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§1. Introduction

The purpose of the present paper is to make an abstract error analysis of
Galerkin’s method for the evolution equation of the form

an w+ADu=0  (O<t=T)

with the generator A(f) whose domain may vary as the time variable ¢ changes.

Actually we intend to derive estimates of the rate of convergence which is
applicable to the following initial boundary value problem for the parabolic dif-
ferential equation

ou

with the Neumann boundary condition
1.3) %z‘—:o te(0,T], x=09)

and with the initial condition
14 2| g o=uo(X) (xef).

Here © is a bounded domain in R¥ with smooth boundary 9{. <A is an elliptic
differential operator of the second order with smooth coefficients depending on
reQ as well as t<(0, T] where T is a fixed positive constant. Namely,

L5) = 30 F 0ttt )
’ T iR 0x @it X ox; =777 0x; b A
The uniform ellipticity

N -
(L6) Re 3% ai(t, DL, 1010 €=, -+, L) ECY)

is assumed, 6’ being a positive constant. In (1.3), /0y means the differentiation
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along the outer conormal vector y, that is,

0 = é nsay;(t, X)"é% (x€00)

8v %, j=1 j

1.7

where n=(n,, ---, ny) is the outer unit normal to 02.

Assuming u,= L*{2) for the initial value, we can reduce the above initial
boundary value problem (1.2), (1.3) and (1.4) to the following evolution equation
in the complex Hilbert space X=L¥Q):

du

et —
with the initial condition
(1.9 u(0)=u,,

where A(f) is the m-sectorial operator on X defined through the followings :
ou
_ 2 P Y s S
(1.10) D(A(t))—{uEH D ; 3 =0 in &Q},

1.11) ADu=Au (ue D(AR)) .

Thus, D(A()), by which we mean the domain of A(#), depends actually on t.

On the other hand, we consider the simplest semi-discrete finite element
approximation, triangulating £ into small elements of the size parameter 42>0
and adopting the “piecewise linear” trial functions as will be described later in
§ 6. The totality of these trial functions will be denoted by V,. By u, we mean
the approximate solution for u thus obtained.

Our ultimate objective is to derive estimates of the error in norm like

(1.12) D) —ur®l 2y SCR*/tlugli ey (0<t=T).
However, in this paper we are able only to obtain a little weaker result
(1.13) @ —ua®llzocey SCo (/1) Sllugliz2cey  (0<t=T)

for any >0 as a consequence of our abstract theorem. It is open whether we
can take ¢=0 in (1.13), i.e., whether (1.12) is true or not. Actually, it can be
easily read off from Fujita-Mizutani [4] that if A(?) is independent of ¢, the
estimate (1.12) is true even under the Neumann boundary condition although in
[471 only the case of Dirichlet boundary condition is explicitly dealt with.

Also we refer to some other existing works in the same direction as ours
here. In 1974, H.P. Helfrich derived (1.12) under the assumptions that A(f) is
independent of ¢ and is self-adjoint and also that V, is contained in D=D(A(})
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(Helfrich [71). In 1975, H. Fujita and A. Mizutani showed that (1.12) holds even
in the case A@®)*+A®) and V,aD(AQR), A®* being the adjoint of A(f), under
the assumption that A(¢#) is independent of t. In 1975, H.P. Helfrich succeeded
in deriving (1.12) for the case that A(f) actually depends on ¢, assuming A(f)*=
A®), D(AW)=D (independent of ¢) and V,CD (Helfrich [8]). In 1976, H. Fujita
gave at the symposium on numerical analysis in Dublin, a result weaker than
(1.12) and (1.13), that is,

(1.14) ) —un(Dl 22y £Co- B/ tllugll 12cgy  (0<t=T)

for any ¢>0, in case that A()*s= A@®) and V, < D(A®), still under the assumption
of the constancy of D(A(Y)) (Fujita [3]). Recently, the author has succeeded
jointly with H. Fujita in deriving (1.12) under the same situation (Fujita-Suzuki
[5D). In dealing so, some crucial efforts have been made in order to release
the conditions D(A)=D, A@®)*=A() and V,CD, while we have adopted some
ingenious tricks from Helfrich [§]. ‘

This paper is composed of six sections and Appendix. §2 is devoted to as-
sumptions and preliminaries, and § 3 to some remarks on Ritz-projection. In §4,
we shall give the abstract error estimation corresponding to (1.13). We shall
refine this estimation for the particular case of A(H)*=A() in §5. §6 is devoted
to the application of those abstract error estimations to the semi-discrete finite
element approximation for partial differential equations. A certain proposition
on the relation between evolution operators and the fractional powers of their
generators is needed in §4 and §5, and will be proved in Appendix, since the
proposition may be regarded by itself as a contribution to the generation theo-
rem of Y. Fujie and H. Tanabe (Fujie-Tanabe [2]).

The author wishes to express his sincere thanks to Professor H. Fujita for
his unceasing encouragement and for valuable advice. Thanks are also due to
Mr. A. Mizutani who kindly provided the author with information about nu-
merical methods.

§ 2. Assumptions and preliminaries

Let 2 be a bounded domain in R¥ whose boundary 92 is smooth. We put
X=L¥Q) and V=H2) ", where H/(2) (j=1,2, ---) stands for the Sobolev space
W=i(2) of order j. The standard norm in H¥(Q) is denoted by |-| ;» though
sometimes we shall write |- and |-|, instead of |-[, and [-{,, respectively.

A sesqui-linear form a,(,): VX V—C is given for each t&[0, 7] (where 7>0
is a given constant), which satisfies the following condition (Al).

D If one is concerned with the case of the Dirichlet boundary condition, H{(2) should
be taken instead of H!(Q) as V.
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(A1) There exist constants M>0, 6>0, C>0 and & (1/2<k=1) such that

vAY la(u, v)| =Mlully-lvly

(2.2) Re a,(u, )= 0lully

and

(2.3) la(u, v)~a,(u, V)| =Clt—s|*lully - lvily

for all £, s€[0,T] and for all u, veV.

REMARK 2.1. Sometimes only a weaker inequality
2.2 Re a;(u, wy=olully—Aluj)®

may hold instead of (2.2) for some constant 4. But, from the view point of our
problem, we may consider A(#)-+C instead of A(f) with any constant C (see,
Fujita [31). So, we can assume (2.2) without loss of generality. By the same
reasoning, (2.6) and (2.7) in the condition (A2) i) are not very restrictive.

Under the conditions (2.1) and (2.2), we can associate an m-sectorial operator
A(@) in X uniquely with a¢,(,) for each t[0, T] through the identity:

(2.4 a,(u, V)=(A(u, v)

for any veV and v D(AD)CV (Kato [11] or Lions [127).

By virtue of (2.3), on the other hand, A(f) generates a family of evolution
operators: X—X of C'-class, which we denote by {U(f, $)} ras=s=0, OWing to the
generation theorems of T. Kato, P. E. Sobolevskii, H. Tanabe and Y. Fujie (Sobo-
levskii [16], Kato [9], Fujie-Tanabe [2]). Namely, the continuously differentia-
ble solution u=u(t) of the abstract Cauchy problem in X:

»@—M(t)u(z):o (s<t<T)
25) dt
u($)=1u, (o= X)

is given by u(®)=U(Z, s)u,.

Next we assume the following (A2) which is composed of the conditions i)
and ii).

(A2) 1) It holds true that

DADYCHYD) and D{AGOHCHYLD) for each t<[0,T7,
and there exists a constant C>0 such that

(2.6) CHlvl. =l Al =Clivll.  (weD(AD),
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and
@27 C Ul ZlA@*vI=Cllvll,  (veDAW®*)

iiy We have
D(ADYH=V for each t[0,71],

and there exists a constant C>0 such that

(2.8 CHvly 2N ABYWI ZClvlly  for all veV.

REMARK 2.2. The assumption (A2) appears rather natural in view of prac-
tical applications. Indeed, consider the case where A(f) is an elliptic differential
operator of second order, having smooth coefficients on o, T]x@, with the Neu-
mann boundary condition or the Dirichlet ome (in the latter case, however, we
must take V=HiQ)={ve H(2); v|sg=0}). Then, (2.6) and (2.7) are the elliptic
estimations for A(f), because we may change A(f) to A(®)--C as was explained
in Remark 2.1. On the other hand, the condition (A2)-ii) is also satisfied for
such A(Y), as will be shown in §6, by means of the theorems of J. L. Lions and
Fujiwara (Lions [13], Fujiwara [6]).

Now we proceed to assumptions on trial functions. Let V, (h>0) be a finite
dimensional linear subspace of X with a small positive parameter h and assume
that V, satisfies the following (A3).

(A3) It holds true that

V.oV
and

29) jnf lv—zly SChlvl  (veHY@)

with a constant C.

Then, we can associate a bounded m-sectorial operator Au(f): V,—V, with
@) vyxvy through the identity :

(2.10) a(u, v)=(A,Ou, v) (u, veVy)

for each A>0. A,(f) generates a family of evolution operators: V,—V, of C*-
class, which we denote by {Ur({, )} 7212520, by virtue of (Al).
We recall

(2.11) u®=UG, suy,  G=t=T)

is the solution of (2.5) for any u,eX, and we define the “ Galerkin approxima-
tion” of u(f), which we denote by u,=u,(t), through

2.12) un(O=Ux(t, 9Pruty  G=I=T),
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where P, is the projection from X to V,. (In § 6, we shall specify our semi-discrete
finite element approximation for the equation (1.2) and refer to the condition
(A3) for the trial functions used there. However, before that stage our discus-
sions are made in a manner of an abstract theory.) Writing

(2.13) er(O=ur(t) —u(H=E,(t, i,
we call ¢,(#) the “error” and
2.14) Ext, )=U,, s)P,—U(t, s)

the “error operator”.
The following proposition concerning the evolution operators and the frac-
tional powers of their generators is due to Kato [9] and Sobolevskii rie].

PROPOSITION 2.1. Under the assumption (Al), there exists a positive constant
C=C(a, B) depending only on the parameters a and B (hence independent of h or
t>5) such that the following relations hold.

(2.15) [ABUE, AP =Clt—sP"*  if k+1/2>a=p=0.
(2.16) TAD UG, A T<Clt—9)7  if k>a=820.

(2.17) I A Unlt, DA PISCU—9)°"*  if k+1/2>a=p=0.
(2.18) 1Ax(DPULE, AN ZCE—9P«  if k>az=B=0.

By means of this proposition, we get
(2.19) lu@.=CIADUE, 9 A AlDuol =Clluglls  if uo= D(A(S)).
Also by (2.14),

(2.20) 1B, ) =C

is obvious, where C is independent of % or #=s.
The next proposition will be proved in Appendix.

PROPOSITION 2.2. There exists a positive constant C(c) depending only on the
parameter ¢>0 such that

(221 ILU, 9)—Ulz, /A ly CE)t—1)* "z —s)~*|v||
(T2i>1>520,0€X)  if 0Se<k—1/2

and that

(2.22) ILUC, 99—~ Ulz, 1A Y20l <C)(t—2)(z—s) 5 ||v]

Tzi>t>s=0, veX) if 0<e<k.
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By virtue of this proposition, we get
(2.23) lu@®—u(@lly S| LUE, )—Ulz, TAS)™ - AlS)uoll»

=CE(t—o) (e —3)"|luoll
if uoeD(A(S), T=t>7>s=20 and 0=Ze<k—1/2.

We conclude this section with some remarks on dual operators. If we put
A()=A*(T—1), it generates a family of evolution operators: X—X of C'-class,
which we denote by {U(t, $)} rzs=s2e. Then we have the following equality :

(2.24) U, )=U(T—s, T—* (T=t=s=0).

In the same way we have for U,(, s) generated by A,(t)=A¥(T—1)

(2.25) Unlt, 5=Un(T—s, T—t*  (T=t=s=0).
Therefore, if we put

(2.26) Ewt, 9=Un(t, 9P~ U, 3),

we have

(2.27) Eu(t, )=En(T—s, T—0*.

Since these relations are immediate from the properties of evolution operators,
proofs are omitted.

In the following lemma, the relaxed condition on j is due to the fact that
A,(1) is a bounded operator on V.

LeMMA 2.1. Under the assumption (Al), there exists a positive constant C=
Cla, B) depending only on the pavameters «, B8 such that

(2.28) [ AnD U, A =Clt—9)™ 2% (Tzt>5z0),
if k+1/2>a, B=0.
Proor. From (2.17) we have
I AU, I =Ct—9™  for 1/2+k>a=0,
and then considering dual operators, we obtain
IUA(, A =CH—95)™%  for 1/2+k>a=0.
These inequalities give (2.28) with the aid of the equality

Un(t, sy=Ux(E, s6)Ur(sq, S) (so=(t+5)/2). Q.E.D.
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§ 3. Remarks on the Ritz-projection

In this section, we shall introduce the so-called Ritz-projection and establish
some properties of it.

Lax-Milgram’s theorem enables us to define the following Ritz-projections
R.(D) and R,(): V—V, through the identities

8.1 a(Rav, P=alv, ) (GEVn
and
3.2) aH R, P=a*w, x)  (xEVx)

for each v=V. In (3.2) af is the sesqui-linear form on VXV defined by
ai(u, v)=a,(v, w)

for each u, veV. It is well-known that the m-sectorial operator associated with
a¥ is precisely A(H)*, the adjoint of A(f). (See, for example, Kato [11].) Thus
we must remark the Ritz-projection is not necessarily an orthogonal projection
in our case where A({) may not be self-adjoint.

The following lemma is based on the assumption (A3).

LeEMMA 3.1. There exists a positive constant C such that the following rela-
tions hold.

3.3) 11— Ra@®)vlly =Chlivll, if veH Q).»
(34) IA—R.OwI=ChlA=RaO)vll»  if vEV.
3.5) [A—=RuD)vl =Ch?(vll if veH Q).»
3.6) 11— Ra()vll =Ch]vlly if vEV.

We have also the same relations as above for R,

ProoF. (35) is an immediate consequence of (3.3) and (3.4), while (3.6) fol-
lows also from (3.4) because we have

Ol Ra(Bvl7 =Re a,(Ry(Dv, Re(He) (7 (2.2))
=Re a,(v, Rx(H)v) ¢ @31)
=Mllvlly -l R (Bvly

2 If we take V=H}(2), we must change H2(Q) to H{(Q)N\H*(Q).
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and hence
X)) [Ry(Dvlly =6 Milvlly  for each vV .

Thus we have only to show (3.3) and (34).
Now, because of

(38 a{(1—=Ry)v, =0 (3 &V4s, veV),

we have
31— ROy =Re a,((1—Ru(®))v, 1 —Ru(t))v)

=Re a,(1—R,(D)v, v)
=Re a{1—R.®)v, v—y)

=MIA—=R.@O)vlv-llv—xlv,
that is,
1A—=R(D)vlly <6 Mllv—yxlly for all y&V,.

This inequality and the assumption (A3) imply the inequality (3.3). Finally we
prove (3.4) by making use of Nitsche's trick. Take an arbitrary y<X and put
p=A®* 'y. Then we have

(A—=Ru®)v, P=a,(1—=Ru)v, 7(1))
=a((1—Ru(®)v, pO—Ruy(1) (7 3.3)

and so
HA—R@)v, DI =MIA—Ru(O)vlly - 1A= Rl
ZChllpOle- [A—=Ruvlly ¢ (330
=Chlyl-1A—=R@)vlly (A CAG)
which implies (3.4). Q.E.D.

The following lemma is useful in later sections.

LeMMA 3.2. There exists a positive constant C such that
(3.9) [(Ru(s)— Ra()vily SChlt—s[*- | v],
for all ve H¥{(Q).>

PROOF. Puttlng Z:(Rh(3>_Rh<f)>'UE Vh;
we have

8 We change H2(Q) to H{(Q)NH?*(Q), if we take H}(2) as V.
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Slzl3 <Re afz, 2)
=Re ¢,(R.{9)v, 2—Re a{(R,(D)v, 2)
=Re a,(Ru(s)—Dv, 2)
=Re [¢,(Ru(s)—Dv, 2)—a,(Ru()—Dv, 2] (7 38)
=Clt=s|*(Ru()—Dvllv-lizlly

=Chit—s*lvl.-lzllv ,
which implies (3.9). Q.E.D.

§4. Estimation of the error in the general case

In this section we shall show the main theorem of this paper, that is, Theo-
rem 4.1. Before proceeding to Lemma 4.1 which is an essential part of the
proof of Theorem 4.1, we must prepare some equalities and inequalities as be-
low. These are modifications of those in Helfrich [8] and Fujita [3]. However,
we emphasize that D(A(#)) may vary as ¢ changes in our situation. In view of
the relation that

(AR, p=aRu(t)v, =0, (v, x)=(AD)v, )
for each veD(A(f)) and y<V,, the equality
“.1) A DORHv=P,Al)v (ve D(AG))

holds.
Furthermore, we have

— 2 U1, DPuen =Tt LA Pa— P A u(2)

and hence

Poes()={_ Untt, DIPA AR~ Ax(e) PiJu(e)de

by means of the properties of evolution operators. On the other hand, we get
the following equality by virtue of (4.1):

Un(t, DLPRA(T) — An(0) Pulu(e)=Un(t, ) An(t) Pu{ Rp{7)— Dulz)
=Ux(t, ©) An(7) Po(Ra(t)—Du(®)
+Un(t, ©) An(e)(Ry(2)— Ra(D)ult)
+ U, ©) A(0) Pu(Rp(7) — D(u(m)—u(t))
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=@+ @)+ 2().
Consequently, we have
4.2 eh(t>:Pheh(t)+(Ph_l>u(Z)
=(1=Ult, SPIRAO—Dut)+{] 7@z +{] e

=ef O+ 70+ P ()

with

4.3) P(D=Unlt, 2) A (Ru(0)— Ra()ul?),
and

4.4) FiX(o)=Unt, DA Po(Ru(0)— D) —u()) .

We have easily

FR@+P@=Udll, ©)Au(@) PAl(Ral) —Dulr) = (Ru()—Dult)],
whence follows
(4.5) IO+ ROISCE—= W uoll,  if uy= DIAG)),

by means of (3.5) and (2.19).
Now, we prove the following important

LeEMMA 4.1, There exists a positive constant Cla) for each 0<a =<1 such that
4.6) 1EL(E, ol EC@)R*(t — ) [lu,ll, max (1, h%/(t—35)*'?)

for all uy=D(A(S), T2t>s=0 and h>0.

Proor. First of all, we get
(%)) e (D =CIRAO —Dud ] =CR?[[u 2,
by means of (3.5) and (2.19). Next we can estimate ||/l and /] as
4.8 12 @ON=1UG, ©) Au(0)(Ra(2)— Ru(D)u(®)]
=CE— o) (Ra(0)— Ra(u@®)]]
=CU—0) MI(Ral2) = Ru())u@®ll»
=CU—o)hi—=o)"u®l, ¢ (3.9)

SCht—7)* Huol, , ¢ (2.19)
and
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(4.9) 172N =1 Unt, ©) An(2) Pa{Ralm) = D(ulz)—u®O)l
=Ch(t—o)*lu(o)—u®lly ¢ 36)
SRt —0) =) (e =9 [tholl: , (. (2.23)

for 0<e<k—1/2. In view of (4.8) and (4.9), we obtain

(4.10) 172@+/POISChlt—o)7 ¥z =9 uoll, -

From (4.5) and (4.10), we have

@.11) 1 2(0)+ FO() SChFo(t—7) e 1D (g syl
for O<a=<l.

Thus we end up with
4.12) ||e%><t>+e;f><z>ug§: 1 2()+F9(Dldr

ZCa)h* (-~ |l
by a choice of e>0 with ew<1. (4.7) and (4.12) imply (4.6). Q.E.D.

We note the following equality which follows immediately from the semi-
group properties of {Ux(t, 9} and {U(t, $)}.

(4.13) Ent, =Ux(t, o) PhEx(So, )+ Enlt, s9U(ss, 8)  (5e=(+9)/2).
Now we state the final result of this section.

THEOREM 4.1. Under the assumptions of (Al), (A2) and (A3), we have the
following estimation :

(4.14) IEa(t, I £C@O)R/(t— )2+ {max (A, k*/(t—s)}?,

for k>0 and T=t>s=0, with a positive constant C(6) depending only on the pa-
rameter 0 in 0<56=1/2.

PROOF. We can estimate the second term of the right hand side of (4.13)
by means of (4.6) and (2.6) as

4.15) I Ex(t, s)U(se, HI=UER(E, s0) Also) ™+ A(se)U(So, S)I
<Cla)h? “(t—s)*? max (1, k*/(t—)“(F—9) "
=Cla)(he/{t—s) "2 max (1, (h*/{t—9))*")

for each 0<a=<1. The first term can be dealt with as
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MU, So) PrEn(se, =IUxt, 50) An(s0) Ra(50) A(se) " En{So, 9l @)
=N Ualt, 50) An(S0) Prl Ral$0)— 1) A(89) " Enlse, )]
Ut s0)An(so) PrA(s0) *Enlso, 9

ZCU— ) (I(Rulse) = DA (s + | Als) T En(Se, 1)
o 2.20).
We notice that (3.5) yields the inequality

{(Ra(se)—DA(s) | =Ch?,
while the estimation

I A(se) " En(So, 1= En(so, $* Alse)* |

ZCla)h*(t—s)** max (1, h*/(t—s)%?)
comes from the inequality

1B, )A(9)H| £ Cla)h**(t— ) max (1, h*/(1—9)™"?),
which is derived in the same way as Lemma 4.1. In this way we have
(4.16) 1UwL, $0)PrEn(s0, 9 Cla)(h*/(—3)*~*"> max (1, (B*/{t—s)?),
for each 0<a=<1. This and (4.15) imply (4.14). Q.E.D.

REMARK 4.1. From (4.14) and (2.20), we obtain the following estimate:
4.17) EA(t, N <C@)(h/(t—s)2  for all k>0, T=t>s=0,
with a coristant 5(6) depending only on the parameter ¢ (0<d=1/2). Indeed, we
can take C(0)=max (C, C(3)), where C is contained in (2.20).

§5. Refined estimation of the error in the self-adjoint case

Throughout this section, we assume that
(5.1) a¥f=a, for each t<[0, T],

that is, A(f)’s are self-adjoint operators. In this case the condition (A2)-ii) is
derived from the inequalities (2.1) and (2.2) of (Al). We have also

(6.2) FAL P ul=1A® vl (veVa)

by means of (2.4) and (2.10).
If uo=V, we have

(5.3) lu(@ily =CI ANV U, $)A()772- Al uoll =Cllually
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(54) lu(Hl. =ClADUE, $)A(s)™2- A9 uel| SC(t— )™ 2 lu [l
and also
(5.5) Ju®—u(y LU, $)—U(z, $)JA(S) ™2 Als)*uo]

SCEE—or (=9 ully  (0<e<h),

by virtue of Proposition 2.1 and Proposition 2.2. We now claim the following

LEMMA 5.1. There exists a constant C>0 such that
(5.6) 1Ex(t, Suolly SCh/E—9)"*uolly for all ue€V and T=t>:=0.
ProOOF. In (4.2), we have first of all,
6D ey S N(Ra®)—Du®lly +1 U, ) PulRu(®—Du@®lly
S Chlu(®fle+Ct—9) [ (Ra®) —Du@)]
=SCh(t—s) ludly (7 (5.3), (54).
Next we get by (2.8) and (5.2)
6.8 | eﬁf)(f)ilvécsz I An(D* UL, ©) Anle) ] -
[l An(D) ¥ (Ra() — Ra(D)uDl dz

=Chl (—o Hudlude ¢ (39)

=Cht=9)* =9 ucly . (54)
=Ch(t =97 |luglly -

Finally we have by (2.8) and (5.2)

le?®Olly = CS: AR UE, ©) Ap(D- | Pr(Ra(0) = D(ule) —u(t) dr
gCS: =) ¥ hu(x)—u®)lydc (7 (2.28), (3.6))

¢ PR -z oo
SCOR| (1~ =9 ulyde (- (G5)
for O<e<k.
Here we can choose 1>¢>1/2 from the assumption £>1/2, so that

(6.9 lei? (Olly SChlE—9) " uolly .
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Thus we have obtained (5.6). Q.E.D.

We state now the main result of this section.

THEOREM 5.1. Under the assumptions (Al), (A2)-i), (A3) and (5.1), there exists
a positive constant C such that

(5.10) VEL(t, shuolly SCh/(t— )1l Tzt>sz0)  for all uee X.

PROOF. In dealing with the right hand side of (4.13), we have

(5.11) 1 Ex(t, soU(se, Suolly SCh/ (&)L A(se) 2 U (S0, S)holl (BGEY)]
=Ch/(t— )l ull

and also

(56.12) FUR(E, s0) PuEr(so, Suolly SCE— ) Er(Se, Sttoll

ZCh/(E—s)lu,l
by means of (4.17).
Thus we have (5.10). Q.E.D.

§6. Application to the finite element approximation

We recall that £ is a bounded domain in RY with smooth boundary 0£.

In this section we shall apply the result of §4 and §5 to the parabolic dif-
ferential equations with the Neumann boundary condition as was mentioned in
§1.

Namely, we consider the following problem:

ou

(61) ’E“—l—uﬂu:o (tE(O, T], XE.Q) R
6.2) —g%:o (te(0, T1, x€09),
and

(6.3) Ul gm0 =1uo(x) xe).

Here 4, 0/0v and u, are those mentioned in §1. Namely, £ is a differential
operator with smooth coefficients depending on x€2 as well as t<[0, 7] of the
form

(6.4) J=— év) j—w-(t x)—a— : % bt x)—a——'—c(z‘ x)
) T R ox, T ex, T AT Y Gk, Y

with the uniform ellipticity:
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N -
(6.5) Re wZilau(f, 0CE =L =G, -, Lnel?)
with a constant §’>0. 0/0v means the differentiation along the outer conormal:
©66) 0 3 et 02 (e, T], x200)
) dy a5 T o X ’

where n=(n,, ---, ny) is the outer unit normal to 042, and u, is an element of X
=L

Now putting V=HY2), we define a sesqui-linear form a,(,) on VXV for
each t=(0, T] by setting
6.7) a,(u v):S { % a; {t x)iuzv+ ﬁb-(i x)~a—u-z7—l—c(z‘ x)u-ﬁ}dx.

’ ela520 7 ax; T oxy =07 7 0x; ’

Then, a,(,) is associated with an m-sectorial operator which we denote by A(#).
Actually we know that

©8) D(AW)={r=HHQ); %:o on 902}
and
6.9) ABv=Av  (veDAD)) .

See, for instance, Lions-Magenes [14] or Agmon-Douglis-Nirenberg [1].
Thus we can reduce (6.1), (6.2) and (6.3) to the following evolution equation
in X:

(6.10) d%quA(t)u:o O<t<T)
with the initial condition
6.11) u(0)=1u, (u,e X).

Now we can verify the assumptions (Al) and (A2) for these a,(,) and A(®).
Because we assume that a;;(¢, x), bt x) and c(t, x) are smooth on [0, TIx 2,
the conditions (2.1) and (2.3) in (Al) hold actually, (2.2") is also true, for we
assume the uniform ellipticity of A. So, the assumption (Al) is seen to hold
good. (See Remark 2.1.)

On the other hand, the relation:

DA CHXD)

is obvious from (6.8) and the inequality (2.6) is the well known elliptic estimate
for A(f), if we change A(f) to A(#)4C with a suitable positive constant C. We
can also confirm the relation
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DA CTHXD)

and the inequality (2.7) similarly, for we have only to take af instead of a,.
Thus we have verified (A2)-i).
Next, we show that the assumption (A2)-ii) holds. The relation

D(A®)") =V =D(AE*")

is well known. See, Lions [13] or Fujiwara [6]. The inequality

(6.12) lvlyZClA®Y™ I weV)
and
6.13) lvlly=ClA@* ™l (weV)

are derived from the elliptic estimate for A(#) and A(®)*, if we notice the inter-

polation relation
V=H'Q)=[H*D), L(2)]

and Heinz-Kato’s theorem (see, Lions-Magenes [14] and Kato [10]). Consequently,
we have
JADY™P=a(v, A®* 2 AD )

EMlvly- | AB* 2 AD Polly = MCllolly | AQVP0l
i.e.,

(6.14) TA@® " i=Clvly  if veD(AW).

Now take v&V arbitrarily and substitute v,=(1-+24()) 've D(A®) into (6:14) in
place of v with small 2>0. Then we see from (6.12) that (6.14) is valid for v if
we make 2 tend to 0. Thus we have verified (A2)-ii).

Now we shall proceed to the finite element approximation. By V, we mean
the set of trial functions, i being the size parameter of subdivision of £. When
£ is a convex polygon, we make a regular triangulation of £, and & represents
the largest diameter of the element triangles. In this case we set

V,=“the set of all functions in V which are linear in each element”.

But when the boundary of £ is curved, we must modify V, in a certain way.
In this connection, see Zldmal [17]. Anyway, we can construct a finite dimen-
sional subspace of VC X, which we denote by V,, for each parameter 2>0 and
we know that V, satisfies (A3) by the theorem of M. Zldmal (Zldmal [17]). Now
we denote by u,=u,(f) the semi-discrete finite element approximation to the solu-
tion of the problem (6.1), (6.2) and (6.3). This means that u,: [0, {]—-V, is the
solution of the following equation:

(6.15) -51‘— (D), )+ a(un(), v)=0 0=t<T) for all yeV,,
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with the initial condition
(6.16) (ux(0), ="(uto, %) for all y=V,

where (,) is the inner product in X. If we denote the m-sectorial operator on
Vs associated with a,|y,«p, by Ax{D), then (6.15) and (6.16) are equivalent to the
following (6.17) and (6.18), respectively :

6.17) L u b A=0  (0t=T),

6.18) un(0)=Pru,,

where P, is the projection from X to V,. Under the assumption (Al), we can
solve these evolution equations (6.10) with (6.11) as well as (6.17) with (6.18) in
terms of evolution operators by means of generation theorems mentioned above.
That is, the solutions are given as

(6.19) u()=U(t, O)u,
and
(6.20) u()=U,, 0) Prue

where {U(%, $)} rataszo and {Uy{, )} rzizszo are the families of the evolution opera-
tors generated by A(f) and A,Q), respectively.

Therefore, we can apply Theorem 4.1 and Theorem 5.1 to this semi-discrete
finite element approximation. In particular, we have

THEOREM 6.1. Under the circumstances stated above, we have the estimate
(6.21) lun@O—u@Ol=C(A?/ 1) uddl  (O<t=ZT)

with any 0<e=1/2 for the error committed by the semi-discrete finite element
approximation.

Appendix: A remark on the generation theory of
Y. Fujie and H. Tanabe

The original purpose of this Appendix is to give a proof of Proposition 2.2.
We shall, however, deal with it in the full abstract manner. Thus, what is given
in this Appendix is logically independent of other sections and is intended to be
a contribution by itself to the generation theory of Y. Fujie and H. Tanabe
(Fujie-Tanabe [2]).

Let (X, V) be a couple of Hilbert spaces such that V is a dense subspace of
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X and the inclusion mapping is continuous. We denote X-norm by |[-|| and V-
norm by [-{y. The sesqui-linear form a,(,): VX V—C is given for each tc[0, T']
(where T>0 is a given constant) such that

D ladu, v =Miudiv-lvllv,
i)  Rea,(u, wy=olull%
and

i) lau, v)—alu, )| EClt—sl*luly vy for all u,veV,

where M, 8, C>0 and 1/2<k<1 are constants independent of #, s€[0, 7] and u,
veV.

a, can be associated with a bounded operator A7(t): V—V*, V* being the dual
space of V, whose restriction to

D,={weV; Atve X}

is an m-sectorial operator in X which we denote by A($) (Kato [11] or Lions
[12]). Here we identify the dual space X* with X by means of Riesz’s repre-
sentation theorem and so we have the inclusion XS V*. Henceforth, we regard
A(t) as an m-sectorial operator in V* whose domain is V independently of €
[0,73. In Fujie-Tanabe [2] it has been shown that the inequality

(App. 1) IA@®A©) 1 — A(s) AQO) Hlyrp = ClE—s|*

holds under the condition iii) and that A generates a family of evolution opera-
tors: V*—V* of Clclass, which we denote by {U(, )} ratzs20, by means of (App.
1). Furthermore they have shown that the restriction of U, s) to X, which is
denoted by U(, s), is a bounded operator: X—X and the family {U(Z, $)} rzszsz0
turns out to be the family of evolution operators of C'-class whose generator is
AQ@) if B>1/2.

Moreover, the next inequality is an immediate result of Sobolevskii [15] and

(App. 1).
(App. 2) 1A@TOE, 90z, 9146 vl
<CB, 7, OE—) (e =9 vy (Tzt>r>520,vEV)

if 0=y<1, 0<8<§<1+%k and 0<6—y=1, where C(f, 7, 0) is a positive constant
depending only on the parameters f, y and 4. In consideration of the inequality

(App. 3) Slvly <IA@vlv-=Mlvly  weV),

which follows from 1) and ii), and of the fact that 0 is contained in the resolvent
et of A(f), we get



44 Takashi SUzUK!

(App. 4 1A@ L0, 9—0(z, 914G 20l
=CB, 7, D)=z = | Al vy
from (App. 2). If we take veV arbitrarily and substitute A(syv=V* into (App.
4) in place of v, we get
(App. 5)  JAWTLUG, 9~ U, 91AG #ully
=CB, 7, Ot—0) (= oly  (Tz=i>r>sz20,veV).

We now consider the equivalence of V-norm and | A(#)**-|-norm. We intro-
duce another sesqui-linear form a}(,) by setting

af(u, vy=av,w) (@, vEV).

If a¥=a, holds (that is, A(?) is self-adjoint) for each :[0, T, the following con-
dition (A) is satisfied from the conditions i) and ii).
(A) We have
DA®Y=V ([0, TD

and there exists a positive constant C such that
(App. 6) CHvly =A™ i =Clivlly  (t€[0, T3, veV).

This condition (A) is not true for an m-sectorial operator in general. However,
when we take X=L¥2) and V=H} Q) or HY(Q) for a “regular” bounded domain
in RY, and when A({) is a uniformly elliptic differential operator of second order
with the boundary condition of Dirichlet or Neumann, such as (1.5) with (1.6),
whose coefficients are smooth in [0, T, it is true that A(f) enjoys the property
(A), as was proved in §6.

We shall assume (A) from now on.

By the way, the equality

(App. 7) AW ely=A " (0=a<l)

is easily verified by appealing to the integral representation of the fractional
powers of an m-sectorial operator. We have also the equality

(App. 8) ADw=A®w  @weV) if —1=ga=<1/2,

by virtue of the assumption (A). In fact, we have only to consider the case
0=a=<1/2. Then we have

f=AMwveX  for each vV

because of
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V=D(AN")CD(AB?) .
Therefore, we have v:A(z‘)‘“f:AN(z‘)“"f by (App. 7), and hence
F=Av=Av.
By means of (App. 8 we can rewrite (App. 5) as
(App. 9) TADT LU, 99Uz, STAGS) Pvly
=CB, 7, Ot—) (c—s?olly  (vEV),
if 0=y=1, 1/258<0<1+% and 0<d—y=1. If we take v€ X arbitrarily and

substitute A(s)"**veV into (App. 9) in place of v, we have the following

THEOREM. Under the assumptions i), ii), iii) and (A), we have

(App. 10) AW LUG, 9—Ule, 9IA@" ] .y C(B, 7, O)t—2) Tz —9" 7,
if 0<7<1, 1/25B<6<14k and 0<d—y=1.

Here C(B, 7, 0)>0 is a constant independent of t, v and s (T=t>7>s=0).

Taking y=1, f=3/2 and e=d—3/2 in (App. 10), and taking y=1, f=1 and
e=0—1 there, we have the inequalities (App. 11) and (App. 12) in the following
corollary, respectively.

COROLLARY. Under the same assumptions as in theovem, we have

(App. 11) LU, 9)—U(z, TAES) ully =C)E—) 2z =9 lv]  wsX)

if 0=e<k—1/2,
and

(App. 12) ILUG, )= Ulz, ) JA(S) ]y =Cl)t—o)(z—9) vl (veX)
if 0<e<k,
with a constant C(e)>0 independent of t, ¢ and s (T=1>7>s=0).

REMARK. Without the assumption (A), the inequality (App. 9) still holds for
0<y<1, 125=8<1+k and 0<8—y=1, because (App. 7) is true even under such
a situation.
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