Some singular integral transformations bounded
in the Hardy space H{R")

By Akihiko MIYACHI

In this paper, we give some sufficient conditions for singular integral trans-
formations to be bounded in the Hardy space H'=H'(R"). H*® is the set of L'
functions f such that there exist L' functions fj, f5, -+, f» with the following
properties :

£
13

where f denotes the Fourier transform of f. We set

Fi&=i

F©@,  j=12-n,

s VIS T

In §1, we shall state and prove our main result. In §2, we shall apply the
result to obtain some multiplier theorems.

Our results generalize the result of Fefferman and Stein [3] (Corollary 1,
p.149) and that of Bjork [1], and also give singular integrals of a new type. The
proof is based on the atom decomposition (for the definition, see Definition 2
and Theorem 2 below) of H! functions. Similar arguments are found in Coif-
man [2] pp.273-274.

Throughout this paper n is a fixed positive integer and it denotes the
dimension of a Euclidean space.

The author wants to express his thanks to Mr. A. Uchiyama, whe gave him
a suggestion of the proof and told him valuable information.

§1. Singular integrals in H*.

DEFINITION 1. A function f defined on some interval (R, co) is said to be
of class F; (B<R) if f is continuous, positive, nondecreasing or nonincreasing,
and

iig} ];(é:)) =c¢f  for every c¢>0.

A function & defined on some interval (0, §,) is said to be of class K, (¢ €R) if
k is continuous, positive, nondecreasing or nonincreasing, and
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. Rlex)
1;:33 2x) =¢ for every ¢>0.

For nonincreasing fe kg)osF - and nondecreasing ke };JOJCQ, define 0:(v), ¢ ()
and h;(y) as follows:

Gr(ry=rfQ/r) ¥ for re(0,1/Ry),

$r (D) =yk(1/y)¥* for y<(1/4s, ),

he(y) = for v in the range of ¢,

1
o ()

where ¢;' denotes the inverse function of ¢,.
The following theorem is our main result.

THEOREM 1. Let K be a tempered distribution on R, feﬁU F_p and keLZJOJCa.
20 a

Suppose that f is nonincreasing, k is nondecreasing and k(xjél. Also suﬁpose
that K is equal to a locally integrable function on R™ {0}, the Fourier transform
K is a bounded function and that there exists a constant C such that the Jfollow-
ing estimates hold :

IR@&I=Cr(&h  if 1&1=C,
K@&)|=Cr(&)  if IE1=1/C,

(1) [K(x+y)—K@0ldx=C  if [y=1/C,

SlxlzCﬁﬂlyn
(2) SImZa]K(X‘f‘y)*K(x)}dxg(?]y]hk(a)

i c=lzaz ()

Then there exists a constant A such that

1K+ glm=Alglm  for every geH.
We prove Theorem 1 by using the atom decomposition of H' functions.

DEFINITION 2. A function b defined on R” is said to be a l-afom if there
exists a ball B such that
1

support (b)) CB  and Hb||L°°_-<_—ﬁ

(|B]=Lebesgue measure of B) and if anb(x)dx:O.

We refer to the following
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THEOREM 2 (R. R. Coifman [21). A distribution g is in H* if and only if
there exist a;€R and b;(x) 1-atoms, 1=0, 1,2, ---, such that

glx)= i:}) a;b;(x)
and

Algln= 5 el =Bl glm.

Here A and B are constants independent of g.

Although Coifman’s paper deals with only the one dimensional case, the
result is valid in any dimension (A. Uchiyama, personal communication).
Before the proof of Theorem 1, we prepare an elementary lemma.

LEMMA. (1) If EEK,, then, for every >0,

. k(x) . oxee
lim prer =0 and LIP(T)I A6 =0.

z—0

(ii) If kEKy, then for any ¢>0 and >0, there exist 0>0 and 6'>0 such
that 0<x<d, 0<y=d and c(1—8")<y/x=Zc(1+8") imply c*(1—e)Zk()/k(x) =
c*(1+e).

(ili)y If k€K, and hEKg and if kh is nondecreasing or nonincreasing, then
Ehe Kqp.

(iv) If keX, and if k(x) is defined and continuous on (0,d], then, for any
B>a, there exists a constant Cz such that

Max {k(x) x™#} =Cgk(y) y78.
ysas

(v) If kEH,, a>0 and if k(x) is strictly increasing, then the inverse func-
tion k7 is of class Kyjg
The same is true, mutatis mutandis, for functions in Fg.

PrROOF. All of these facts are proved by elementary arguments. We shall
omit the proof of (i), (i), (ii) and (v). Here we give the proof of (iv). We
assume that k(x) is nondecreasing. The proof for nonincreasing 2 can be
carried out similarly. Take >0 and 8”7 >0 such that (1—4§")2°7*>1 and

(3) B(x/2) =z (1—d")27%k(x) for x={(0,07].
Suppose that
Max {k(x) x %} =k (x0) 2,77, Y= x,=0.

y<r<é

In the following, C.~C; denote constants independent of y and x,. If 87 =x,=0,
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then %(x,) x,"P=C,. Suppose that x,<4” and take an integer j such that 2/y<
%o<2771y. Successive applications of (3) show that

k(xo) 207 P2k () y P2k (xe/277%) (x,/27) 78
Z{(1—8)27*H*1298k (x) x,75.
Hence {2°7#(1—4)}7<C,. But, since 26-*(1—§’) >1, this means that J=C, and
hence x,=C,y. Thus we have
k(xo) o PSR (Coy) y PSCik () yh.

This completes the proof of (iv).

Proor OF THEOREM 1. In order to show the H' boundedness of the opera-
tor g— Kxg, it is sufficient to prove the (H-L') boundedness; [K* gl
=Alglla (cf. Fefferman and Stein [37 pp. 149-150). But, by Theorem 2, this
can be derived from the estimate;

(4) |K* gl <A for every l-atom g.

Since the operator g— K=*g is translation invariant, it is sufficient to consider
the l-atoms g such that

(5) support(g) C{x=R"; |x|<r} and |gl-=r

with some »>0. We denote by 4, the set of functions g which satisfy the
condition (5). We shall prove (4) for g4, ¥>0. Throughout this proof A
will denote constants independent of »>0 and g€ A,.. But A may have dif-
ferent values at different places. (Even if A appears twice or more in a sequen-
tial equalities or inequalities, they do not necessarily have the same value.)

(a) First, we show that there exists a constant B such that
(6) IK*glii<B if ge A, and r<1/B.

Suppose that g= 4, and r is sufficiently small.

(a-D Consider the case; SEF_ 5 with 058<{(n+1)/2. Take a constant
C, such that C8,(s)~s=C#;(s) for small s>0. Since C,0,(r)>r and

fg(y)dyzO, Kx*g(x) is given by the integral

Kxg=|  (Ka—»-K)g()dy

if |x]|=Cls(r). If [y/=r, taking zeR"™ such that |z]=r and lz—y|=r, we
have
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|K(x—3)—K(x)ldx

Slxlzclﬁﬂ'r)

<

IK(x—y»)—K(x—2)|dx

SIx—yI;C&ﬂr)

SIII;C’ﬁf(r) |K(x—2)—K(x)|dx

IIA

A.

Thus we have

S}zeclaﬂ”‘K*g(%) ldx

églyigrlg(y)ldyg K= —K (0 ldx

1212010 fC

(7)

éAS lg(»ldy

iytsr

= A

It follows from Schwarz’ inequality and Plancherel’s theorem that

(8) S!x§§010f<.,>[K*g(x>ldX

S A0 () K * gll o= Arvef (1) K- gl e

Set g:(x)=r"g(rx). Then, since g,=4;, we have

(9) 18:le=llg:ll 2= A,

£.(0)=0, lgrad &:ll;==Allixlg. () 111 =4,
and
(10) 1£:(&) | < Al&l.

Since g(§)=g,(r&), we have

1&-glie= 1R (©)1F12,08)

HYELY CsifiIgyr yrslél

orlerasral o ragnigras
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+A§ FUED8. (rE) PdE

1rsld)

=< Ar:4 Ar? glc/rf(s) 2gntids

FAFUR| a9 e,

Y
But, by (iv) of the lemma,
S;/rf<5)zsn+1dg§clylgl)/( {f(s)zsnﬂ}_}’_gAf(l/ryr_n_z‘
And, by (9),

ds ZAr .

r® T

[ ecoke= la@p

Hence,

11 IB-gI3= A+ (Un)tr ™ SAfQ/n)r ™,

where the latter inequality is seen from (i) of the lemma. (&) and (11) give

(12) |[Kxg(x)|dx= Al

Slxlsclﬁf(r)

(6) follows from (7) and (12).

(a-ii) Consider the case; f€%_; with S=(n-+1)/2. In this case, the as-
sumptions of the theorem imply, at any rate, the estimates,

K@) =Co (118D

and

S,ZIECZEK(X‘FJ’)—K(x)]dx§c2 if |y|=1/C

with some constant C, (cf. (i) of the lemma). Similar arguments as in (a-i)
show that
S K% g(x)|dx< A
jzizCo+1

and

I S

But, using (9) and (10), we can easily show that
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| AHIED 718,00 a2 A
Hence (6) holds in this case also.

(b) Next, we show that there exists a constant B’ such that
13) 1K * gl .1 =B’ if gedd, and r=A.

Suppose that g& A, and r is sufficiently large.

First, by |K(8)|<A and | gl 2 Ar~™? Schwarz’ inequality and Plancherel’s
theorem give

fopee, [ * g0 A= A2 R 8] w2 A,
Next, by setting a=¢,(|y]) in (2), we have

[K(x+y)—K(x)ldx=C if [y|=C.

Slzlzwk(lyl)

From this, by using the same technique as in (a), we easily see that

<
g'“%m(r) K+ g(x)ldx=A.

Hence, in order to show (13), it is sufficient to show the following estimate ;

(14) K+ g(0)ldx= A

S4T§III$3¢}3(T)
Take a function DeC5(R") with the following properties;
D(x)=0, support(D)C{|x|<1}, and SR"D(X> dx=1.

We_shall fix a function D. Set D;(x)=s""D(x/s), s>0. Then, for any number
N>0, {D,(8)=]D(s&)|=Cy (1-+5]&)) ¥ with some constant Cy. Set g, as in (a).
If C=s=r, then

1K % Dy gi5:=lK (&) D (s§) 8:(r&) I3

<4l IR@1A+s1E) =18, r8) 110

i { i
RAES VA4 JUTEIS IS 1szif1=4/C JUCLIE
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<alf  eeDericras
£ BED A Ge P
] RUED A2 ) e
£ sEa 00 e}

< A{k (1/7)2r‘”+k(1/s)2gkn 12, (rE) |2dE

+ Max (k(x) s | 1609 s

ssxs1/C

X

R'Il

(We fix a sufficiently large N.) From this, using (9) and (i), (iv) of theilemma,
we see that

IK % Dy glipe<ARQ/s)r™* i C=s=r.

Hence Schwarz’ inequality gives

(15) [, e Do gl dxs abeU/s)r™s  if CZs5r.

Next we show that

3(1{24:1'[(* (6—Dy)* g(x)|dx=Ahw(a)s
(16)
it css=razi(yy )

where § denotes the Dirac measure. But, if |z|<s and C<s=<a=d;(s/k(1/s),
then, by taking weER™ such that |wl=s and |w—z|=s, we have

[ KO —KG-2ldy

= Slyizza ”{<}') —K(_}"‘ZU> !dy+g 2g ‘K<‘v—w> —]{()’—Z) ld_}/

ty~zlz

<Ah,(a)s.
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Hence, if C=s=r=a=¢,(s/k(1/s)), we have

Slzl;mIK*(é—D‘?) *g(x)ldx
ég, ] dxg, - lg(x—yﬂdyg |K () —K(y—2)|D,(2) dz
zizia Z-ylsT 121<s

§A5121§3D8<Z) dZS BalK(J’)—K(y—z)la’y

lylz
<Ah,(a)s.
Now suppose that C<r=a=<¢;(r). By (15) and (16) we have the estimate

a7 [K* g(x)ldx=<A{shp(a)+a™*k1/s)r ™%

Swélx)gsa

for every real number s which satisfies the following inequalities:

r§a§¢i(ﬁ§)—>

We shall show that, if r<a=¢,(r), the equation

(18) Css

A

19 shyla)=a™*k{1/s)r ™?

with s unknown has a unique solution that satisfies (18). Since the left hand
side of (19) is an increasing function of s while the right hand side is a non-
increasing function, it is clear that (19) has a unique solution s=C (so long as
a and r=a are sufficiently large). (Note that h,(a)—0 as a— o.) We show
that the solution s satisfies (18) if v=<a=¢,(r). The equation (19) can be re-
written as follows:

an/z

s —
E(1/s)  hpla)r™?”

(199

The left hand side of (19”) is an increasing function of s and the right hand
side is an increasing function of a. If a=¢,(»), then

s . CZ7z/2 - ¢k(7,>n/2 . 7
E(/s)  ha(a)r™® T he(ga ()™ R(1/7)

and hence s=7. On the other hand, if a=v, then

S an/z 1

E(A/s)  hila)r® = e =7 (1.
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This shows that ¢.(s/k(1/s))=r. Hence, if ¥=a=¢:(r), we have the estimate
[ gD xS Ashi(@),
4jaziris8a

where s is the unique solution of (19).

Now we shall prove (14). To prove this we may suppose that r<g¢,(r).
Let M be the integer such that

24 < B (1) < QML
- r

Then, for j=0,1, -, M, we have

1K+ g(x)|dx £ As;h, (277),

Sé~2f'r§lrxés-2jr
where s; is the solution of the equation
$7hs (217 =290 (1/s,),

or equivalently

97n/
(i >> H) =75

By summing over j, we have

(20) lK*g(x)ldxéAJé s,k (207).

§4rélx!§4¢k(7‘)

If keK, (@=0), then, by the lemma, HEF,,0, H'€F e, PrEFi. and
heEF 1400 Where e=2a/n. From this we easily see that

) 1 m, 1
S; 2 a3 ) as 7 — oo,
Sji+1
hy(277) ZTL— as 7 — 0o
—_— ke i
h(277r)
and
s (277) O TFTT g s o,

3j+1h1e (27%%r) 7

Moreover each convergence is uniform with respect to j=1 (cf. (i) of the
lemma). Hence there exists a number >0 such that
{sjhk(Zfr)g(l—é)sjﬂhk@j”r)

for all j=1 and all large 7.
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From this, we see that
e . 4 )

(21) 20 S; ]’lk(2] 7’) = 20 (1—5>M—] SM]’Zk<2MT) éASth<2M7’).
i= Jj=

But sxh,(2%7) <A since sy=<r and

Ry (2%7) éhk(%m(r))gAhk@sk(r)):é.

Hence (14) follows from (20) and (21).

(0 We have proved (6) and (I13). Consider the remaining case; ged,
with 1/B=r<B’. But in this case, (BB") "g& Ay and hence |K * gllpa=(BB)*
X K% (BB) ™™g ;1£A by (13). This completes the proof of Theorem 1.

We shall illustrate Theorem 1 by showing some special cases of the
theorem. Suppose that K is a tempered distribution on R* and that K is equal
to a locally integrable function on R™\{0}.

(i) If |K@®|=C and

Sl fal ilK(X“f‘y) —*K(x)|dx§C for every yERn’
Tiz2ly

then g+— K+ g is bounded in H'. This is well-known (cf. Fefferman and Stein
[3]). This is the case f(x)=1 and £(x)=1 of Theorem 1.

(ii) If K has a compact support,

K@ =CA+igh 72 (0<h<1)
and

Sxx|z|y;1—5lK(x+y) ~K(x)ldx=C for [y[=1/C,

then g~ K+g is bounded in H'. This has been proved by Fefferman and
Stein [3] by using the theory of fractional integral and that of the space BMO.
This is the case f(x)=x""%% and k(x)=1 of Theorem 1. Note that the con-
dition (2) is trivially satisfied if K has a compact support, since the integral
vanishes.

(iii) If K has a compact support and |K(&)|<C({1+41&])™™2, then g— Kx*g
is bounded in H'. This has been proved by Bjérk [1] by using the similar
arguments as in [3]. This is the case f{(x)=x""?2 and k(x)=1 of Theorem 1.
In this case, ;(r)=1 and hence the conditions (1) and (2) are trivially satisfied
since the integrals vanish for large C. A limiting argument will remove the
artificial condition “K is locally integrable on R™\{0}”.
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(iv) Suppose that K is equal to a continuously differentiable function on
R, |K(®)I=<CMin {|€]%, 1} (@>0) and that |grad K(x)|Clx| » ¥+ if [x{=C
where ¢=2a/n. Then g+ Kxg is bounded in H®. This is the case f(x)=1
and k(x)=x% We may replace the condition K (&)|=CMin {|€|%,1} by the
following more general condition :

IK(&)I<C and |K(E)—K©O)|=ClE~
(This can be seen from the following decomposition :
K& =(KE —m©)+m(©)
where meCy and m (€)=K (0) in a neighbourhood of the origin.)

ReMARK 1. If f is a positive logarithmico-exponential function defined on
some interval (R, o) and if lim f{x)=0 and Iim x¥f(x)=o0 for sufficiently
large N, then f(x) is decreasmg on some mterval (R’ o) and f& U F_p The
similar fact is true for functions defined on some interval (0 5) As for
logarithmico-exponential functions and related results, see Hardy [4], esp. p.41.

ReEMARK 2. The result (iv) is sharp in the following sense: if e>2a/nz=0,
then the conditions

Ala); |K(&)|=CMin {|£]% 1}
and
B(e); |grad K (x)| SC|x| v+

are not sufficient for the operator g+— K+ g to be bounded in H™

PROOF. Suppose that ¢>2a/n=0. Set ¢ and b as follows;

i ,
a=—7g b=n—(+nd—a),
where
ﬂs—a
g 2dtete -2

’ =
7+ +1 (4o +1

and [ is an integer such that [+»n=n@/2. Consider the function
a \! .

22) K@) =) (@ (aDix|™ exp(~2milx|9)}, xR,
Xy

where ¢=C7(R), ¢(x)=0 for ¥=1 and ¢{(x)=1 for x=2. Then K satisfies
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A(@) and B(e) but g~ K*g is not bounded in H*'. The condition Ala) for K
can be verified by utilizing the estimate given by Wainger [6] p.41. The con-
dition B(e) for K is easily verified. If g— Kxg is bounded in H?, then it
must be bounded in L? (1<p<o) and hence K#*gel? (1<p<co) for every
geCy. But, using the estimate

1

K =g (x| (—2ria ) exp(—2rilx|?)

_}_O(]xl—b~l(1—a)—a>,

we easily see that K#ge& L? if g0, support(g) C{lx|=1/10}, g(x)=0 and p
is sufficiently near 1 (note that b+/(1—a) <n since e¢>2a/n). (Similar calculation
gives an example of the kernel K(x) of (iv). If 0<a<], b=n(l—a/2),

n—b n—b+1

ol

and [ is an integer, then K(x) defined by (22) satisfies the conditions of @iv)
with

—b na
p— )

n
a={— 1 —}—2(1”0) .

§ 2. Some multiplier theorems.

We give some sufficient conditions for a function m(€) to be a multiplier
for H! or for L?, i.e. for the transformation T, defined by (T»g) &)=m(£)£(§

>

to be bounded in H! or in LZ.

THEOREM 3. Let p be a nondecreasing function of class FHg, B=0, k be the
. n 1 . o/n .
smallest integer > 5 +-_.1—}—Zﬂ/n and o(x)=xp(x)¥™. Suppose that m is of class

C* in R™{0} and that m(€)=0 outside some compact set of R". Also suppose
that there exists a constant C such that

@) (&) m@|scotenatsn™ i o<iei=LC

for every differential monomicl (3/08)* of degree lal<k. Then m is a multiplier
for H'.

PROOF. Set K= ‘m (inverse Fourier transform of m). We shall prove
that K satisfies the conditions of Theorem 1 with f(x)=1 and k(x)=p(x).
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Since K is of class C~ in R?, it is sufficient to show the estimate
gl lgrad K(x)ldx = Ah,(a)

for large a. Since every function of class C4(R™ is a multiplier for H?, in the
proof we may assume that support(m)C{|§]<1}, p(x) and o(x) are defined
and continuous on [0, o0) and that the estimate (23) holds throughout R™\{0}.
Without loss of generality we can assume that p(x)=<1. We decompose m
following Hormander [5] pp. 120-123,

m@= 3 m,&, m@=4@Hm@,

where ¢ is a function in C7 such that
1 & N .
support(¢) C{5 <112} and 3 ¢@H=1 i gL

Suppose that ¢ is a large number. Throughout this proof A will denote con-
stants which do not depend on &, j and «, but 4 may have different values at
different places (in the same manner as in the proof of Theorem 1).

Using Leibniz’ formula we easily obtain

.(%)a{&mj (E)}i < A2 (27 g (279) 1

for |a|<k. From this it follows that

AVARL (%)“ {Em; () H| 2= A2772797%p (277)

for |a|Zk
and hence
[A+a @ HxD* grad K;(x)| 2. A277277%20(277)

where K;=%"'m,. Hence, by Schwarz’ inequality, we have
S Igrad K, (x)|dx < A2 Min {1, (¢ (2" a)™}.
ziza
where A=k—n/2>0. Let j, be the integer such that

<2j0+1.

i<

o0
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Then we have

j o
(25) g [gradK(x)[dng{z":2—fa<2—f)-/‘~a-2+ > 2-1}.
izlza j=o j=jo+1

But, since

9-ivig (27972
27g(2

> O-1+2+284/n as j— o

and —1+4-2+4282/n>0, by a similar argument as in the proof of Theorem 1,
we have

,Z?, 2796279 g A< A{L+27 00 (2799 ¢~
(26) S A{l+h,(a)o (he(a) Ha™*
=A(a*+h,(a))
< Ahy{a).

(The estimate a™*=<Ah,(a) can be shown by (i) of the lemma.) Also we have

oo

@7 > 27i=2-h< AR, (a).

j=jotl

(24) follows from (25), (26) and (27). This completes the proof.

An interpolation argument gives the following corollary (cf. Fefferman and
Stein [3] p. 156):

COROLLARY. Let y=0>0, k be the smallest integer >n/2-41/(1+y), and m
be a function of class C* in R™\{0}. Suppose that m has a compact support in
R™ and that there exists a constant C such that

|(Z) m@| scigromg -

for every differential monomial (8/08)% of degree |a|<k. Then: m is a multiplier
Jor H* if y=4§; m is a multiplier for L? if y>0 and

53le7

2=
Similar arguments give the following results.

lIA

| =
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THEOREM 4. Let p be a nonincreasing function of class F_; 0=<p<n/2, k

be the smallest integer >n/2, and m be a function of class C* in R™. Suppose
that m(&)=0 in a neighbourhood of the origin and that

0\«
|(G) m®)|=Cotgna (gD whenever lalsk,
where 6 (x)=xp(x)¥". Then m is a multiplier for H
COROLLARY. Let 1>y=8>0, k be the smallest integer >n/2, and m be a

Junction of class C* in R™ Suppose that m(€)=0 in a neighbourhood of the
origin and that

I(_a%_)am@)[§Clsl—n5/2|{:|—<l-r>lm whenever |a|<k.

Then: m is a multiplier for H* if y=298; m is a multiplier for L? if y>0 and

il_ligi'
p 2172y
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