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§1. Introduction.

In this paper, nonlinear eigenvalue problems with nonlinearity not only in
the equation but also in the boundary condition will be studied and the bifurca-
tion of nonnegative solutions will be shown to take place.

Let D be a bounded domain in R® with the smooth boundary 9D. We are
concerned with the existence or the nonexistence of the positive solution u=u(x)
of the following problem (P,) with a real parameter 1:

{ Lu=2f(x,u) in D,
Bu=g(x, u) on oD.

(P

Here L is a linear elliptic partial differential operator of the second order
and B is a possibly oblique linear boundary operator of the first order. L and
B will be specified in §2. f(x, z) and g(x, z) are nonlinear functions in x&D and
z€ R* satisfying assumptions to be given in §2.

Such problems have been treated with the monotone iteration method by
Shampine and Wing [8], Simpson and Cohen [9] and several other authors, but
they always assume the boundary condition is homogeneous. While we adopt
the nonlinear term in the boundary condition with some devices in the choice
of lower solutions and with the aid of theorems in Amann {27, we have the
following results concerning bifurcation phenomena.

Suppose that g, is the smallest eigenvalue of the linearized problem of (P),
namely, the linear eigenvalue problem for the first variational equation at u=0.
Then we can show that for 1<(0, g,] there exists no positive solution and, on
the other hand, that for 2&(y,, co) there exists a unique positive solution, where
a positive solution means a solution which is positive everywhere in D=DuUaD.

In §2 we shall introduce the assumptions on f{x, z) and g(x, z) together with
some preliminary lemmas. §3 will be devoted to the statements and proofs of
our main results. In §4 similar results will be shown under some modified
assumptions on f{x, z).
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his valuable advices and continual encouragements.

§$2. Assumptions and lemmas.

Let L be an elliptic differential operator defined by

9 0
Lu=— 1;21 T(aij(x)a—JQ)u%-ao(x)u
with real coefficients a,;(x)eC*4D) and a,(x)eC*(D), a being subject to 0<a<1.
The coefficient matrix (a;,(x)) is symmetric and uniformly positive definite.
Denote by B an oblique boundary operator defined by

0
Bu:,@(x)u—}—a—f
with a coeflicient B(x)eC'*%aD). Here %% is the conormal derivative with
respect to L, i.e.

Ju & ou
o ~i’j2:11)i(x)aij<x)§j‘

where v(x)=(v,(x), ---, v,(x)) is the outward unit normal vector to aD.
Moreover, we suppose that either of the following two conditions is satisfied :

(i) a(x)=0 in D and Bx)>0 on 9D,

(ii) a{x)>0 in D and B(x)=0 on aD.

The assumptions on the nonlinear terms f(x, z) and g(x, z) are as follows:
(1) flx, 2)eCHDxR*) and f,(x, 2)eC*Dx R*) where R*=[0, o).
(£2)  flx,00=0 in D.

(£3)  F£x,00>0 in D, and for each fixed x,
J:(x, z) is strictly decreasing with respect to ze R*=(0, o).

(£.4) There exists a positive constant M such that f(x, 2)<0 holds good
for any (x, 2)€DX[M, o).

(gl) glx, 2=C**@DXR"Y).
(g2 glx, =0 on dD.

(g3)  g.(x,0=0 on dD, and for each fixed x, L(YZ’—Z)— is nonincreasing
with respect to z€R*.

For the convenience of later arguments, we introduce an auxiliary function

g(x; 2z, w):y:fz(x, sz-+(1—syw)ds
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defined in DX R*XR*. Then it is easy to verify the following properties of
qlx; z, w):
(q.1) glx:z, )eCHDX R*< RY) .
@2 flx —flr, w)=q(x; z, wiz—w) .
(q.3) If 222,20 and w,=w,=0, then
g(x; zy, w)=q(x; 25, w),
where the equality holds if and only if z;,=z2, and w,=w,.

DEFINITION 2.1. A function u=C*D) is called an upper solution of (P,
when u(x) satisfies the following inequalities :

Lu(x)z2f(x, u(x)) in D,
2.2 {

Bulx)zg(x, u(x)) on oD.
Similarly, a lower solution is defined by reversing the inequalities in (2.2).
We claim the following

LEMMA 23. Suppose that there exist an upper solution G=0(x) and a lower
solution a=a(x) of (P with 0=a(x)<a(x) in D.

Then there exist a maximal solution 9=0(x) and a minimal solution T=70(x)
of (P) in the following sense: for any solution v=v(x) of (Pp) with #x)=v(x)=
a(x) in D, we have #(x)<v(x)<0(x) in D.

ProOOF. Putting m,=max @(x) and m,=min #(x), we choose a positive num-
D

z€D ze
ber £ such that

Aflx, 2)-+2>0 in DX[m,, m,]

and
g.(x, 2)+02>0 on 0Dx[m, m,].

We define a nonlinear transformation T by setting v=Tu when

Lov+Qv=2f(x, )+ L2u in D,
2.5) {
Bo+Qu=g(x, wy+L2u on 0D.
Since the functions 2f(x, z)+£2z and g(x, 2)+22z are increasing in z, 7 is mono-
tone in the sense that 1,(x)<u,(%) in D implies (Tu)(@)=<(Tu)(x) in D.
Now, we define {0,},2, and {7,}.,2 by the iterations

l

(26) 790 ﬂ 3 2’)v+1:"rf}v (3):0, 17 27 “')

and

(27) 77,+1:TZ—/9 (D:O, 1) 2; ) >

2
=

I

N
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respectively. {0,} forms a decreasing sequence. In fact, we have
(L+D)00—2,N20  in D,
(B+2)(@o(x)—0,(x)=0 on 9D,
which implies, by virtue of the maximum principle,
7,(0) <0(x) in D.

Hence we have by repeated application of the monotone operator T that

P00, in D (=012 ).

Similarly, we can show that {#,} forms an increasing sequence. Also we notice
that

7,(0<0,(x) in D.

Hence it is obvious that 7, and 7, converge pointwise to bounded functions 9
and 7, respectively. By means of the L,-estimate in Agmon-Douglis-Nirenberg
[17 for the solution of the elliptic differential equation (2.5), we have, for any

n
b= 1—a

s

28 N0illyr iy CUA, 20 F200 2 pem+lg (-, 220 151p00) T 10usll o)
=C+Gill gC, ﬁu)‘f‘QﬁvHW;w)

§C§+C§“9vnw;cm ,

where F(x, z) is a function which belongs to Cc(Dx R*) and coincides with
g(x, 2) on 9D X R*. From a well-known theorem concerning the Sobolev spaces (see
Agmon-Douglis-Nirenberg 1], for instance) it is possible to choose a constant
C, such that

. . 1 .
2.9) 0. WD) =Gl Loy 2C; I UDHW%(D)

1 .
§C5+—2‘C—§“vunwé(p) (DZO, 1) 2; ) .

Substitution of (2.9) into (2.8) yields

. 1
(210) ”Uv+l IIW%(D)‘ECGT—Z—“V‘J”W%(D) ’
which implies that {9.} is bounded in W?%D) and hence is bounded in cr«(D),
by virtue of the Sobolev imbedding theorem. Applying the Schauder estimate,
we see that {9,} is bounded in C¥«D). By Ascoli-Arzeld’s theorem {,} con-
tains a subsequence convergent in C¥D), while {#,} converges pointwise to 7.
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Therefore, the whole sequence {#,} converges to o in C(D) and 7 is the solution
of (P,), as is seen by letting n go to infinity in (2.6). Since the statement con-
cerning {v,} can be proved quite similarly, we may omit the proof.

For any given solution v=uv(x) of (P;) with #Z(x)<v(x)<a(x) in D, we can
show, by repeated application of T and by noting Tv=v, that
2.1 (%) =v(x) <0,(x) in D.

Letting v go to infinity, we obtain
H)=v(x)=o(x) in D. Q.E.D.

For the purpose of construction of a positive lower solution of (P,) in §3,
we prepare the following

LeEmMMA 2.12. Let 0 be a nonnegative number and let p; denote the smallest
eigenvalue of the following eigenvalue problem (Es):

L == z ,0 3 D)
&) { p=pfx, Ny  in

(B4-0)p=0 on 0D .

Then, p; is a simple eigenvalue and it is possible to take an eigenfunction pz=
0s(x) associated with p; which is positive in D. Moreover, p; tends to p, as o
tends to zero.

PROOF. We define an operator K;: C4(D)—C(D) by setting Ksp=u when

{ Lu=f,(x, Q)¢ in D,
(B+0)u=0 on oD.

(2.13)

Then K; is seen to be completely continuous and strongly positive in the sense
of Krein-Rutman [5] with respect to the cone of nonnegative functions. And
the first claim of the lemma is obvious in view of a theorem in Krein-Rutman
5] concerning these operators.

Setting uy=K,¢ and u;=K;p for goEC“(D), we have

L{us—ug)=0 in D,
2.14) {

(B+5)(u5_u0):_5u0 on oD.

Applying the Schauder estimate to the boundary value problem (2.14) and to the
boundary value problem defining u,=K,p, and combining the resulting inequalities,
we have

[Kasp—Kopllgen =Ciollol cacsy ,

where C, depends neither on J nor on ¢. Since K; converges to K, in the
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operator norm, it is obvious that g; tends to z, as J tends to zero.

Finally we state the generalized maximum principle in Protter-Weinberger
[4], which will be used repeatedly in the proof of the uniqueness of the positive
solutions.

LeEMMA 2.15. Let u(x)eC¥D) and w(x)eC¥D) such that
(L+hux)=0  in D
LAhD)wxn=0 in D,
For some function h(x)eC(D), and that

w(x)>0 in D.

Then, z)(();)) cannot attain a nonnegative maximum in D unless it is constant. If

W) atz‘azans its nonnegative maximum at a poini x, 0D and if wG) not
u

constant, Ey ( ” ) . >9{.

$3. The bifurcation of the positive solution.

In this section we will show that for 2€(0, g,] the nonnegative solution of
(Pp is only the trivial one u%,=0 and that for 1=(y,, o) there are exactly two
nonnegative solutions of (P, : one is u,=0 and the other is v;=wv,(x) which is
positive in D.

LeMMA 3.1. Assume that v(x)ecz(ﬁ) 1S the nonnegative solution of (P;) for
2=0. Then we have
0=v(=M in D,

where M is the constant n ({.4).

PROOF. Assume that »(x) takes the maximum M, with M,>M at x,D. If
x, belongs to D, then we can take a neighborhood U of x, where v(x) is greater
than M. Then we have, by ({.4),

3.2) Lo(x)=Af(x, v(x))<0 in U.

By virtue of the maximum principle, we can conclude that »(x) is constant in U

and hence that
Le(x)=L(M)=a(0)M,=0 in U,

which contradicts (3.2).
Next, if x, belongs to 4D, ?(x) cannot remain constant near x, which is
obvious by the same reasoning as above. Hence by the maximum principle, we
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have

33) Bu(xg)= gaoco)zwmu-g—z~ >0.

=29

On the other hand, we have by (g.2) and (g.3),

Bv(xg)=g(x, M)=0,
which contradicts (3.3).
After all we have shown that v(x) does not exceed M in D. Q.E.D.

THEOREM 34. For 2<(0, pol, the nomnegative solution of (Py) is only the
trivial one 1u,=0.

PROOF. Assume that there exists a nonnegative solution v=uv(x) other than
1,=0, then

(3.5 Lv(x)—2f(x, v(x))=Lv(x)—2g(x ; v(x), Ov(x)
=0 in D.
For ¢, in Lemma 2.12, we have

3.6) Loo()—2Ag(x ; v(x), 0)pelx)

=(po—Nq(x; 0, o)+ 2{g(x; 0, 0)—qlx; v(x), Ot @o(x)=0 in D,
where the strict inequality holds if 2<y, or v(x)>>0. Now we can apply Lemma
2.15 to v(x) First, assume that v(x)

SDO(X) ) @0(.7()
D for some positive constant 8. Then the multiplication of (3.6) by B yields

is constant in D i.e. v(x)=PBp(x) in

Lo(x)—2g(x ; v(x), Ov(x) >0 in D,

which contradicts (3.5).

Next, assume that ;((x)?) is not constant and attains its maximum at x,=
0

0D, then we have by Lemma 2.15,

0 v
. B >0.

37 = o Noes

On the other hand, by (g.2) and (g.3),
1 ov v(xo) 8990

8 /v
w0

s=z0 @olie) W lemzo  0f(xg) Oy le=zo

_ 8l vl) o
(,Do(x)
which contradicts (3.7).

Thus a nonnegative and non-trivial solution v cannot exist. Q.E.D.
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THEOREM 3.8. For 2&(pg, ), there exist exactly two nonnegative solutions of
(Py): one is uy=0 while the other one v;=v,(x) is positive in D.

Proor. By virtue of Lemma 2.12 it is possible to take a positive number
§ such that p; is smaller than A. Then it is also possible to choose a small
positive number ¢ such that
(3.9 (ua—Dglx; epa(x), O+ pa{g(x; 0, 0)—qlx; e@a(x), N =0 in D,

(3.10) o LEeel) o o1 5p
£0s(x)

and

3.11) 0<eps)=M in D.

Now, we can take #(x)=M and #(x)=ep;(x) as an upper solution and a lower
solution of (P;), respectively, with #(x)<#(x) in D. Hence Lemma 2.3 asserts the
existence of solutions #(x) and 9(x) of (P with

I<a=ox) =) =wx)=M in D.
After an easy calculation we have

{L—2q(x; o), 2N} P (D) —8(x)=0 in D
and
{L—Ag(x; 9(x), 2(x)}0(x) >0 in D,
D) —9(x)
o(x) a
ment as in the proof of Theorem 3.4 that 9(x) coincides with #(x) in D. Hence-
forth we shall denote this positive solution by v;=v(x).
It remains to prove that the nonnegative solutions of (P; are only u, and
v;. Let v=v(x) be a nonnegative solution of (P;) which vanishes at some point

in D, then we can derive from Lemma 3.1 and Lemma 2.3 that 0=v(x)=vy(x) in

D. Hence,

whence we can apply Lemma 2.15 to Then it follows by an argu-

(L—2g(x; vi(x), O(—v(xN=0 in D
and
(L—2q(x; v:(x), 0w x)=0 in D.

—v(x)
_ vi(x)
that v(x) vanishes everywhere in D. Next, let w=w(x) be a positive solution of
(P2.

By an appropriate choice of ¢, we can assume that the lower solution #(x)
=ep4s(x) used above doesn’t exceed w(x) in D. Then, by Lemma 3.1, we have

Thus it is possible to apply Lemma 2.15 to . Then it is easy to show

a(x)=w(x)=a(x) in D.



Bifurcation of positive solution 9

And, by Lemma 2.3, w(x) must coincide with vx(x) in D. Q.E.D.

REMARK 3.12. If we define a mapping z(4): g, c0)—C¥D) by T(Z)"—‘—‘U;
(2> o) and 7(po)=0, then z(4) is continuous.

REMARK 3.13. Theorems 3.4 and 3.8 can be extended to the nonlinear eigen-

value problem
Lu=2f(x, u) in D,
(P {

Bu=2g(x,u) on oD,
with the same results.

§4. Some modifications.

Under some modified assumptions on the nonlinear term f(x, z) we can still
show the existence and uniqueness of the positive solution of (P,).
Firstly, we replace the assumption (f.2) by the following one:

(£.2) fx,00>0 in D.

Then u,=0 is no longer a solution of (P;), but we have the following

THEOREM 4.1. For any positive A, there exists a unique nonnegative solution
vi=0v(x) of (Py), which is positive in D.

PROOF. We can take #(x)=M and #(x)=0 as an upper solution and a lower
solution of (P,), respectively. Then the existence of the maximal solution 7=
9(x) and the minimal solution #=3(x) follows from Lemma 2.3. Under the as-
sumption (f.2), we can show by the maximum principle that #(x) is positive in

D and hence that #(x) is so. We can easily derive that

(L—2Ag(x; Dx(x), 2LONOAx)—D())=0 in D

and
(L—2g(x; 02(x), 0L0))0(x)>0  in D,
which makes it possible to apply Lemma 2.15 to 2&3(—){)& Thus we have

that 9(x) is equal to #(x) in D and we denote this solution by v;=v,(x). Let
v=v(x) be any nonnegative solution of (P;), then we have

O=a(x)<v()=<u(x)=M in D,

hecause Lemma 3.1 still remains true. Hence by Lemma 2.3 v=w(x) is nothing
but v;=v,{x). Q.E.D.

Nextly, we replace the assumptions (f.2) and (£4) by (£2) and the following
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(f.4), respectively :
(£.4) For each fixed x, f(x, z) is nondecreasing with respect to z&R"*.
Then we have

THEOREM 4.2. Concerning the nonnegative solution of (P,), either of the fol-
lowing two statements holds under the assumptions made above.
() For any positive A, (P;) has a unique nonnegative solution v,=vy x) which
is positive in D.
(I There exists a positive number p, such that for A<(0, py), (P2 has a unique
nonnegative solution v,;=vy(x) which is positive in D and Jor A= (py, o0), (Py)
has no nonnegative solution.

Proor. Take a nonincreasing function 7(z)€C%R) such that y(z) vanishes
for ze(—,0] and y(z) is equal to —2K for z&[1, o), where K=max f,(x, 0).
reD

Putting j(z)= f:r(s)ds and then setting j(z)=j(z—7») and f{x, 2)=f(x, 2)+j.(2)
for positive r, we can easily see that f,(x, z) is equal to f(x, z) on Dx[0, 7] and
that f.,(x, 2)=/,,(x, 2) on DxR* if r,=r,. Moreover, f,(x, z) satisfies the assump-
tions (f.1), (£2), (£.3) and (f.4) with a suitably changed M. Let (P;,) denote the
problem with f.(x, z) in place of f(x, z) in (P,), then according to Theorem 4.1,
a unique positive solution v;,(x) exists. It is obvious that »,=7, implies that
V2 (¥)20;,,,(x) in D. Hence it follows by an argument similar to the proof of
Lemma 23 that if {vz,},5 is bounded in C(D), then limuv,, exists and it is a

e
solution of (P;). Also, it is a simple task to prove that this solution is the uni-
que nonnegative solution of (P;) which is positive in D. Thus it is enough to
consider the boundedness of {v;,},~. To this end we put

#:=sup{A=0] {v;,} >, is bounded in C(D)} .

If py==--o00, the first alternative (I) of the theorem holds.
In case of the finite g, we first show that g, is positive. Let ¢=¢(x) be
the solution of the problem
{ Le=1 in D,

Be=0 on 4D,

and choose a positive number e, such that e,f(x, ©(x)) does not exceed 1 in D.
Then ¢(x) is seen to be an upper solution of (P;,) for (2, )0, eg X R*. There-
fore, u#; cannot be smaller than &, and is positive.

If (P;,) has the positive solution v, =v;,(x), vy, is naturally an upper solution
of (P;,) for (2, »=(0, ;)X R*, and hence (P;) has a positive solution. We have
shown that the second alternative (II) of the theorem takes place unless M=
oo, Q.E.D.
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