On the finite element method for Au-+pu—fix, u)=0

By Akira MIZUTANI

1. Introduction.

In this paper we shall study the finite element approximation of a positive
solution of the following semi-linear elliptic problem with the Dirichlet boundary
condition :

(1.D Autpu—flx,w)=0 in £,
(1.2) u=0 on [,

where the set 2 is a bounded convex polygonal domain in the plane R* with
boundary I', x=(x,, x,) is an arbitrary point in R? p is a real parameter and A
is the 2-dimensional Laplacian.

We assume that f=f(x, z) satisfies the following conditions (1.3)-(1.5):

1.3) f=f(x, z) belongs to the class C'(2XR) and

flx, O)=f:(x, 0)=0
1.4) for each x4, Flx, 20> fx, 2,)>0 if 2,>2,>0,
(1.5) lim min f—O;’i =+co.

Under these conditions (1.3)-(1.5), H. B. Keller has shown the following

THEOREM (H.B. Keller [21). Let 2, be the smallest eigenvalue of the hinearized
eigenvalue problem

Ap+26=0 in 2; ¢=0 on 1.
Then for any p>2,, there exists a unique positive solution & (€ D=H)NH*Q))

of the problem (1.1)-(1.2), where the solution @ is said to be positive if il is posi-
tive in the whole Q.

In the following sections, we shall construct an approximate solution u, of
the positive solution # concretely by the finite element method, and then estimate
the rate of convergence of the approximate solution u, to the exact one &.
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For the approximate problem, M. Mimura [4] constructed an approximate
solution by the finite difference method, and proved the convergence.

2. Preliminaries and some auxiliary lemmas.

Let £ be a bounded convex polygonal domain in R? with boundary I, and
let L*£2) be the space of real valued square integrable functions on £. The
inner product and the norm on L) are denoted by (,) and | |, respectively.
The symbol H¥(2) (j=0,1, 2, ---) stands for the real Sobolev space of order j,
and the set H{Q) is defined by H{(Q)={ucsH(Q); u=0 on ['}. The symbol
[ I; means the standard norm in H¥(Q), i.e.,

ad1+d2u 2

| Ox219xg2
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We put V=Hi(Q).
We define a linear operator A by

A: 9 — L¥D),
D=H*DNV,
Au=—Au, for usd.

Now we turn to the finite element method. We triangulate the domain 2
regularly, and a parameter A represents the largest diameter of the element
triangles. We assume that this triangulation is of strictly acute type, i.e., the
largest angle among all triangle elements is less than or equal to z/2—¢, where
#, is a small positive constant. This assumption is necessary to prove Lemma
2 below.

We adopt the set V, of trial functions as follows:

Vi="“the set of all functions in V which are linear in each element”.

Let P, be the orthogonal projection from L*2) onto V,, and we define a
linear operator A,, which is the finite element approximation of A, by

An: Vi —V,,
(Ars, D)=, Vr), On, P EVy .
We consider the following auxiliary eigenvalue problems:
2.1 Ad=24, sV
and

(2.2) Ah¢h:]\h¢h > ¢he Vh .
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Let 2; and 2, be the smallest eigenvalues of (2.1) and (2.2), respectively, and
let ¢,€V and ¢V, be the eigenfunctions of (2.1) and (2.2) corresponding to
A and 2y, respectively. We normalize ¢, and ¢y, as ¢,>0, ¢,,>0 in &, max ¢,

2

=1 and max ¢;,=1. Then we have the following essentially well-known lemmas
z
which will be proved in Appendix.

LEMMA 1. The following errov estimates hold.

(23) } Zlh—.—)‘l\ éclhz as h—0 ’

and

(24) ma_XI ¢1h_¢11 éCzh as h—0 ,
2

where C; and C, are positive constants independent of h.

LEMMA 2. For any ky>0 there exists a constant ho=ho(ky)>0 such that if
ge L DNL™(Q) and g=0, g0 a.e. in 8, then w,=(k+A,) 'Pyg is strictly posi-
tive in 2 for 0<h=<h, and 0<k<k, Moreover it holds that

1
(2.5) max w, < 7 gl zocos -
]

In this paper various positive constants will be denoted by the same symbol
C unless we need specifications. The reader should pay attention to the fact
that each of the suffixed constants C,, C,, --- will be used for the special meaning.

3. Main resultf.

In this section we state our main result. As the finite element approxima-
tion of the original boundary value problem (1.1)-(1.2), we consider the following
equation :

3.1 — Apuint pprn— Py flx, un)=0,  up=V,.
We claim the following

THEOREM. Assume that f satisfies (1.1)-(1.3) and suppose that pu>2,. Then
there exists a constant h,>0, and for any h with 0<h<hy, there exists a unique
solution u,€Vy, of (3.1) satisfying that w, =0 and u, =0 in 2. This solution u, s
strictly positive and is uniformly bounded in 2, 1.e., 0<u,(x)<z* in 2, where z*
1S a positive constant defined by

(3.2) z¥=min{z>0; pz—f(x, 2)=0 for any x=£} .»

‘The existence of such z* follows from the assumptions (1.3)-(1.5).
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Moreover, we have the following error estimates:

3.3) I8 —uyllo<Csh2,
(34) ta—upf=Cih,
(3.5) max| a(x)—u(x)] SCsh,

where @ is the unique positive solution of the problem (1.1)-(1.2) and C,, C, and
Cs are positive constants independent of h.

REMARK. The approximate solution u,, stated in the above theorem, can be
constructed concretely as follows: first, we choose UjeV, arbitrarily which
satisfles 0=U}<z* U{=0 in 2. And we define a sequence {U%},2,CV;, succes-
sively by

(3.6) (ky+ AU =Pulk U+ pUs—f(x, UR)

where k;=max{f,(x, 2)—py; xEQ_, 0<z<z*l+1. Then {U}},2; is a convergent
sequence with lim UZ=u,.

T-»00

Proor OF THEOREM. We put g(x, 2)=k,z-+pz—f(x, z), and define an operator
G LXDONL7(D)—L¥2) such that

(GuYx)=g(x, v(x)) for ve LX(ONL(2).

We will carry out the proof in the following 7 steps.

1°. Let A, be equal to h.(k;) given in Lemma 2, and let 0<A<h,. For any
v, €V, with v,7£0 and 0Zv,=<z* in @, (ky+ A4 PGy, which we denote by wh,
satisfies 0<w,<z* in 2.

Proof of 1°. For each x=£, g(x, z) is strictly increasing function of z in the
interval [0, z*] by the definition of k,. Therefore g(x, v,(x)) is non-negative and
is not identically zero in £. Hence, by Lemma 2 and (3.2), we have w,(x)>0 in
£ and

max wa(x)<(1/ kl)-rgglgc glx, vl E(U/ky) - kiz¥=2%,

which imply 1°.

2°. Let hy=(p¢—1,)/2C, and let 0<h<h,. By (1.3)-(1.5) we can choose a
positive constant e, satisfying that

(3.7) ”;7‘1 - f(’: © S0 for xeQ.
0

We put ul=¢eo¢,n=V, and v),=z*% where ¢,, is the eigenfunction of (2.2) given
in Lemma 1. If we define {u3},2; and {v7} .2, successively by ui**=(k;+ An) *P,Gu
and vit'=(k,-+ 4,) *P,Gv}, respectively, then we have
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0 < (x) <ub(x) < +-+ <u(x) <VEH) < -+ <vh{m)<vh(x)=z* in 2.
(Hence lim u#(x) exists. This limit, which we denote by u, is obviously a posi-

tive solution of (3.1).)

Proof of 2°. It follows by 1° that 0<wi{(x)<vi(x) in 2. Next we show that
u%<u}b in £2. Since <k1+Ah)u%:<k1+xlh)€o¢1h and since M}L:(kl“{"‘Ah)_IP}L{<k1+‘u)€0¢1h
—f(x, eop1n(X))}, We have

(3.8) uk~u§1:(k1+Ah)-1Ph{(#_,zlh)_M

8o¢1h }80¢1h ’

By the definition of ¢, and Lemma 1, we have
(p—2u)—f(x, &)/e>0 for 0<e=¢,, 0<h<h,; and xe.

Therefore, by Lemma 2 we have u}—23>0 in £. It holds in the same way that
if up<v? in £, then wf<u2™<v3*'<v} in £. Hence 2° has been proved.

3°. A (nontrivial) non-negative solution of (3.1) is unique.

Proof of 3°. Let v,&V, be any non-trivial solution of (3.1) with v,{x)=0 in
2, and let u, be the solution of (3.1) given in 2°. Then we shall prove that
v,=1u; by the method employed in Sattinger’s lecture note [3]. We start assum-
ing rgeagc uh(x)§r£12!)§ va(x). Since ux(x) and vy(x) are piecewise linear functions

and u,(x) is strictly positive in &, there exists a unique positive constant 0<n=1
such that

(3.9 () Zua(x) in 2, and Hwa(xe)=un(x,) at some point x, &L .

We first prove that »=1. Since u, and v, are solutions of (3.1), we have u,—7nvs
=k An) " Pu(Gusa—nGuy). By an easy calculation we have

Gu(x)—7nGva(x)

=g(x, ualx))—ng(x, valx)

_ . 5 s f(% va(x)) __ Flx, 7]Uh<x))
= (g, 1)~ £, 7oalaD} -+ [ e
=L0x)ATx) .

I{x)=0 and I(x)=0 in £ by (1.3)-(1.5). ([,(x)=0 if and only if »=1.) If 5 is
not equal to 1, then we should have [,(x)+/.(x)>0 in £ and also, by Lemma 2,
have u(x)—%vu(x)>0 in £. This is a contradiction to (3.9). Hence »=1, and by
(3.9) we have v,(x)=u(x) in £. Next we prove that v,(x)=uy(x). In fact, let
us suppose that vu(x)Fux(x). Then in view of 0<v(x)=Zuy(x)<z* in £ we have
g(x, up(x)—glx, va(x))=0 (x=£2) with the strict inequality at some point in £.
By Lemma 2 we have u(x)>v,(x) in £. This is a contradiction to (3.9) with
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=1, hence v,=u,- In the similar way it holds that v,=u, in £ in the case when
max uh(x)gmz}zx va(x). Thus 3° has been proved.
ZE, TE,

The statements 1°, 2° and 3° imply the existence and the uniqueness of
positive solutions of (3.1). Here we show that the sequence {U?}.2: in Remark
is a convergent sequence with lim Uf=u,. By the choice of U} and the state-

P

ment 1°, we have 0<UL{x)<z* in £. Since V, is finite dimensional subspace,
it holds that ¥ <UL=<v} in £, if we choose ¢, in 2° sufficiently small. We make
repeated use of Lemma 2 to obtain that ©}=U?"'=<v? in £ n=0,1,2,---). On
the other hand, by 2° and 3°, we have lim uZ:}LijE vi=u,, therefore we see that

n-ro0

the sequence {U7%} is a convergent one with lim Uf=us.

n—o0

We now turn to the error estimate.
4°. Let v e HY(Q)NV be a solution of a problem
(3.10) (by— A" =(k,+pyup—f(x, us) in 2; v=0o0n I'.

Then there exists w,e H{(2)\V (independent of %) such that v*®=w,>0in 2 for
0<h<h,, where h,=min {h,, ks, (4Cy)77}.

Proof of 4°. Let £’ be the set {x=2; ¢,(x)>1/2}. We put
$=(20/2¢; in 2, $=0in Q—2".
If we define w,= H¥{(Q2)N\V as the solution of the problem
(by—Ayw=F,+m)p—f(x,¢) in 2, w=0on [,

then we have v®=w,>0 in £2. In fact, by Lemma 1 (2.4) and by the definition
of ¢, we have ¢=u, for 0<h<h,, therefore 0=g(x, $(x))=g{x, us(x)). Hence we
have 0<wy(x)=v™®(x) in £. This proves 4°.

5°. For any positive constant N greater than [w,ll,, let By be the set
freH DNV ; 0=v=z* in £, and |w,|,=|v|:=N}. Then there is a constant
Cy such that

(311 [@—vll,=CyllAv+pv—flx, v)l,  for any vEBy.

Proof of 5°. In order to prove 5°, we use M.S. Mock’s technique [5]. Let
us consider the following eigenvalue problem

(3.12) (—A—p+1(x, A(xNv=tv in £; v=0on [".

Then we shall show that the smallest eigenvalue 1 of (3.12) is positive. In fact,

(313 T=min{|Voli—ploli+ | filx, vdx; fole=1, vaV}
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=min{|Volp+ {2770 vt | (7Gx, a7, )} vides =1, ve v} p.
¢ and # are the eigenvalue and the corresponding eigenfunction of
(8.14) (—A4af(x, @) v=av in 2; v=0o0n I.
Since #(x)>0 in 2, u is the smallest eigenvalue of (3.14). Therefore
(3.15) #Zmin{HVvHHS a4~ f(x, W*dx; olly=1, ve V}'-
2

By (3.13) and (3.15), we have

2zmin{|_(7.(x )= fx, Wiz Iwle=1,vev]z0.

If =0, then it must hold that flx, a()=a(x)"f(x, 4(x)) a.e. in £. But this is
inconsistent with (1.3)-(1.5). Hence i>0 and we have

(3.16) wlo=Cl(A+p—filx, W)vll,  for ved.

On the other hand, we have

R.17) vl =CUlAv]ot+lvle)  for veD.

When we combine (3.16) with (3.17), we have

(3.18) loll, =CIlA+p—Fulx, D)l  for vED.

Next we will show that there exists a (small) constant 0>0 such that
(3.19) la—vl.=ClAv+ po—Flx, 1], for any vEBy with [[2—ll,<p.
First we calculate as

Avtpv—f(x, )= {Av+pv— flx, v)} — {AlL+ pi— f(x, )}

ZS:{A+ﬂ—fz(x, A t(r—a)} di - (v—2)
:‘{@H‘#"fz(% 775))+g:(fz(x, ) — f.(x, z?+t(vézi)))dz}.(v,ﬁ)

{15 (7 )=, Lt A+ e, )1
(At = £, D) —)

=T-(A+u—flx, ) -(v—1).



20 Akira MIZUTANI

Since fi(x,z) is uniformly continuous in 2x[0,2%¥], 77! is a bounded linear
operator from L*£) to L*(&) if m%xiv(x)——ﬁ(x)] is sufficiently small. Since the
set © is in R? the Sobolev imbedding theorem implies mea}lev(x)——ﬁ(x)l <Cllv—al,.

Therefore we have for |2—v|,<p with sufficiently small p,
lv—all,<Cl(A+ p—fi(x, @) - (0= = CllAv+ pv—f(x, Vo,

which implies (3.19).
Next we will show (3.11). If (3.11) does not hold, there exists a sequence
{v,} CBy such that for some small positive constant p,

(3.20) lZ—v.ll.zp
and
3.2D Ava+pv,—flx, va)lo — 0 as n—oo.

By (3.21) we have
(8.22) lvn—A (pva—Ffx, vl — 0 as n—oo.
(See, e.g., V. A. Kondrat'ev [6].)

Since {pv,—f(x, v,)} .= is bounded in V, by Rellich’s theorem, there exists a sub-
sequence {v,}C {v,} such that {gv, —f(x, vx)} is convergent strongly in LY D).
Therefore A™*(v, —f(x, v,)) is convergent strongly in H*{). By (3.22) v, also
is a strongly convergent sequence in H*2). Since By is closed in H¥Q), v=
lim v, belongs to By, and v satisfies

Av+pv—Ff(x, v)=0 in 2, v=0 on I', v>0 in 2 and [&—v|.=p>0.

This is a contradiction because the set {u € By; Au+tpu—flx,u)=0} is {4} or
empty by Keller’s theorem.

6°. The following error estimates hold:

(3.23) lup—v Mo =Ch* o,

(3.24) =L =Chlluall,,

(3.25) mgXluh(X)*v‘h’(x) [=Chllualo,
(3.26) fa—v ™, =Ch*unl,,

where v‘® is the solution of (3.10).

Proof of 6°. wu,=V, and v =9 satisfy
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(it Apun= Py {(ky+ tun— fx, us)}
and
<k1+A>U<h):<k1+ﬂ>uh_f(x; Un),

respectively. By a standard argument we have
N —=v ™ S CR* IRyt un—Fx, un)lle=CR* funlls  (j=0,1).

This proves (3.23) and (3.24). Similarly (3.25) also holds (see J. Nitsche [97). We
shall prove (3.26). By a simple calculation we see v* € By with N=M X meas (£)"?
xXmax{|(k,+pz—flx,2)] ; 0=z=Zz*, x<=Q}, where M is the operator norm of
(By+A)™* from L¥Q) to H*L). Therefore if we put v=v" in (3.11), then we
have

l2—v ™, =ClAv™ +pv™ — flx, v™),

=ClH{(ks+ v ™ — flx, v — {{bs+ un—f(x, unlt o

=CIv P —uple=ChR*ualle  (by (3.23)),
which implies (3.26).

7°. The error estimates (3.3), (3.4) and (3.5) hold.
Proof of 7°. We put h;,=h,. By the Sobolev imbedding theorem and by
(3.26), we have mgédﬁ(x)Mv(h’(x)l <Ch?|lusll,. Hence (3.3), (3.4) and (3.5) follow

immediately by (3.23)-(3.26). Q.E.D.

Appendix.

We prove Lemma 1 and Lemma 2.
We recall that 2 is triangulated regularly and the triangulation is of strictly
acute type, i.e., any interior angle § of each triangular element satisfies

“.1 0. <0=xz/2—0,,

where 0, and 6, are small positive constants. We denote all the vertices in 2
(resp. on I') of the triangulation by {P;} X (resp. {P;}ERGH®) and we define
w;, which is linear on each element and is continuous in £, by w,(P;)=d;; for
i, j €<, N+ M), where d;; is the Kronecker's delta and <1, N(h)+ M(h)>
means the set {1,2,3, ---, N(h)+M(h)}. Then we see that {w;}ZP is a basis for
V.. By an easy calculation, we have

4.2) Dy (x)=1 in 2.

From now on we denote N(h) and M(h) by N and M, respectively, for the sake
of simplicity.
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PrROOF OF LEMMA 2. We first prove

1°. Let T be any triangular element of the triangulation and let P;P; be
any side of T (i, j=<1, N+ M}). Then we have
4.3) Elwg, w+Tw,, Vwj) Sklw,, w)+Nw;, Vw;)<0
for 0=<k<k, and O<h<hylky).

Proof of 1°. Let T be a triangle P,P,P,. In order to show (4.3) it is suf-
ficient to prove that

4.4) kolws, wi)r+Nw;, Vw;)r <0 for 0<h<hy,,
where (w;, wj)T:STwi-wj .

We assume without the loss of generality that P;=(0, 0), P;=(ch,0) and P,=
(ah, bh), where a, b and ¢ are positive numbers with 0<q, 5<1 and 0<c=1. We
denote the angles at the vertices P;, P, and P, by «, § and 7, respectively.
Then by an easy calculation, we obtain

wilxy, x)=—0/ch)yx,+{a—c)/bch)x.+1,
w{xy, x5)=(1/ch)x;—(a/bch)x,
(Yw,, Vw,)r=—cos y/c*sin a-sin 8,

and
(ws, w;)r=meas (T)/12=bch*/24 .

Therefore we have
(4.5) Es(ws, wr+(Vw,, Ywr=meas (T")-(ko/12—2 cos y/(bc*h* sin a sin §)) .

If we put hy=ho(key)=(24sin 0,/k, cos®4,)*?, then we see by (41) that the right
hand side of (4.5) is negative for 0<a<h,. Hence (44) holds and the statement
1° has been proved.

Next we prove

2°. If g L)L) satisfies g=0 and g0 a.e. in £, then for 0< A =4,
and 0=k <k, v,=(k+A,) 'P,g is strictly positive in £, and, in addition, it holds
that max (0 <(1/k)-lglr=ce-

Proof of 2°. Since v, belongs to V,, we can represent v,(x)=>%,a;10,(x).
We put a,=min{a;; i, N)HJ=, N)). By the definition of v,, we have

4.6) kv, &) +(Vuy, Vdn)=(g, ¢n)  for any ¢,€V,.

We calculate the left hand side of (4.6) by putting ¢,=w, as
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@70 B(vn, wo)4-(Voy, Vwp)=ka;{1, w;)—a; 25 R (w,, wo)+Nw;, Yw,)}

+ Ziiil}(ai_ag’) {k(w;, ws)+Nw;, Yw)} .

We first show that v,(x) is non-negative in £. If not, aJ:m[izn vp{x)<0, and

therefore, by (4.7) and (4.3), we have kv, wy)+( Vv, Yw,)<0. On the other
hand, (g, w;)=0 holds because g=0 a.e. in £. These are inconsistent with the
equality (4.6), hence we have v,(x)=0 in 2. Next we prove that v,(x) is strictly
positive in £. If not, we have ¢,=0. By (4.6) and (4.7), we have

4.8 Zzz%,ai {k(w;, w)+Nw;, Yws)} =(g, w;)=0.

Let T be any triangular element with the vertex P;, which we denote by a tri-
angle P,;P,P,, then by (4.3) and (4.8), it must hold that a,=a,=0. By the rep-
etition of this procedure, we have (g, w;)=0 for any i=<{1, N>, which contradicts
the assumption that g=0 and g#0 a.e. in £2. Hence we have seen that v,(x)>0
in 2. Finally, we prove that max v,(x)<(1/E)lgl>e. We put aJ:rrgax va(x)
(Je{d, N>). By (4.6), we have

4.9 E(vn, w)+ v, Y )=(g, ws) .

The left hand side of (4.9) can be written as (4.7). Therefore, in view of (4.3),
the left hand side of (4.9) is greater than ka;(1, w;). While the right hand side
(g, ws) is obviously bounded by | gll s (1, w,). Hence we have a,<(1/k)- gl zeccoss
which implies 2°. Thus Lemma 2 has been proved.

Proor or LEMMA 1. We put @,=¢u/llgulle and @=¢,/[l¢.ll,. Then we
have the following well-known estimate (see e. g., F. Kikuchi [8])

(4.10) max | @y(x)—B(x)| =Ch.

By using (4.10), we easily obtain (2.4). The estimate (2.3) is familiar (see e. g.,
G. Strang and G.]. Fix [71), and therefore we omit the proof here. Q.E.D.
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