;. Then we can check in a straightforward
manner that (g€),s belongs to A{() and that [K,, Kg]— (98,5 induces the
desired bijection. (Proof of the surjectivity uses x*™{)=C, but other points are
totally trivial.) g.e.d.

3.14 Proof of Sublemma C. This will be reduced to counting the equivalence
classes of the following diagrams. Let 121, £€ PU(L/k) be given. Let H be the
stabilizer of K=K, in the inertia group I'i. Consider the ordered pairs {K., Kg}
in =2,1%; such that l(K., Kp)=2l, that K. is the midpoint of K.Kj, and
that K,=K with some h€H. The two such pairs {K,, K} and {K;, K5} are by
definition equivalent if there exists some ke H such that K;=K%, K;=K}%.

SUBLEMMA C* The number of equivalence classes of {K., Kg satisfying
the above conditions is equal to ¢*16(0), where { is the restriction of & to K,
(=K.

ProoF. Let {Kj} denote the set of all Kpe . with distance ! from K,. First,
fix Kp, and consider the number a(Kp) of non-equivalent pairs {K,, Kg. Let
K; (r€.97°) be the point of segment K K; next to K.
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1 l

X e e X e X e X e X e e e X X
K, K, K Ks

Let Hp (resp. H;) be the stabilizer of Kp (resp. K;) in H. Then a(Kp)=
|Hp\(H—H;)/Hp|. But since H is abelian (being the inertia group of £ in L/K,
where ch(L)=0), we obtain

(3.14.1) (E)=I(H—H Hyl =l Hy) (1 L
N # §2

Therefore, if Kp, (1=<{=n) is the complete set of representatives of the H-orbits
in {Kjg}, the number of equivalence classes of {K,, Kg} is given by
z 1
= H:Hg){1— ——
e iz=:1 ( B") (1 (H:Hrz) ) ’
where 7, corresponds with 8; by the association §—7. But since (H: Hp,) is the
cardinality of the H-orbits in {Kj} containing Ky, we obtain
(3.14.2) a=73 (1— ——1—> =gt % (1— ——1—>
Kg (H: Hy) K, (H:Hyp /"’

7

where, in the second sum, Ky runs over all mates of K,. Now fix a mate K; of

K, and let ¢, -+, 0,.; be the distinct isomorphisms of K;K, over K,. Then
(3.14.2) can be rewritten as

g+1 1
a=q'* <1~ ————) s
LY s KRR
where e(o,&, K;K./K;) is the ramification index of ¢,& in KK /K.. But this is
equal to ¢**3(Z), since each £’ (cf. Sublemma C) appears e(Z’) times in the above
sum. This settles Sublemma C*.

Now, Sublemma C is obtained by a direct translation of Sublemma C*.

3.15 Finally, Th. [CS] 8.11.1 (iv) (which was isolatedly left unproved) in an
immediate consequence of Th. 8.7.5 and Sublemma D. In fact, let &, be a geometric
point of X'i,y such that 2*%(¢,)=¢£,. Then by the same argument as in §3.8 based
on the assumption 7*4(£,)=¢,, we see that the extensions of & to L belong to
PUL/k; [A]). Hence they are quasi-canonical by Th. 3.7.5; but since 2%%&,)=¢,
this implies that £, is canonical (Sublemma D).

4 The second Galois theory

The purpose of §4 is to state and prove two basic theorems in the second
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Galois theory (Theorems 4.2.1, 4.2.2). These will be basic for the proof, given
in §5, of Main Theorem II of [CS] §4.

4.1 Preliminaries. A system of three (comnected) schemes is a system

?/ﬁ{Ule—(/}—l—- Uo—-gé—> Us,}, where U, (2—0 1,2) are (connected) schemes and ¢, ¢,

are morphisms. If = {U1<——~ Uo———> U,} and ?/*—*{Ui"éib-— U*—Slf% U¥E are
systems of three schemes, o finite étale morphism / T H* > is a triple / =
(f1, fo, f2) of three finite étale morphisms f;: U¥ - U, (:=0,1,2) satisfying f;o¢¥
=,of, (1=1,2) and U x U¥ >< U, (canonically; ¢-=1,2). We shall call f, (1=
0,1, 2) the constituents of / The composite of two such finite étale morphisms
is defined by the constituentwise composites. When /  H*— 7 is a finite étale
morphism, the pair (#Z*, /) is called a finite étale covering of %. The finite
&tale coverings of a given system % of three schemes form a category denoted
by {ét/%}. When % is a system of three connected schemes, the finite étale
coverings (%*, /) of % by the systems Z'* of three connected schemes form a
subeategory of {6t/ %}, called {conn. ét/Z}.

If A is any ring and %= {U1<-—¢—1— Uo————> U.} is such that U, are A-schemes
and ¢, ¢, are A-morphisms, % will be called a system of three A-schemes. If
% is such, and B is an A-algebra, then %/ @ B=%, is the system of three B-
schemes obtained from % by the base change (? B. If (Z*, / ) is a finite étale
covering of a system of three A-schemes %, then we can regard Z* also as a
system of three A-schemes in such a way that the constituents of S are A-
morphisms. So, if B is an A-algebra, the base change (Z'*, /) @ B=#'%, /5 is
defined in the natural way, and (%% / 5) is a finite étale covering of %%.
Therefore, ® B defines a functor (Z*, /) — (Z'% , /8), from {ét/ %’} into {ét) %5} .

Let d? be a CR-system w.r.t. (X,0). Recall that a finite étale covering
(Z7%, /) of Z is called a finite étale CR-covering of &7, if Z°* is another CR-
system over o (the same o) and if the constituents of / are p-morphisms. The
category of finite étale CR-coverings of 2 will be denoted by

{6t CR/Z7} .

It is a subeategory of {conn. ét/Z"} (with the same set of Hom’s).

For each (2%, /)e{ét CR/Z7}, its degree is defined in a natural manner.
For #=(f1,fo, f2), the degree of (Z7%, /) is by definition the common degree of
fo=l: QFk (1=0,1,2), and also of fi,.=f. Q F, (1=0,1,2). The degree will be
denotedm by (&% 2] If (£ /) is auﬁnite étale CR-covering of &7, with
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A =(f1: o, f2), then (“2°%,* /) is a finite étale CR-covering of “2°, where =
(f2, fo. f1) (ef. §1.1 for the notation *2°). The following assertion on the heredity
of symmetricity will be proved at the end of §4.8.

PROPOSITION 4.1.1 Let (£%, /) be a finite étale CR-covering of a CR-
system £, and suppose that 2 is symmetric. Then 2% is also symmetric
and we have * /oc*=co /', where ¢ (resp. <¥) are the symmetries of Z (resp. Z¥)
{cf. §1.1).

4.2 The two basic theorems. Let &2 be any CR-system w.r.t (X,0), and
(Z7* / Ybea ﬁmte étale CR-covering of 2", Put =X, «—-—Xo-—>X2}, ¥ =
{X* X*_>X*}y X*_Xiks X;’i’ // (flstny)y and fzs_f ®F (7’ 0 1 2)

Passage to the special fiber. Let II, Il be the 1rreduc1b1e components of
Xos (named as in [CS] §1.4), and IT*, ‘IT* be those for X*. Then

(1) f: (i=1,2) induce finite étale F,-morphisms

fu: X*> X (1=1,2);
(i) f, induces a finite étale F-morphism
f Os: X >Oks - XOs »

and if p (resp. p’) denote its restrictions to I7* (resp. *II *), then the diagrams

of IT* of, @7 o
= ~Z AN
X* /-JJ, _______ =X Xt < ———- _X X*
flxl S_Dj,s.. \Lfs flsl p H o lfu
H SDZS p“ ‘ N
= D
X ——__> X X —————-\ X

are commutative, where -> denotes the g-th power morphisms. In particular,
Jis and f, correspond with each other through the g-th power morphisms, which
implies that fi,=f,. We shall put f=f,=f.. Since f,, maps IT*NT* into
NI, f maps &% into &, where & (resp. ©%*) are the sets of special points of
X (resp. X*) defined by & (resp. &2°%). Moreover, since Jfos is étale and hence
in particular flat, every point of IT* (resp. :II*) lying above I NI must belong
to the intersection II*N:II*. Therefore, ©*=F"1(&). In particular, all geometric
points of X* lying above & are F2-rational.

So, we are led to consider the following category {conn.ét/X; (B)}. First,
by a connected finite étale covering of X, we mean any pair (Y, g), where Y is
a connected scheme and g:Y > X is a finite étale morphism. They form a
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category, called {conn.ét/X}. Let {conn.ét/X; (B)} be the subcategory of
{conn. ét/ X} whose objects are those connected finite étale coverings (Y, g) of X
satisfying the additional condition:
(B) All geometric points of Y lying above & are Fpg-rational points.
The functor {étCR/2"}— {conn. ét/X; (B)} defined by (2%, /)~ (X, f)
will be called the passage to the special fiber. The first basic theorem of §4
reads as follows.

THEOREM 4.2.1 Let &2 be any CR-system. Then the passage to the special
fiber is an equivalence functor from {ét CR/ZZ°} to {conn. ét/X; (B)}.

Passage to the geometric gemeral fiber. Now assume that 2 belongs to
Case 2 (ef. [CS] §1.2). So, by definition, the exact constant rings of X; (¢=0,1,2)
are the unramified quadratic extension o, over o. As before, t denotes the
algebraic closure_ of k. _The effect of the base change ® k will be denoted by .
Then é}:{}?ﬁ&—-)@& X} is a system of three Déonnected proper smooth
algebraic curves over k, called the geometric general fiber of &2~ The functor
{6t CR/2°} — {conn. ét/Z°} defined by (Z*, /) —— (Z*, /7 ) will be called the
passage to the geometric gemeral fiber. Our second basic theorem of §4 reads
as follows.

THEOREM 4.2.2 Let &2 be a CR-system belonging to Case 2. Then the
passage to the geometric general fiber is an equivalence functor, from {ét CR/Z7}
to {conn. ét/S7}.

The proofs of Theorems 4.2.1, 4.2.2 will be given in §4.6.

4.3 Preparations for the proofs of Theorems 4.2.1, 4.2.2; (I).

The proofs of these two theorems are based on the following three results;
(I) A theorem of Grothendieck on the unique liftability of finite étale morphisms
([1] IV 18.3.4, cited as Th. G); (II) The lemma 4.2.6 in our previous paper [4];
(IXI) Our new criterion for the good reduction of unramified coverings [6] Th. 2B.

In the following three sections, we shall prepare three lemmas (Main lemma
4A, 4B, 40), based on the above cited results. First, in §4.3, we shall give an
immediate generalization of Th. G to the case of systems of three schemes, and
then, as an application, give a proof of Prop. 4.1.1. Although the base ring 4
can be as general as in Th. G, we shall formulate only in the case where A is
a complete discrete valuation ring.

MaIN LEMMA 4A Let A be a complete discrete valuation ring with residue
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field &, and 7/={U1<—&— Uo—-(;)z—% U} be a system where U; (=0, 1, 2) are prop-
er A-schemes and ¢, (1=1,2) are A-morphisms. Then the functor R«

A
(7%, )—>(%%, £,) is an equivalence functor from {ét/ %} to {ét/ %}

PrOOF. Let (%%, /°,) be any finite étale covering of %, and put Z¥=
(U «— Uk —> UL}, /c=(fie, for o). Let =1 or 2. Then by Th. G, fi
can be lifted uniquely to a finite étale morphism f;: U¥— U,. Since U¥ >< U,
and U, X U¥ are both finite and étale over U,, and their special ﬁbers are
canomcallzy isomorphic over Uy, they are canonically isomorphic over U,, again
by Th. G. Therefore, if U¥ denotes these canonically isomorphic schemes identified,
then the system {U¥«—— U¥—— U¥} is the finite étale covering of % which
lifts Z*. Secondly, to check the bijectivity between the Hom’s, take any two
finite étale coverings (%%, /) and (¥**, #) of %, and put ¥*={Uf—— U%¥
— U}, Z*={UF* U — U, =0, [0 [, #=(g1 g0, 92). Take
any finite étale morphism £,=(hy,, hos, hos) : ZF* — %% such that 2= o /.. The
point to be shown is the existence of a finite étale morphism £=(h,, ke, hs) :
%% — Z* such that #= o« and 4,24(?/:. Let i=1 or 2. By Th. G, there
exists a unique finite étale morphism h, with ¢,=f;ch, and h-®l€=hi‘ Since
UP=U¥* >< U, and U¥=U¥ >< U,, the base change &, >< U, of h; defines a
finite étale morphlsm U¥ — U* whlch we call 2y;. Then hm, hee are both finite,
étale, and lift ho.. Therefore, hoy=h,e, and if we put hy=ho=hes, <£=(hq, ko, ko)
is the desired morphism. q.e.d.

Proor oF PROPOSITION 4.1.1. Look at the diagram
Gk ¢ 7%
A s
FNS 8P .

¢
Since ¢*ot and / are both finite étale CR-coverings of &, and since their
special fibers are canonically equivalent finite étale coverings of Z°® F,, there
exists, by Main lemma 4A, a symmetry ¢*: 2% — *27% guch that ot oet= /L,
q.e.d.

4.4 Preparations (II). In this section, we shall deal with an arithmetic
interpretation of connected finite étale coverings of the special fiber Z,=2"® F,
of a CR-system &, This is a review of [4] §4. |

The system Z={U,«— U, ——> U.}.
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Let F, be a finite field with ¢ elements, and U be a proper smooth irreduei-
ble algebraic curve over F, (which need not be absolutely irreducible). Let ©
be some set of Fpe-rational points of U, and assume that © is non-empty, which

implies that the exact constant field F,c of U must be either F, or Fp. Start-

Y
ing from such U and &, a system 7/={U1<—%—-Uoﬂ‘) U;} of three connected

curves is constructed as follows. First, U,=U,=U. Secondly, to construct U,,
identify se U, with s?e U, for each s€®, and let U, and U, cross transversally
at this identified point, for all s ®. Then U, is the join of U, and U, crossing
transversally at each pair of identified points (s,s?) (s€®&). The morphisms ¢,:
U, - U, (1=1, 2) are defined as follows; ¢, (resp. ¢,) is the identity on the com-
ponent U, (resp. U,) of U,, and is the ¢-th power morphism on the other com-
ponent U, (resp. U,) of U,.

U {a} U: id
id i
// \ / \ Uo: Ux U U2 .
U, U, U, U,

Note that ¢, (4=1,2) are well-defined at the intersecting points. We shall look
for the interpretations of connected finite étale coverings (resp. “normalized
finite étale coverings”) of %, in terms of connecied finite étale coverings of U
satisfying some additional conditions (B’) (resp. (B)) defined below.

The conditions (B), (B). Let K be the function field of U, and & be the
maximum unramified Galois extension of K:-F, in which all prime divisors of
K-F,p corresponding to the points of & are decomposed completely. Let F, be
the algebraic closure of F,. Then as © is non-empty, we have 8N F,=F,;. Let
(U*, f) be a connected finite étale covering of U.

DEFINITION 4.4.1 (U*,f) satisfies the condition (B) (resp. B") if its func-
tion field is isomorphic over K to a subfield of & (resp. R-F).

In geometric terms, (U*,f) satisfies (B) if and only if all geometric points
of U* lying above © are Fp-rational points; and it satisfies (B’) if and only if
there exists an automorphism ¢ of U* over U such that su*=u*¢ for all geo-
metric points u* of U* lying above ©. Clearly, ¢ is uniquely determined by
this eondition. When (U¥*,f) is a Galois covering, ¢ belongs to the center of
the Galois group. We shall call ¢ the twist-automorphism of (U*,f). We have
e=1 if and only if (U*, f) satisfies (B).

The category of connected finite étale coverings of U satisfying (B) (resp.
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(B’)) will be denoted by {conn.ét/U; (B)} (resp. {conn.ét/U; (B)})¥. When ¢=2
for the exact constant field F,. of U, call {conn. ét/U ® Fq, (B")} the category of

those connected finite étale coverings of UQ F, correspondmg to the finite ex-
Fao

tensions of K 'Fq in R-Fq. It is clear that ® F gives an equivalence:
qZ

(4.4.2) {conn. ét/U; (B)}~{conn. ét/U 1@ F,; B} .
92

The following lemma (Lemma 4.2.6 of [4]) will be basic.

LEMMA 4.43 Let U,& and ?/:{U1<ﬂ~ Uo—ib-» Uy} be as above, and let

(U*,f), (U*, g) be two connected finite étale coverings of U. Then the fol-
lowing conditions (a), (b) are equivalent;

(a) U* >< U, >~ U0 U** over U, .
(b) U*~ [J** over U, and U* satisfies (B').
U* IS
f l lg
I [

PROOF. Let us briefly recall the proof. Let &* be the set of all geometric
points of U* lying above ©. Put UF=U$=U%, identify s*c U¥ with s*™*c U¥
for each s*e@&%*, and consider the join of U¥ and U¥ crossing transversally at
each pair of identified points (s%,s* ') (s¥¢ &%), which will be considered as a
U*-scheme via the join of the identity map id: U¥~ U* and the g¢-th power
morphism {g}: U¥— U¥*, and also as a U,scheme via the join of two copies
Uf— U, and Uf > U, of f. Then this join of U¥ and U% is nothing but the
fiber product U%* >< U, (because “the two components cross wherever they can”).

Similarly, U, X U** can be constructed. It has two components U¥F* and UF*
2
the index being so chosen that U#* (resp. U#*) lie above the components U,

(resp. U,) of Uy, and UF* and U¥F* meet at each pair of identified points (s¥*, s¥*q)
(s** e &%), where &**=g1(&). Therefore, the condition (a) is equivalent with
the existence of two U-isomorphisms ¢,;: U* 2 U** and &: U* o U** guch that
(8797 )=¢,(s%)? for all s¥e ©*. But this is equivalent with (b). g.e.d.

In view of Lemma 4.4.3 and its proof, we can make the following observa-
tions. Suppose that (#*, /) is an object of {conn.ét/%}, and write Z*=

» Note that {conn. ét/U; (B)} is the same as {conn.ét/X; (B)} defined in §4.2, when
U=X and & is the set of special points.
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g¥ o . . .
(Uke——Us——UH, /=(f1,f0,f2). Then (U¥,f1) and (U%,fs) are isomorphic
objects of {conn. ét/U} satisfying (B’). On the other hand, U¥ has two irreducible
components, of which one can be identified with U¥ via ¢F, and the other with
U¥ via ¢f, and 4=¢¥lys, ,=¢¥ly; are purely inseparable morphisms of degree
g such that 02, =c¢'o{g}?, where {g}* is the ¢>-th power morphism of U ¥ and e
is the twist automorphism of (U¥F, fo).

U¥ Us
gF gt/ ¢
\ \ Aody=e"te{q}? .
Uf U¥ Z U¥
2

N\E

U

%

Ay
We say that (#*, /)€ {conn. ét/ %} is normalized, if e=1. When (Z*, /) is
normalized, we may assume, by replacing (Z*, / ) by an isomorphic object, that
U#=U% and that 2,2, are both the ¢-th power morphisms. The subeategory of
{conn. ét/ %} formed of all normalized objects (and finite étale morphisms between
them) will be denoted by {norm.ét/%}. Then by Lemma 4.4.3 and these ob-
servations, we obtain immediately the following

MAIN LEMMA 4B With the same notation as above, (Z*, /) ~— (U¥,f1)
induces an equivalence functor from
{conn. ét/ %) to {conn. ét/U; (B}
and also that from
{norm. ét/ %’} to {conn.ét/U; (B)}.
4.5 Preparations (III). Let &2 be a CR-system w.r.t. (X,0) belonging to

Case 2. Let Lk* denote the maximum unramified extension of k, and o be the
ring of integers of k*. Our third main lemma reads as follows.

MAIN LEMMA 4C The functor @2 Lk is an equivalence functor from
{conn. 8t/ ® 0%} to {conn. ét/Z R k}.
o2 °2

This is essentially the same as our previous result, Theorem 2B of [6]. The
next lemma will cover the “slight difference” between Theorem 2B of [6] and
Main lemma 4C.

LEMMA 4.5.1 Let k be a v-adic number field, and k* be the maximum
unramified extension of k. Let o* be the ring of integers of k*. Let Y be a
normal integral scheme having a structure of o flat o-scheme of finite type,
and assume that its special fiber Y, contains an irreducible component I of
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multiplicity one which is of codimension one in Y. Let Y., Y, be two con-
nected Y-schemes that are finite and étale over Y. Suppose that there is a
Y-morphism

I Y2®uIZ—> Y.,

where k is the algebraic closure of k. Then there exists a unique Y-morphism
f: Y- Y,
such that f @ k=f. Moreover, f is finite and étale.

PrRoOF OF LEMMA 4.5.1. The local ring @y, is one-dimensional, normal and
noetherian; hence a discrete valuation ring. Since I7 is of multiplicity one in
Y,, a prime element of o* is a prime element of @, ,. Therefore, Op,; defines
a diserete valuation v of the function field R(Y) of Y, and the ramification
index of v in R(Y)/k* is equal to one. Therefore, by the maximality of k*, k*
is algebraically closed in R(Y). Since k* is of characteristic 0, R(Y) is a
regular extension of k* in the sense of Weil [13]. Therefore, Y@ k* is geo-
metrically integral. Since Y, Y, are normal (being étale over Y)D, connected,
and noetherian, they are integral. Let R(Y,), R(Y.) be their function fields.
Then for each 1=1,2, R(Y,)/R(Y) is a finite extension. Moreover, since Y,/Y
is finite and Y, is normal, ¥, is nothing but the integral closure of Y in R(Y,).
And since Y,/Y is étale, v is unramified in R(Y,)/R(Y). (Therefore, by the
same reason as above, R(Y,) is also a regular extension of k*.) Now suppose
that there exists a morphism f as in the lemma. Then there exists a finite ex-
tension %’ of k* and a Y-morphism f’: Yz@k' — Y, such that f’ C;@lgsf_ Now
J” induces an injective field-isomorphism R(DYI)C)R(Yg)k’ over R(Y). But since
K'[k* is totally ramified, R(Y,)k’/R(Y,) is totally ramified for any extension % of
v to RB(Y)k'. But since 9 is unramified in R(Y)/R(Y) and R(Y)/R(Y), it is
unramified in B(Y,)R(Y:)/R(Y,). Therefore, R(Y)R(Y,)CR(Yy), i.e., R(Y)CR(Y>).
Since Y, (resp. Y,) is the integral closure of Y in R(Y)) (resp. R(Y,)), this field-
embedding induces the desired Y-morphism Y, » Y,. Since Y., Y, are finite and
étale over Y and f: Y, > Y, is a Y-morphism, f is also finite and étale ([1] II
(6.1.5), [2] Exp. I, 4.8). g.e.d.

@u U
Proor or MaIN LeMma 4C. Put %uzﬁf@nu:{X;t;Xg—&Xg}, and
o2

_ . R N _ ~
H=R k:{Xle’—l— Xg——‘—2-—>X2}. Let (2%, //) be a connected finite étale cover-
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—k =%

ing of &, with &%= (X¥ < X# -2 X8, /=(fi, forJ)- Then X¥ (i=0,1,2)
are proper smooth irreducible algebraic curves over k. Since Xx~ X* X %,
and X¥ is irreducible, X* and X, must be linearly disjoint over X,. Simi{alrly,
X# and X, must be linearly disjoint over X,. Since moreover &2 is a CR-
system, the assumptions of Theorem 2B of [6] are satisfied. Therefore, there
exists a unique finite étale covering f¥: X** — X¥ (resp. f¢: X§*— X¥) such
that X¥ X X, ~ X* (over X)) (4=1,2). Moreover by Lemma 4.5.1, we have

X3

(4.5.2) X¥x Xp~ Xy X X¥* (over X},

% %
Xy Xy

where the isomorphism is compatible with the canonical isomorphism

¥

(4.5.3) X¥x Xy~ Xk~ X, x X¥.

X Xy

()

Therefore, we can construct from X7¥* and X¥* a finite étale covering (&%,
/%) of 2 such that (Z7*, /) ® e=(Z*, /). It is necessarily connected by the
last equality. ‘

Secondly, suppose that (Z7*«, / w) (2% o) are two connected finite étale
coverings of &, and put (%, £)=(2*, /) (%15, (FZHk, Zy= (W, 2v) @ZZ

Let Z: &% — 2% be any finite étale morphism such that / oz=27, and put

Z=(h1, o, F1z). Then by Lemma 4.5.1, for each 7==0,1, 2, there exists a unique

finite étale morphism A¥: X¥** > X** such that froht=g¥ and h¥ X X¥=h,.
X3

Put «*=(h¥, b, hy). Then, by trivial verifications, we conclude that «” is a
unique finite étale morphism 2% — 27** satisfying /“o%=.#* and £* ®u E=2.
Therefore, the canonical map Hom ((Z7¥+%, #¥), (Z**, /%)) — Hom (£ **, 7),
(&%, /7)) is bijective. g.e.d.

4.6 Completing the proofs of Theorems 4.2.1, 4.2.2, and auxiliary results.
We return to the notations and assumptions of §4.2, and k* (resp. %) will
denote the maximum unramified extension of %4 (resp. the ring of integers of k¥).
We shall write 2°,=2"Q F,. The categorical equivalences will be denoted by
~,

First, by Main lemma 4A, we have
4.6.1) {6t/ 27} ~ {&t/27) (by @ F,) ,

which induces
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4.6.2) {conn. ét/Z”} ~ {conn. ét/Z} ,

due to the Zariski connectedness theorem (ef. [1] IIT Th. 4.3.1). Moreover, (4.6.1)
also induces

(4.6.3) {ét CR/Z"} ~ {norm. ét/Z°} .

This follows easily from the definition of CR-systems. On the other hand, by
Main lemma 4B, we have

(4.6.4) {conn. ét/2;} ~ {conn. ét/X; (B")}

which induces

(4.6.5) {norm. ét/2°} ~ {conn. ét/X; (B)} .
Therefore,

(4.6.6) {conn. ét/22°} = {conn. ét/X; (B")} ,
and

(4.6.7) {ét CR/Z"} ~ {conn. ét/X; (B)},

which proves Theorem 4.2.1.
Now for the proof of Theorem 4.2.2. First, by Main lemma 4C,

4.6.9) {conn. ét/zfo@? 0%} = {conn. ét/zf% kB (by & k) -
On the other hand, it follows immediately from (4.6.6) that
(4.6.9) {conn. ét/gt‘f®2 0%} & {conn. ét/XFCxD2 F,; B}
© q
(by @ F). But (4.4.2) says that
(4.6.10) {conn. ét/XF (:92 Fy; (B")} ~ {conn. ét/X; (B)} .
Combining (4.6.7), (4.6.9) and (4.6.10), we see that (?20” induces an equivalence

(4.6.11) {6t CR/Z"} ~ {conn. ét/2°® 0¥} .

Therefore, by (4.6.8) and (4.6.11), we obtain
(4.6.12) {6t CR/Z"} ~ {conn. ét/ Z R I}
o2

(by ® k). This proves Theorem 4.2.2.
2

So, we have proved the following equivalences and categorical embeddings C:
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{conn. ét/Z}~ {conn. ét/27} ~ {conn. ét/X; (B)}
_ U U U
{eonn. ét/Z° R k} ~{conn. ét/Z° R v} ~ (bt CR/Z"}~{norm. ét/Z} ~ {conn. é&t/X; (B)} .
02 02

REMARK 4.6.13 We note that % can be replaced by any other bigger field,
i.e., if %’ is any field containing %, then the functor ®Ic’ {conn. ét/Z” ® it —
{conn. ét/Z @ K’} is an equivalence. This is a direct formal consequence of the
(well- known)nzequxvalence of the functor ®k’ {conn. ét/U} — {conn. ét/ U® 1748
where U is an irreducible algebraic curve over %, and {conn. ét/+} is the category
of connected finite étale coverings of =.

4.7 Let &2 be any CR-system, and (7%, /) be a finite étale CR-covering of
&, Let L and V; (1=0,1,2), Gi be the field and the automorphism groups as-
sociated with <& ([CS] §2.1), and let L*, V¥ (4=0,1,2), G¥* be the corresponding
objects for &27*. We shall clarify the relations between L and L*, G} and G¥".

Put 2°={X, <~ X,— X}, and let K, be the function field of X; (#=0,1,2).

*
Similarly, K¥* denotes the function field of X¥, where Z*={X¥«— X*—gfi%
X#. Put S=(fu,fo,f2). Then for each %, f; induces an injective isomorphism

K,GK¥ over k, and since X~ X¥ >< X(, (canonically, 7=1,2), K¥ is canonically
isomorphic with K*@K0 (=1, 2). Therefore K* and K, are linearly disjoint
over K, and K*~K>"KO (1=1, 2).

|

K,
K, N K,

4.1.1)

PROPOSITION 4.7.2 (i) The field L is contained in L*, and L*=LK¥; (i)
the subfield L of L* is GF-imvariant, and the restriction to L induces an
imjective homomorphism r: G¥ — Gi; (i) Gi=V,-r(G¥F).

Proor. (i) Since LK¥=LK¥=LK%¥, the extensions LK¥/K¥ (1=0,1,2) are
Galois extensions. Therefore, L*CLK¥. Since K¥ and K, are linearly disjoint
over K,, every Galois automorphism e Aut (K,/K,) decomposes as o=o%-gq,
where ¢* Is trivial on K¥ and o, is trivial on K,. Therefore, L*=L%%; i.e.,
every conjugate of L* over K, is a conjugate over K,. Therefore, if M denotes
the intersection of all the conjugates of L* over K, fhen M is also the intersec-
tion of all the conjugates of L* over K,. Therefore, M/K, is a Galois exten-
sion. Similarly, M/K. is also a Galois extension. Therefore, LCM. Since
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McL*, we obtain LCL¥*, Since L*CLK¥, this implies that L*=LK%.

(i) Since V¥ (1=1,2) acts trivially on K, and IL/K, is a Galois extension,
V¥ leaves L invariant. Therefore, GF+=<(V¥, V¥ leaves L invariant. Let
r: G¥* — Aut (L/k) be the restriction homomorphism. Then since #(VHcCV,
(¢=0,1,2), we obtain 7(G¥*")CG;. Now, since L*=LK¥ (1==0,1,2), 7 is injec-
tive on V¥, and we have V,Nr(VH=r(V¥F and V,-r(VH=V,, for i=1,2.
Therefore, by Cor. [CS] 2.3.2 and Prop. 2.1.5, the subgroup <r(V¥), r(VI> of G;
generated by »(V¥) (¢=1,2) is a free product of »(V¥) and r(V¥) with amalga-
mated subgroup r(V¥). Since r is injective on V¥, this implies that + cannot
have a non-trivial kernel.

(iiiy In the above argument, <{r(V¥),r(V¥)) satisfies the equality Gi=
Vo lr(VH, r(V¥$)>, by Prop. 2.1.5. g.e.d.

COROLLARY 4.7.3 We have
(Gi: r(GEN=(Vi: n(VE)=[K¥: K,]-[L*: LT
(1=0,1,2). In particular, r is an isomorphism G¥* ~G; if and only if
K¥inL=K..
Proor. Immediate, by Prop. 2.1.5 and Prop. 4.7.2. q.e.d.

REMARK 4.7.4 It is likely that K¥ and L are always linearly disjoint over
K,;, so that we can always identify G¥* with G;. But if so, the reason should
be of a delicate nature. At least, (as an example suggests) we cannot prove it
with only using the unramifiedness of the standard y-adic valuation of K in K%,

COROLLARY 4.7.56 When & is symmetric, we can replace Gi by G, (¢f. [CS]
§2.7), and G¥* by G}, in Prop. 4.1.2 and Cor. 4.1.3, where G,, G¥ are the
groups of [CS] 2.7.1 associated with 27, Z7*, respectively.

This follows immediately from Prop. 4.1.1 and Prop. 4.7.2.

5 Simultaneous uniformizations and reciprocity
(Details and Proofs for Main Theorems I, II, IIT)

In §5, we shall restrict our attention to those CR-systems <2 that are

unramified and symmetric. Let 2~ ={X1<—%—Xo-¢—2>X2} be an unramified

# In the elliptic modular case, £2° (the Kronecker CR-system) is not unramified, but
it is almost unramified (cf. {8] §2.8) and symmetric. In this case, the results correspond-
ing to Main Theorems I, III are given in [3] ([a]; Chap. 5 of Vols. I and II; and {b]), and
that corresponding to Main Theorem II is given in (4] ([MT. 4]). Up to commensurability
{for I'), this is the only known example of almost unramified CR-systems which are not
unramified.
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symmetric CR-system w.r.t. (X,0), and ¢: ¥GC be a complex embedding of k,
both fixed once and for all. Let I" be the arithmetic fundamental group belonging
to &2 and e. Our purpose is to give precise descriptions of some inner structures
of & in terms of I’. The Main Theorems I, II, III announced in [CS] will be
restated and proved.

The fields K; (i==0,1,2), L and the groups V,, G{, G,, that are associated with
&, are as defined in §0.2. Thus, K,=kX,), L is the simultaneous Galois closure
of Ky/K, (i=1,2); V,=Aut (L/K,), G; =<V, Vo>, and G,=(G;,¢> (¢: an extension
of the symmetry of K,). Note that all places of K,/k are unramified in L. Re-
call that Y is the complex space of all places L— CU() extending ¥ We
pick up a connected component X, of I, and an isomorphism X,=$ onto the
complex upper half plane. The group I’ is by definition the stabilizer of ¥, in
G,, considered as a subgroup of G, and also as a group of transformations of 2,
{or ). We also choose an extension & of ¢ to an embedding EGC of the algebraie
closure of k, which is compatible with the component X, (see §2.4 (II)). The
choices of X,, the isomorphism X,=9$ and & are not essential. A finite étale
CR-covering *of Z (iee §4) will be denoted as Z7* instead of (£7%, / )y, If
Zx={X¥ S X ?‘f——(f-—) X% is such, then &% is automatically unramified ([CS]
§4) and symmetric (§4.1). The basic objects associated with Z* (resp. T, <ot
and ¢ will be denoted as K¥, L* I% ... (resp. Ki*, L** 3%, -..) with the cor-
responding superscripts.

5.1 The Main Theorem I. For each ¢, let I', denote its stabilizer in

I, |\I".] be its cardinality, and put

H=lre 9; | j=00} .
Obviously, &7 is a I'-stable subset of §. The points of &£ will be called the I'-
points on $. The first main theorem states (ICS] §3.14) as follows.

MaN THEOREM I. Let B(X) denote the set bf all closed points of X that
are ordinary ([CS] §1.4.1). Then the reduction modyp induces a bijection
ir: I\FF~PX) .

As explained briefly in [CS] §3.14, this is a direct corollary of Th. [CS] 8.4.1
(ii). Here, we shall give a more precise explanation. Let £:kGC be as above,
and let PUL/k) be the set of all places L—>kU(co) over k. Embed PI(L/k) into

9 Since all places of K;/k are unramified in L, the valuation rings of such places of
L are either discrete or L itself.
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Y by £—£. Then this embedding is obviously G,-equivariant, and the stabilizer
of ¢ (in G,) coincides with the inertia group I defined in [CS] §3.2. Moreover,
if £c€ 3 is such that its stabilizer G, is non-trivial, then &, is contained in the
image of PIL/k), because in that case, £, cannot be an isomorphism of L into
C, and this implies that & is algebraic (as L/k is one-dimensional). Since 2 is
unramified, PI(L/k; [A]) consists of all & such that |I fl=oo. Sinece (I;:I})=2,
this is equivalent with |[I;]=oco0. Therefore, & —35o£ induces a G,-equivariant bijec-
tion between PI(L/k;[A]) and the space of all those £&;€2 whose stabilizers in
Gy are infinite. By passing to the quotient modulo G,, and by the restriction to
3y (noting that G,\¥~I"\F, canonically, as G, acts transitively on the set of all
connected components of X), we obtain a canonical bijection:

GA\PULIE; [A)~I\o7 .

Therefore, the Main theorem is an immediate consequence of Th. [CS] 8.4.1 (ii).
Here, note that this bijection is independent of the choice of an extension &
of ¢ because, by Th. [CS] 3.4.1 (i), for any £¢ PI(L/k; [A]), every Galois auto-
morphism of the residue fleld £(L) over % is induced from an element of D:.

5.2 More details about Main Theorem II. The Main Theorem II (ICS]
§4.2) states as follows:

MAIN THEOREM II The following categories (i) (ii) (iil) are canonically
equivalent ;

(1) Finite étale CR-coverings (%, /) of &;

(ii) Subgroups I'* of I' with finite indices;

(ili) Finite étale coverings f: X*— X, with X*: connected, such that all
points of X* lying above the special points of X are Fe-rational points of X*.

Note that the equivalence (i)~(iii) is already settled by Th. 4.2.1, without
assumptions of unramifiedness or symmetricity on &2 As for the functor (i) — 31),
it is (as explained in [CS] §4) defined as taking the arithmetic fundamental
group I'* belonging to &%, . But we must now clarify all details of this brief
definition.

First, as for the category (i), if I'*, I'** are two subgroups of I with
finite indices, then Hom (I'**, I'*) is by definition the set of all left I™*-cosets
I'*ry in I' satisfying I'yDyl**. The composite (I*7)o (%), where I'**y ¢
Hom (I***, I'**) and [™reHom (I'**,I'*), is by definition the coset Iy e
Hom (I'***, ['*), In particular, when I'* is a normal subgroup of I', Hom (I'*, I'*)
forms a group which is ecanonieally isomorphic to I"/I*,
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Secondly, we note that the category (i) of finite étale CR-coverings Z7* of
£ enjoys all Galois-theoretic properties, including the existence of a common
Galois closure (in (1)) of a given finite set of objects. These properties are not
so obvious from the definition of (i), but follows immediately from the already
established categorical equivalence (i)~(iii). More precisely, let Z7* (=(Z~ * )
be an objeet of (i). Then the cardinality of Hom (Z*, 27%) is at most equal to
the degree [Z7*:2°] (because of the equivalence (1)~(ii)), and when they are
equal, we call 2°%/2 a Galois covering and Hom (Z7*, Z7%) its Galois group.
Then, again by the equivalence (i)~(iii), (i) contains sufficiently many Galois
coverings of & (in the sense that we can take common Galois closures), and the
usual Galois theory holds* for the* subcoverings of a Galois covering. We note
also that if Z*={X* < X¥—— X#} is an object of (i), and K, (resp. K?¥)
(1=0,1,2) are the function fields of X, (resp. X¥), then X¥F is the integral
closure of X, in K¥, because X¥ is normal and is finite over X,. Therefore, the
functor ® % (denoted by the subseript 7) induces a bijection Hom (27%%, 2Z7%)
~Hom (fé; ik 27%) for any objects 27, Z** of (i), where Hom (2%, &%) is
the set of all finite étale morphisms Z7%%->27%. In particular, Z7*/2" is a
Galois covering if and only if K¥/ K, (i=0,1,2) are Galois extensions and when
this is so, their Galois groups are canonically isomorphic.® If K, is a fized
algebraic closure of K,, then (i) is equivalent with its full subcategory consisting
of all those 2% with which K7 (¢=0,1,2) are subfields of K,. We shall replace
(i) by this equivalent but “smaller” category. So, for each &Z7*, K¥ (1=0,1,2)
are assumed to be embedded in K.

Now we shall define the functor (i)—> (ii) in a precise way. Let L be the
smallest Galois extension of K, such that L/K; (i=1,2) are both Galois extensions
considered as a subfield of K,. TFor each Z°*, consider also the smallest Galois
extension L* of K¥ in K, such that L*/K¥* (1=1,2) are both Galois extensions.
We know then that L*¥=L-K¥ (§4.7). If 2%/&2 is Galois, then L*/K; (=0, 1, 2)
are also Galois extensions. Let I, denote the composite of L*, where &£ runs
over all objects of (i). By the above remark on (i), L is the composite of L* for
the Galois coverings & */&” in (i), so that L/K; (:=0,1,2) are Galois extensions.
Put V,=Aut ([/K,) (i=0,1,2), and let Gi be the subgroup of Aut (L/k) generated
by V. and V,. For each &%, let * be the involutive automorphism of K¥ cor-
responding to the symmetry of &Z*. Then, by Prop. 4.1.1 and the uniqueness of
symmetry ; §1.1, these ¢* for the various Z*% are compatible with each other,

% Although they are the duals of each other, the geometric action is from the left
and the arithmetic action is from the right.
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and define an involution of UK3¥. Extend this involution to an automorphism
i of K,. Then 7 leaves L, invariant, as it leaves L* invariant. Call 7 the restrie-
tion of 7 to I, and let @p be the subgroup of Aut (I/k) generated by @;" and 7.
Note that G, does not depend on the choice of an extension 7. We have @G, Gp)
=2, since 7?€ G; and since the restriction to the Gy-invariant subfield L induces
the surjective homomorphisms @;, — G, and 5; —G5. Similarly, for each £7*, put

Vi=Aut (L/KH (i=0,1,2), G =< V¥ V5, and Gr=<(G¥*,7>. We claim that
(5.2.1) Gy : GH=(G} : GrHy=(V,: VH=[2*: 2]

(¢=0,1,2). To check this, consider the surjective homomorphism @;‘ — Gy obtained
by the restriction to L. Then the image of @;"* is r(G¥) (§4.7), and @;‘.‘* NAut (£/L)
=Aut (L/L*) by the injectivity of  (§4.7). Therefore, (G : G¥*)=(Gt : r{(GE)) X
[L¥: L}=[&7*: & (cf. Cor. 4.7.8). The rest of (5.2.1) is obvious. Since V,V*
=V. (=12, we have V,-G¥*=G; and V,G¢=0, Therefore, (5.2.1) gives
ViﬂC}?:V;" (¢=0,1,2). When &% is a Galois covering of &z, 5;’,‘ is a normal
subgroup of @, (as V, normalizes G¥), and the quotient 5;,/@;" is canonically
isomorphic to V,/V*, the Galois group of &Z£7*/2°, Thus, we have a canonical
isomorphism

(5.2.2) Aut (2 2°) =G, G*

when 2%/ is Galois.

Now let ¥, * and 3, be as at the beginning of §5, and p:3*—> 2 be the
projection. Then p is a locally isomorphic [L*: L]-to-1 mapping, and induces an
isomorphism on each connected component of 3*. There are [L*: L] distinet
connected components of 2* lying above %, and when 27%/.2° is Galois, Aut (L*/L)
acts simply transitively on these components. Now let 5 be the set of all places
L-c¢ U(c0) extending &. Then ¥ is the projective limit of X*, and has a unique
complex structure with which the projections 5 -— 3* are local isomorphisms for
all &%, The projection 5 — I* induces an isomorphism on each connected com-
ponent of 5. Let Aut(L/k) act on 5 as £-gf (Fe$, g€ Aut (£/k)), where
(95)@)=E(@®) (@ L). Then the action of each element of Aut (F/k) is an analytic
automorphism of 5. For each 2~ *, 5;" acts transitively on the set of connected
components of 5, while its subgroup Aut (L/L*) acts simply transitively on the
set of all those components of I lying above a given component of I*,

Now fix a connected component 5, of 5 lying above 3, and let " be the
stabilizer of 3, in G,. Then by the above remark on the action of Aut (£/L*)
applied for £7*=2, the surjective homomorphism Gy — G, defined by the restrie-
tion to L induces an isomorphism ' I'. For each &%, put [*=G*n I, which
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is the stabilizer of %, in @;k, and call 7"* the isomorphic image of I"* under the
isomorphism I~ I". Then since G,=G*-I, we have (I": I"=([': "*)=(G,:G¥
=[Z7%: Z°]. The association Z27* — ['* defines the “object-side” of the functor
(i) — @i). To define the “Hom-side” of the functor (i) — (i), let &27%, 2Z7** be
two finite étale CR-coverings of &2, with the function fields K7, K¥cK, (i=
0,1,2), respectively. Let L* V¥ G¥ I'* be as above, and L**, V¥ Gf*, I'** be
the corresponding objects for &Z27**. Take any « € Hom (27, Z7%), £=(hy, ho, h2).
Then the morphism %4,: X¥*— X¥ induces a field-embedding KF¥GK§* over K,
which extends to an element %, of V,. Since G,=G¥[*, we have %€ G with
some ¥ e, and the coset /*7 is well-defined by <. Let 7 be the element of I
corresponding with 7. Then the coset '™y belongs to Hom (I'™**, I'*), because
Iy >y** ag can be checked easily by using (KH)%cC K¥* (1=0, 1, 2) and *5,=0,**
on K¥ (the compatibility of symmetries). The association .~ — I'*y gives the
Hom-side of the functor (i) — (ii).

Now, to prove that the functor (i) — (ii) is an equivalence, we first note that
when Z27%/2° is Galois, I'* is a normal subgroup of I" and the functorial map
Aut (Z7%/27) — I'/I"* is an isomorphism. In fact, we have shown that if Z7%/2
is Galois, then G is normal in G, and Aut (2%/2°)=G,/G¥ (5.2.2). Therefore,
I'* is normal in I", and the composite of (5.2.2) with the eanonical isomorphism
G,/G¥ ~ I'/I"™* gives an isomorphism

(5.2.3) Aut (™2 ) I'iT™*,

which, by definitions, coincides with the map given by the functor (i)-— (ii).

Now, since the category (i) has sufficiently many Galois coverings, it remains
to prove that for every subgroup I'* of I” with finite index, there exists an
object Z7* of (i) which corresponds with a I'-conjugate of I'*. Moreover, it
suffices to prove this in the case where I'* is contained in I'*=I"NG{. For this
purpose, let &+ ={X;} «ﬁ-—X & —?z» X3+t be the CR-system belonging to Case 2
defined from & as in §1.2. Recall that £27"=2" when & belongs to Case 2,
and Z7*=2"R 0, (the twisted base-change) when £ belongs to Case 1. Then
the subgroup Bf I corresponding to &£°* is nothing but I'*. Now, consider 7™
first as a subgroup of Gy and put 4,=I'*NV, (1=0,1,2). Then I'* is the free
product of 4, and 4, with amalgamated subgroup 4, (Cor. [CS] 2.9.6). If we
consider I'* as a subgroup of PSL,(R) (via an isomorphism 3,=9), then 4, (1=0, 1, 2),
are fuchsian groups of the first kind, and the quotients 4,\9 can be identified
with the compact Riemann surfaces corresponding with X, = X; ® C, where &
is with respect to an embedding 0,GC induced from &. ”
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Now let I'* be any subgroup of I with finite index. Then, by Prop. 2.4.5,
we have I'*=4,I"*. Therefore, if we put 4¥=I*N4, (t=0,1,2), then the system
of subgroups

A¥ —— fF —— 1%

Lo

Al (_——AO———»AZ

(—: the inclusions) satisfies the relations 4,=4,4% and 4¥=4,N4¥ (1=1,2). There-
fore, the quotients of $ by these groups define a connected finite étale covering
(&% £ of Z+RC. By Theorem 4.2.2 and Remark 4.6.13, (£ /¢ is
obtained from a finite étale CR-covering (2%, /) of &2 by the base change
® C. Since I'* is generated by 4¥ and 45 (Prop. 2.1.5), we can check easily that
the group associated with (Z7*, / ) is a I'-conjugate of I'*. This completes the
proof of the equivalence of the functor (i) — (ii).

5.3 Recollection of notations, and Main Theorem III restated.

This continues §i.2 directzky, but let us recall the necessary notations.

Let 2*={X¥ <~ X#—> X4} be any finite étale CR-covering of Z. As
in §5.2, the function fields K¥=k(X¥) are embedded in K,, and the simultaneous
Galois closures L, L* are taken inside K,. Recall that L*=L-K¥. As before, I
is the composite of L* for all 2%, and 5 is the space of all places L — CU(c0)
extending . Put V.=Aut (L/K,) (:=0,1,2), and let G be the group of auto-
morphisms of I, generated by V,, V, and a symmetry Z, acting on £ from the
left. For each &%, put Vi=Aut ([/K¥ (:=0,1,2), and denote by G¥ the sub-
group of G;, generated by V¥, V#and a symmetry ¥,

Now fix a connected component 5, of 5 lying above 3, and let I° be the
stabilizer of 5, in @p Then the surjective homomorphism @,—)G defined by the
restriction to L induces an isomorphism "~y I". For each 2%, put PR G*ﬂf
Then the isomorphic image of /™ in I' (denoted by I'*) is the subgroup of I’
corresponding with &27*. If I¥ is the connected component of X* lying below 5,
then I'* can be identified (via the restriction to L) with the stabilizer of 2¥ in G¥.

Now, identify Z¥ with 2, via the projection, and also with the complex upper
half plane . For each €9, let I, (resp. I'¥) be its stabilizer in I" (resp. ['™*).
By definition, &7 is the set of all points r € such that |I,|=co (or equivalently,
[F¥|=c0). Recall that I'., I'¥ (t€5) are free cyclic. Let f: X*— X be the
finite étale covering of X corresponding with &%, and B(X) (resp. P(XH) be
the set of all closed points of X (resp. X*) that are ordinary w.r.t. & (resp.
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&%), Let ir (resp. %) be the canonical bijections iy : I N\F=~P(X) (resp.
trx s DR\ ~ P(X*)) established in Main Theorem I (see [CS] §3.14, or §5.1).
Now, the Main Theorem III of [CS] states as follows.

MAIN THEOREM IIT (i) The diagram

canon. f

mer L BxX)

18 commutative;

(ii) when I'* is a normal subgroup of I', the natural action of I'/['* on
I'*\& and the action of Aut(X*/X) on P(X*) corresponds with each other
through iprs and the canowical isomorphism I'/I*=Aut (X*/X) of Main Theorem
1L

(iii) 1n the situation of (i), the Frobenius automorphism of PF¥=ip(I"*1)
(e &7) over X is given by [y, where y. is the generator of ['. such that
o(r.)<0 (see §8 for d).

5.4 Proof of Main Theorem III. The first two statements are obvious
from the definitions of ir, ¢r+ and of the canonical isomorphism I'/I"™* = Aut (X*/X)
(§5.2). So, it remains to prove the last assertion (iii). For each £e 3, let &
(resp. &F) denote the geometric points of X, (resp. X%,) corresponding to the re-
gtrictions of & to K, (resp. K¥), and by &, (resp. £%) the geometric points of X
(resp. X*) defined as the unique specialization of & (vesp. &) on X (resp. X%).
Now let = be a point of &7, and & be any point of 5, whose projection to I¥
corresponds with . We may assume that &, is the canomtical lifting of &,
because we may replace « by yz (y&€ ') in proving (iii) and because each [-orbit
in & contains an extension to L of such a place of K, that is the canonical
lifting of an ordinary geometric point of X (see [CS] §3; esp. 3.15). Let r : be
the stabilizer of &€ in I*, which is isomorphic with I', (via the restriction to L),
and 7, be the generator of r + corresponding to 7.. Since @,,z(?;“ V., we may put
Fo=F* 17, with g*e @f, #,€ V.. Since the automorphism of X*/X, corresponding
to the class of 7. in I'/I"* is the one induced by #,, it suffices to prove that (B.8)F
is the ¢%th power of £, where d is the degree of &% over F,. But since %=
g*¢&, it suffices to prove the following assertion:

(5.4.1) (F*8)E is the q%th power of &% .

To prove this, let 77 (resp. 7 *) be the tree associated with 27 (resp. Z£7%).
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Then .97 and Z7* can be identified with each other in a natural way through the
homomorphism 7 : G¥ > G, of §4.7, because of Prop. 4.7.2. Moreover, if p (resp.
p*) denote the rivers on 9 (resp. 7 *) associated with the place & restricted to
L (resp. L*), then p and p* obviously correspond with each other through our
identification F~.9*, Now since &, is the canonical lifting of &, and since
8(r=")=—08(rc)>0, the p-flow between K, and K7 =K is given by

K>+ > K<'=K?",

—————

d

{Note that x%¢,)=¢,, and use Prop. 8.5.3.) Therefore, by the above remark, the
p*flow between K3 and K¥* is given by
K¥— oov o KF0*

——

d
But this exactly implies the assertion (5.4.1). q.e.d.

5.5 The distorsion ratios. Let 25 ¢, --- be as at the beginning of §5, and
PIU(L/E) be the set of all places &: L —>kU(oo) over k. Take &€ PUL/K), let &L)
denote its residue field, and I, denote the (transcendental) inertia group. Since
£ is unramified, & corresponds with a discrete valuation of L. Take any prime
element te L for &, and put

5.5.1) Any=&'ft) (ely.

Then i(y) is independent of the choice of ¢, and 2 gives a homomorphism of I; into
§(Ly*. Now suppose that & belongs to PIUL/k;[A]), i.e., |I:]=c0; and let = be
the point of &# corresponding with £ via z. Then I'.=I;, and each re I, induces
a scalar-multiplication on the tangent space of § at z. This scalar is the residue
class of &'/t with respect to the place L — CU{wo) determined by r, and hence it
is equal to £(A(y)). In other words, A(y) (e I',) is determined by the equation

(552 %:—;— s 22,

where 2z is a variable on 9, and 7 is the complex conjugate of z. If y= (g 2), A7)
is given by

(5.5.3) AN =(ct+d)(ez+d)* .

Following Eichler, we shall call A(y) the distorsion ratio of y. The purpose
of §5.5 is to prove the following

THEOREM 5.5.4 Let £c¢ PULJk; [A]), and &: I, > Z be the homomorphism
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determined by the river associated with &. Let 2: I.— &)< be the homo-
morphism given by the distorsion ratio. Then

(i) Ak,
and
(ii) ord, A()=v-8(1) (rely,

where v is a positive integer depending only on 2 (see below), and ord, is
the normalized additive p-adic valuation of k.

COROLLARY 5.55 For each yeI;, we have 3(;)<0 if and only if ord, A
<0 (cf. Main Theorem III (iii)).

The definition of v. Let v, v,, w;, w, be the discrete valuations of K.,
K., K,, K,, that are defined by the irreducible curves X, X, I, *IT on the
special fibers of X,, X;, X,, X,, respectively. Let v be the exponent of the
different (“Differente”) of w, in K,/K,. Since the residue field extension here
is inseparable, v is a positive integer. Since 2° is symmetric, v is also equal to
the exponent of the different of w, in K,/K,. When =2, we have v=1 (cf.
[5).

In other words, let a; (¢=1,2) be any differential of K,/k such that the re-
striction a,; to X is neither co nor the constant 0. Then

(5.5.6) v=ord; (¢¥(a)/of(ay) ,
where ¢F (i=1,2) are the pull-back mappings associated with O

ProoF oF THEOREM 5.5.4. (i) Let D; denote the (transcendental) decomposi-
tion group (ef. [CS] §3.2). Then I; belongs to the center of D: because the
homomorphism d: D;—> Z determined by the river associated with £ is injective
on I.. Therefore, A(y)=2g 'rg) for any yel; gecD;; in other words, i(y) is
invariant by the Galois automorphism of L./k induced by g. But as g runs over
D, we obtain all Galois automorphisms of Lk (Th. [CS] 8.4.1 (iii)). Therefore,
A7) belongs to kx.

(i) Since I;=¢Z, and 7 — ord, A(}), y = v-6(;) are homomorphisms of I: into
Z, it suffices to prove (i) for the generator 7 of I, such that 4()>0. Put () =l.
Then there exists A€ 97° such that K=K} is the I-th point on the downstream
of K, with respect to Riv(¢). Let Y (4, B) be the normal scheme defined in
§8.4, and { be the geometric point of Y (4, B), corresponding to the restriction
of ¢ to K Kz, Let £, (resp. &5) be the projection of £ to X, (resp. Xz). Then
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since Kz=K} (rely), &, and &z correspond with each other through the iso-
morphism X, ~ X, induced by 7, and we have X&,)=¢&,. Therefore, £, cor-
responds with the canonical lifting {on X;, or X;) of an ordinary geometric
point of X; in particular, £, is a k,rational point. Consider the local ring
0=0yx,,z,,, Where &, is the specialization of &, on (X,),. Since @ is regular,
its prime ideal P corresponding to &, (which is of height 1) is principal. Let ¢,
be a generator of P, and put tz=ti e K;. Then, since L/K, is unramified, £,
is a prime element of &; hence

(6.5.7) AP)=E&{alt)=(ts/tDr=(dts/dt ) ,

where the subscript { indicates the residue class (the functional value) at {. We
note here that if = is a prime element of %, then (r, t,) is the maximal ideal of
0, because &, is a k-rational point. Therefore, (dt,), does not vanish at Z;
hence di, does not vanish at any closed point of (X,), having {4 as a specializa-
tion. Now put

(6.5.8) w=n"*{dts/dt,) ,

and consider w as a function on Y (A, B). Then our goal is to prove that
ord, (w;)==0, or equivalently, that w and w™' are both finite at &, (i.e., belongs
to the local ring at ;). Since Y (4, B) is normal, this is also equivalent to that
w and w™* are finite at every (scheme-theoretic) point of Y (4, B) which is of
codimension 1 and has {, as its specialization. First, by Prop. 8.4.1, there is a
unique such point on Y (A4, B),, the generic point of 7I'. But we obtain easily
from (5.5.6) that ord:(dtz/dt,)=1l; hence ord,;«w)=0; hence both w and w™ are
finite at the generic point of II*. Secondly, let &’ be any closed point of
Y (A, B), having , as a {geometric) specialization, and let &) (resp. &%) be its
projections on X, (resp. Xz). Then &, (resp. £;) specialize to (£,), (resp. (£z)s).
Therefore, as we noted above, dt, (resp. dtz) are finite and do not vanish at &,
(resp. £z). Now, since the projections Y (4, B) > X,, > Xz are unramified on
Y (A4, B),, this implies that dt, (resp. d¢s) are finite and do not vanish at ¢’.
Therefore, w and w™ are both finite at ¢’. Thus, w and w™! are finite at every
point of Y (A, B), codimension 1 and having {, as a specialization. Therefore, w
and w™! are finite at ¢. This settles (ii). q.e.d.
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