An abstract stationary approach to three-body scattering

By Kenji YAJIMA®
Introduction.

The purpose of the present paper is to develop the scattering theory for the
three-body Schrodinger operators from a viewpoint of the abstract stationary
theory and to prove the existence, the asymptotic completeness and the invari-
ance principle of the wave operators.

The scattering theory for quantum mechanical three-body system has been
studied by many authors. We mention here, among others, the papers of Hack
[47 and Faddeev [1]. Hack [4] first proved the existence of the wave operators
and Faddeev [1] first studied the asymptotic completeness of the wave operators.
Recently Faddeev’s theory was extended to some directions and simplified very
much by Ginibre-Moulin [2], Thomas [16] and Howland [3].

On the other hand, the theory of simple scattering has been brought into a
rather satisfactory state in recent years by the abstract stationary theory by
Kato-Kuroda [107], [11] and it has been desired to approach multichannel scat-
tering from this point of view. This approach was first undertaken by Howland
[37 rather successfully and in this connection Kato [9] also developed abstract
theory which synthesised his two-space theory [8] and abstract stationary theory
[11], intending to apply it to the multichannel scattering. But these papers still
contain one unsatisfactory point: they can not prove the existence of the wave
operators without appealing to the time dependent method, that is, to the result
of Hack [47, and the theory is not purely stationary in character.

Regarding these situations, the present author attempts in this paper to
approach three-body scattering by the abstract stationary method most completely,
proving the existence of the wave operators in its scope. The author believes
that this approach gives a transparent outlook upon the three-body scattering
theory.

This paper consists of five sections. In section 1 we give an abstract theory
following Kato [9]. However, it will be given in somewhat different form from
Kato [9]. It seems to us that the form presented here is more convenient for
our purpose, though it is more restrictive than Kato’s, in particular for the
proof of the existence and the invariance principle of the wave operators. In
section 2, we review some results of the two-body scattering theory and describe
the three-body kinematics briefly. Section 3 gives a decomposition formula for
the resolvent of the three-body Schrédinger operator. The decomposition formula
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given here is somewhat different from the one used by Ginibre-Moulin (2] and
Howland [3] and is similar to the one used by Thomas [16] which is more
faithful to the one originally used by Faddeev [1]. In this connection the so-called
Faddeev matrix used in this paper has the “adjoint” form of the one used by
Ginibre-Moulin [2] and Howland [3]. In section 4, we study some analytical
properties of several operators which appear in the decomposition formula of
section 3. In section 5, we apply the abstract theory given in section 1 to the
three-body scattering and give some remarks concerning the eigenfunction ex-
pansions associated with the three-body Schrédinger operators.

We shall list here some notations and conventions which will be used
throughout the paper. For any subset /CR!, we put

H.(H={z=C': Reze, Im z=0},
I.(D=I.HJI.

For I, and ,CR', we write &I, if the closure I, of I, is compact and is
contained in the interior [02 of I,. Any Hilbert space is assumed to be separable.
For any normed space ¥, ¥ denotes the completion of X. & is the Fourier
transformation.

For normed spaces X, 9, B(X, 9)) is the set of all bounded operators from ¥
to 9. We write B(¥)=B(¥, X). For closable operator A, [A] denotes the closure
of A. The formula which contains + is meant to state two formulas, one for
the upper sign and the other for the lower sign. If f(x) is a function on Rz
and g(y) is a function on R}, |g>f is the function on RZe™ defined by

U NHx, y)=1(x)g(y).

If f(x,y) is a function on RZy™ and g(y) is a function on Ry, {g|f is the
function on RZ? defined by

KalAm={_ 7t ey

R™

For any densely defined operator T, T* stands for its adjoint.

§1. Abstract theory.

Here we shall give an abstract theory of scattering, intending to apply it to
the three-body scattering in section 5. We shall follow mainly Kato [9], but
some modifications will be made: Kato uses spectral forms whereas we shall use
spectral trace operators and we shall prove the existence and the invariance
principle of the wave operators under a different assumption from Kato [9].

For j=1 and 2, let H; be a selfadjoint operator in a Hilbert space H,; with
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spectral measure {E;(d2)} and the resolvent R;({)=(H;—{)™* Let J€B(H,, 9,
be the identification operator. Let ICR! be any Borel set. We first assume the
following five assumptions.

Assumption 1.1. There exists an auxiliary Hilbert space § and a unitary
operator F from E ()9, onto L¥(I, B) such that for any Borel set ['&l,
FE,(INF™'=y%,, where X, is the multiplication operator by the characteristic
function of the set I’.

Assumption 1.2. There exist a linear manifold ¥, of §, and an operator-
valued function T(A)=B&,, %) on I such that:
(1) %, is a normed space with its own norm.
(2) {E{I"u; ue¥X,, I'&I is Borel} is dense in E{1)9;,.
(38) T(2) is extended to ¥, by continuity and is strongly continuous on I as
a B(¥,, »)-valued function.
@) TQu=FEDuw)2), a.e. 21, usk,.

Assumption 1.3. For any ueE ()X,
1.1 Abtel:lim | Jem B iy 2=1lu".

Assumption 1.4. There exist a linear manifold X, of , and an operator-
valued function Y () on I7.(I) such that:
(1) X, is a normed space with its own norm.
2) {EINu, ucek, I'&] is Borel} is dense in E,(1)9,.
(3) Y(©) is strongly continuous on [7.(I) as a B(%,, X,)-valued function and
Y(X,C¥%, for Im {+0.
@) RO=JR.Y (L) for L=ll.(I).

Assumption 1.5. There exist another linear manifold ¥{C¥X, of $, and an
operator-valued function G(O) on JT.(I) such that:
(1) X is a normed space with its own norm.
2) {E,(INu; usX], I'&] is Borel} is dense in E ()9,
(3) G() is strongly continuous on J7.(I) as a B(¥, ¥,)-valued function and
GOX,CX, for Im {==0.
(1) JRO=R:(DGO).

Under these assumptions, we have the following theorem. The theorem is
essentially due to Kato [9] and we might prove it mimicing the Kato’s method
(see the proof of Theorem 1 and Theorem II of Kato [91).
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THEOREM 1.6 (Kato). Let the assumptions 1.1 to 1.5 be satisfied. Then the
following statements hold.

(1) There exists a unitary operator F. from E D)9 onto L*U, %) such that
Jor any Borel set I'&I and for any u<¥,,

(1.2) (FEINWQ=ApNTADY A£0u, a.e 2A€l.

Furthermore F. satisfies FLE(I")Fi'=yy for any Borel set I'@l. Here Y {(A%i0)
is the boundary-value of Y({) on the upper (and lower) bank of II.(I).

2) Let Wo=W.(H, H,;])=F%F. Then W. is a unitary operator from
E(D)®, onio EI)D, and satisfies the intertwining property H,W.=W.H,. The
operator S=WEW_ is a unitary operator on E. ()9, which commutes with H,.

(3) For any usEI)9,, the limit in the following formula
1.3) s-Abtel-Iim gt He it 1y

— +00

exists and is equal to W.u.

Theorem 1.6 is a rather nice one. But it would be better if we could
replace the Abel-limit by the simple limit in (1.3).

For this purpose, we assume one more assumption which is somewhat
stronger than Assumption 1.5 but is general enough for the application to the
three-body scattering.

Assumption 1.5, In addition to Assumption 1.5, ¥; and G({) satisfy the
following conditions.

(2)  E(D¥; is dense in E,(I)9..

(5)  There exist a Hilbert space ® and operators C, D such that

(5.a) C=B(8 X,).

(5.b) D is an operator from 9, to 8 and DE,(J) is H,-smooth in the sense
of Kato [6].

(5.c) GQu=Ju+CDR(Qu, us¥;, el (D).

Under these assumptions, we have the following two theorems, Theorem 1.7
and Theorem 1.9. Theorem 1.7 is concerned with the existence of the wave
operators and Theorem 1.9 is concerned with the representation of the scattering
operator.

THEOREM 1.7. Let the assumplions 1.1 to 1.5 be satisfied. Suppose that ¢ be
a real-valued Borel measurable function defined on I such that

I

(15) 51 F D2 s 0t oo
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Jor any feL¥I) and
; (1-6) Abel-lim [Je o HoulP={ul®.

Then for any usE(I)D,, the limit in the following formula

1.7 s-lim g¥#H JpmitdtHy

t>xo0

exists and 1s equal to W.u.

REMARK 1.8. If ¢()=t, (1.5) is obviously satisfied and (1.6) is nothing but
Assumption 1.3. Assumption 1.3 and (1.6) have apparently a time-dependent
form. However, we can represent them in time-independent form, see Howland
3] in this connection. '

In what follows, we write T.()=T(DY(A+i0) for 1cl. T.(H)is a B(E,, 9)-
valued strongly continuous function.

PROOF OF THEOREM 1.7. We shall give a proof for W, only. For W_. we
could give a similar proof. By virtue of the usual localization scheme, it is sufficient
to prove the case where I is compact. We first remark that Assumption 1.5
and Theorem 1.6 imply the following two facts:

(A) There is a strongly measurable operator-valued function DT(u)*¥=M(y)
eB(h, & on I such that

(1.9) DF*Z?:SIM( walpdy, 2L,
(1.10) sup | M(a)| =My <oo.
® sup |7 () CI =Ms<oo

Fact (A) is a simple consequence of Kato’s theory of smooth operators [7] and
fact (B) is obvious.

Let I’ and I” be Borel sets such that I'&€l’&l, us¥, veX,. Then by the
proof of Theorem 1.6 (see the proof of Theorem I and Theorem II of Kato [9])
we have

(1.11) (WL, E1w)={ (T, TQ)Y -i0)0)d2
=tim=| (TR, TR+ Y tien)d2

=tim S (R+ie)GU+ieh, Ri2+icw)da.

0 T



114 Kenji Yajma
By Assumption 1.5/, the right hand side of (1.11) equals to
(1.12) (Ju, E,(I"w)+ 11}101 Sl' (DR, (A+1ie)u, %C*Rz(l—is)Rz(Z—l-is)v)dZ .

By Theorem 1.6, we have

& : o & IT(wCT T (wv
(1.13) Lo RG—iOR (et isw=] 2 e
o CHLRAA i)~ RiA— Y IERAL ")

Hence by fact (B) and a simple property of the Poisson kernel we have

19 W] 1SCRG-ORC i diSsup IT (ICFIEL Wl
SMAEI Yol

Combining (1.11), (1.12) with (1.14), and using Schwarz inequality we have

(1.15) {(Wou—Ju, E{I"W)|*< @g IDRy(A+ie)ull*da- M| EI"w]*.

It

Z
The relation (1.15) can be easily extended to the element of the form kiz)lEz(I Bk,
I,E€I', v, &X, instead of v. Hence by (2) of Assumption 14,

(1.16) IELIDW o —Nul*= M3 @51 IDR(A+i)ul?d2,  usX].

Since the correspondence 9,2u—DR,(A+is)usll’,D,) converges strongly as
10 by Assumption 1.5 and E,(I")(W.—])eB(ELD®,, E,(I)D,), relation (1.16)
can be extended to any element of the form E,(I")u, ue®,. Hence replacing u
by E,(I")e t¥#y extending the integral region to (—oo, o) in (1.16), and using
the Parseval relation, we get from (1.16) that

(1.17) [ E(I")e*#2 Jom o HDE (I yu— W, E{(IJull®
=|EN(Wi—=])e P FE(I )ul®
<0 Dot (s

On the other hand by fact (A) and Assumption 1.1, we have

De tHImUSHDE ()= XI’ ™I MO Fr)(2)dA .
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Hence the last member of (1.17) is estimated as

(118) M3 (1D smmsts o (1 eds

=), et MGy FR DS

e
I

Since relation (1.5) implies (1.5) for any 9,-valued L*-function, the right hand side
of (1.18) tends to zero as t—oco. Hence we get

(1.19) %;1121 EZ(I/)eimi(Hz)Je—it¢(H1)E1<I/)u: W+E1(I’)u

as t—oo. Here we can remove E.{I’) in front of the left hand side of (1.19) by
virtue of (1.6). This completes the proof. (Q.E.D)

We close this section, giving a representation formula for the scattering
operator. We put S=FSF*. S is a unitary operator on L*J, 5. By facts (A),
(B) of the proof of Theorem 1.7, T(2)D* and T.(A)C are B(R,H)-valued strongly
measurable functions on J, and hence (T.(A)C)* is also a B(Y), &)-valued strongly
measurable function on /.

THEOREM 1.9. Let the assumptions 1.1 to 15" be satisfied. Put
(1.20) S=14+22iTADHT_(DC)*, =1,
Then S(2) is a B(§)-valued strongly measurable function and for any feL*1,Y)
(121 SHD=S D), a.e 2=I.
Moreover, SQ3) is a unitary operator for almost every A<I and for such A,

(1.22) S =1—22iT Q) D*(T.(DC)*.

Proor. Take usX, and v&X; arbitrary and put #.=F.u. By the definition
of S we have

Su_=FSFF_ u=FWiW_W*=F,u=i, .

By (1.11) and (1.12), we have for any I’'&l,

(1.23) (FE.(I"u, Fm—F-u)—-SP (T, (T D—T_(D)w)da

=tim 2xi | (DP.(H,~ 2w, C*P.(H,~ .
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_ 1
JLETh
(1.13) and a similar equation for DP.(H,—2), we get that in LI, $,)

Here P.(2) is the Poisson kernel, PE(Z):% By facts (A), (B), equation

(1.24) s-lim DP.(H,=w=DT T2,

(1.25) s-lim C*P.(Hy— Du=(T-(C)T-(Ru.

Combining (1.23), (1.24) with (1.25), we have

(1.26) SP (T, T-Qu—T-(Du—2xiTDHT_(DHCYIT-(Du)d2=0.

Since F¥] is a dense set of L¥I, %), we get from (2.26)
a.2m 2 (D=a_ QD2 T(ADXT_QDC)*a_(2) a.e. Asl.

Now we can easily show by a simple limiting procedure that (1.27) holds for
arbitrary #< L%, §), which completes the proof of (1.21). Other statements can
be proved by a routine method, see for example, Kuroda [14]. We omit the
details. (Q.E.D)

§2. Three-body Hamiltonian and a review of the two-body theory.

In this section we are first concerned with the kinematics of the three-body
system, and next we review some fundamental results of the two-body scatter-
ing theory. In what follows we always comsider the system in the center of
mass coordinate frame.

We use the Latin number j to denote the name of the particle, j=1,2,3
and we denote by m; the mass of particle j. Pairs of particles are labeled as
a=(1,2), §=(2,3) and y=(3,1). We also use a as a parameter running over
1,2), (2,3) and (3,1). m, is the reduced mass of particles 1 and 2, mal=m!
+m3!, and 7, is the reduced mass of pair ¢ and particle 3, ng'=(m,+my) *+ms".
We denote the position of particle j by x;. x,=x,—x; is the relative coordinate
My X1 MaXe

my+1m,
the center of mass of pair « and particle 3.

For any pair @, (ta. v.) forms a complete coordinate system of internal
positions of particles. The transition from one system to another is made by a
linear transformation with Jacobian 1. We denote the conjugate variables of x,
and y. by k. and p..

Let $=L¥R®™) be the state space for the three-body system. Each of
coordinate system (x,, v.) induces a decomposition of space into the tensor product
of L¥Rz ) and LAR;): &=L (R: )QL*R; ). The three-body free Hamiltonian

between particles 1 and 2, y,=x;— is the relative coordinate between
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is given as an operator on by

1 1
(21) Ho—_——mAxa-“—Z'E’Aya
formally (we always remove the center of mass coordinate). Here A is the
n-dimensional Laplacian and « can be replaced by B or y. If the interactions
between the particles are assumed to be two-body local interactions V. (x.),
Va(xp), Vi{x,) and there is no external forces, the total Hamiltonian of the real
system is given by

@22 H=Het Vot Vet V,,

where V,’s are multiplication operators by V,(x,)'s. For any pair «, we denote
by H, the clustered Hamiltonian: H,=H,+V, We write V=V _,+ VetV
For the interactions we assume the following two hypotheses.

Hypothesis 1. Let V{(x) be any one of V(xa), Vg(xz) and Vi(x). Then V(x)
is a real-valued function on R™ and there exist two real-valued functions
fieL°(R™), f,eL?(R™) (p>n/2) and a constant 6>1 such that

V(x)=0+ 187 9(fi(x)+fox), xR,

Formal differential operator H, is essentially selfadjoint on C{(R?™) and the
closure of H, has the domain D(H,)=H*R*). Moreover it is well-known that
under Hypothesis 1 operators H and H, are selfadjoint operators with the domain
DH)=D(Hp)=HR*™). RQ=(H,—0)", RO=H-{" and RALO=H.—~{™
are the resolvents of operators H,, H and H,, respectively.

We next review some important results of the two-body scattering theory.

For each pair «, we put hge.=— 2;1 A;,. hee is a selfadjoint operator on
o

L¥Rz,) with domain H*(R%) and under Hypothesis I ho=/hootve, is also a self-
adjoint operator on L*R%,) with the domain D(h,)=H*R%). Here v, is the
multiplication operator in L[R2 ) by Valxa). 70.a(2)={10,a—2) " and r(2)=(ha—2)"%
In the rest of this section (k, #, v) denotes any one of triplets (Mg, fa, Va)'S.
Aol x)=|Valxa)| "% blxs)=sgn Valx.)| Vaulxa)|¥? and ¢, and b, are the multiplica-
tion operators by a.{x) and b.(x), respectively. r(z)=(h,—2)"* and r(z)=(h—2)"".
We put gyz)=[ar,(2)b], where (a,b) is any one of the pairs (au, b,). Then we
have the following well known lemma.

LEMMA 2.1. Let Hypothesis 1 be satisfied. Then the operator goz) is a com-
pact operator in L¥R™) for every z&C\[0, co). Moreover the B(L*R™)-valued
Sfunction g(z) satisfies the following properties.
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(1) go(2) is uniformly bounded and analytic in C\[0, o).
(2) go2) is uniformly Hdlder continuous in the closed cut plane.

(3 limllg2)=0.

By virtue of Lemma 2.1 (1), operator 2 has at most finite number of nega-
tive eigenvalues 2, ln (repeated according to its multiplicity) [12]. We
denote the corresponding orthonormalized eigenfunctions by ¢y, ', Pm, and the
orthogonal projection onto the closed space spanned by ¢, -+, @m by P, Q=I—P.
The following lemma is well known [14].

LEMMA 2.2. Let ¢ be any one of ¢i, -+, u. Then for any N>0, (1+1x|9¢
e L¥R").
Throughout the following sections we further assume the following condition.

Hypothesis 1. For any Va, Vg and V3, (1-+go(A10)) 7! exists for every A=0.

LEMMA 2.3. Let Hypothesis I and Hypothesis Il be satisfied. Then operator
[ar(2)Qb] satisfies all properties of Lemma 2.1 replacing goz) by [ar(z)Qb]. More-

over

H=r@Q-+ 5,(2;—2)716,95]

for all z=C\[0, o).
LEMMA 24. Let Hypothesis 1 and Hypothesis 11 be satisfied. Then the fol-

lowing statements hold.

(1) The essential spectrum oess(h) of h is [0, 00). ous(h) is spectrally absolutely
COntNUOUS.

(2) The part of h in o.,h) is unitarily equivalent to ho via the time-depend-

ent wave operators W,
W.=s-lim gthe 0,
Lo
REMARK 2.5. Under some regularity condition on V.'s, (1+g,(2£i0))™" exists
for every A>>0T[18]. For 4=0, it may happen that (1+g(0+10))"* does not exist
even if V. s are sufficiently nice. But such potentials are very rare in a suitable

sense [1].

$3. A decomposition formula for reselvent R(z).

In this section we shall give a decomposition formula for resolvent R(z). By
virtue of our assumptions, each operator h, has at most finite number of
discrete negative eigenvalues, but in what follows we write as if each h, has
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exactly one negative eigenvalue —x% with corresponding eigenfunction Ol Xa)
General case is treated by a simple change of formulas in the following sections
[11. We denote the direct sum of three copies of $ by %2@@@@@ and the
generic element of © by thary gy Uy). é:@@LZ(R;a)@Q@L%RgB)@Q@LZ(R@)

~

and generic element of © is denoted by “(u,, o4, -, Uy, 0;7). h, is the operator
in L¥R3) and is defined by
1

—_ g2
ho—= o A, —kE,

Fol2)=(hg—2)"1. Ae=0.Q1, and B,=bQ1,, where I, is the identity operator on
LXR; ). Au=*(Asu, Agu, Ayw) and Bu=4B.u, Bgu, B;u). Then V=A*B and

CHY R(z)=Ro(2)—[BR(2I*1+Qu(2) " ARy(z),  Imz+0,

where Qy(z2)=[AR(z)B*].

In the sequel, we sometime employ the notation for the case that A and B
are bounded operators if no confusion is feared. For example we write Q,(z) in
(3.1) by Qo(2)=AR(2)B* even if A and B are unbounded operators. In the rest
of this section we always assume that z&C'\R’. The operators W (z), D(z), F(z),
A and B on «f) are defined by

ARy (2)B. 0 0
W(z)= 0 AsRo(2)B;s 0
0 0 A;R(2)B,
AaR{2)B 0 0
D(z)= ( 0 AsRy(2)Bs 0
0 0 AR 2)B,
0 AeR{2)Bs  AsRA2)B,
Flz)= <A[3Ra(z)Ba 0 AsR(2)B;
A;R2)B. A;R3(2)B; 0 -
Ay 0 0
fL( 0 A 0
0 0 4
and
By 00
B:( 0 B 0 |,
0 0 B,
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respectively. The operator Rz eB(®, 9) is defined by
R(Du="R(u, Ry(2u, R(2)u).

Po=|0a{0ul, Qu=I—P, and Ry2=Rd{2)Q. L(&<B®, ), X(2)cB®, ) and
A(z)eB(éi;) are the operators defined by

L@iE=3 (Ri2)Battat [9202)

1 0 0
7o 2){ Bapal 0 0
0 1 0
X(2)= ,
O 77‘3(Z><B‘3(‘D‘3| 0
0 0 1
0 0 7(2){ B,y

and
0 Gaz(2) Gerlz)

(3.2) A@)=|Gslz) 0 Ggla)

Grl2) Guslz) 0
where 0 is 2X 2 zero matrix and Gag(2)’s are 2X Z2-matrices:
ALRY(2)B; Aclop ]

Gagl2)=
g [ 77o:<2><Va(/)al R,%('Z)Bﬁ 7a<z><vafpal IS05>

LEMMA 3.1. Let Hypothesis I and Hypothesis 11 be satisfied, z& C'\R*. Then
A+ A2)" exists and

(3.3) R(z)= Ro(2>+§3 (Ro(2)— Ro(2)+L(2) X (2)(Qol2)— W (2)AR(2)
— LA+ AR) X (2)(Qo2)— W () AR() .

PROOF. Since the existence of (14 A(2))™* could be proved by a similar method
as in Faddeev [1], we omit the proof here. For the operators defined above, we
can easily show the following relations.

(3.4) A+W(2)'=1-D(2),

(35) A+Qu(2) ' =(1—D@)A+F@)™,
(3.6) (1—-D@E)AR(2)=AR(2),

3.7 [BRJ(2)1*(1—D(2)=[BRZ)1*=L(2) X (2)

and
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3.8) X(@A+F @) =1+AE)"X(2).

Combining (8.1) with the above relations (3.4)-(3.7), and using the second
resolvent equation we get

3.9) R(z)=Ry(z)—[BR(2)1*(1+ W (2) " AR(2)
FLBR(2)TH1+Qo(2) Qo) = W (2))(1L-+W (2)) P AR(2)
= Ro(2)+ 2 (Ral2)— Ro(2))

+LBRET* 1+ F (@) Qo) — W@NAR?).
By (3.7), (3.8) and a simple relation (14+A(z)*'=1—A@@)1+A(z))"! the last sum-
mand of the last member of equation (3.9) is equal to
L)X @+ F @) (Qu2)— W (@) ARG)
= L)1+ A) X (2)(Qo(2)— W () AR(2)
=L@X@(Quz)~ W(NAR()
— L(2) AG)(1+ A(2)) " X (2)(Qo(2) — W(2) AR(2) .

This completes the proof of the lemma. (Q.E.D.)

Now we rewrite the right hand side of (3.3) to a form which is more
convenient for our purpose. 0On, (or 0., is the projection operators from
S to © (or to L¥Rj; ) defined by 84=u, (or O ll=0,), 7. Let H (z) and
K(z) be the operators defined by

(3.10) H(z)=X(2)(Qu(2)— W (2)AR(2)
and
3.11) K@=AA+A@E)1'H(Z).

THEOREM 3.2. Let Hypothesis 1 and Hypothesis 11 be satisfied. Let Y(z),
YL2), -, Yz) be the operators defined by

(3.12) Yo(2)= =21+ 3 (Qa—VaRu(2)U + Babla o H(2)— K (2))) ,
(3.13) Yo(@)=3 {@al U+ Bullao(HZ)—K(2) -

Then

@3.14) R@)=Ro2)Y )+ 2 0d7uD)Y o) -

PrOOF. By the resolvent equation and equation

(3.15) R{2)=Ri2)+ | 0P 2)pel
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we have
(3.16) R{2)=R(2)(Qa—VaRi(2)) .

By definition of operators H(z) and K(z) we have

(3.17) 01 H(2)=7 (2) @0 | Balla,0 H(2)
and

(3.18) 001K (2)=7 (2o} Bal o, s K (2) .
Hence by (3.16) and (3.17), we get

(3.19) L(2)X(2)(Qul2)— W (2) AR(z)=L(z) H(2)

=2 (Re(2) Bl .o H(2)+ | 0o a1 H (2))
:RO(Z> %) (Qa-‘ VaRgl(Z»Baﬁa,oH(Z)
T2 PP 2l BabllaoH(z) -

Similarly by (3.16) and (3.18), we get

(3.20) L@ AR+ AR) X (2)(Qo2)— W (2) AR(2)
=L{z)K(z)
=Ry(z) ; (Qa—VaRA2))Balla, o K(2)

+§) [0 (2){pe| Ball oK (2) .

Combining (3.3), (3.16), (3.19) with (3.20) we get the statement of the theorem.
(Q.E.D.)

§4. Analysis of operators near the reals.

In this section we shall study some analytical properties of the operators

which will be needed in later applications. Let A:%min % and let a€R!. We

put /=(a—4, a+4). We shall analyse various operators on II.(I). To handle
these operators we use the following function spaces equipped with obvious
norms :

HRY={7 € LB ; || 7011+ ] x a2 <00}

LR ) ={f LRy ) ; (F/)p)=0 if (Cno™'pa>a+24};
HY R ) =€ H R ) ; (Ff)p)=0 i (@no)7'pe>a+24};
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(L3R )Q LR )" :{f S LYR: )OLAR; ) ; (2 [ kay pa)=0

. 1,
if E%:ka‘r

o,
e pa>a+241} .

9, and O, are the Hilbert spaces defined by
E) 9= L(R™DLYR; JB LR JO LR,
(42) @2:L2<R2n> ’

respectively. H, (or H,) denotes the selfadjoint operator on 9, (or £, and
defined by

(4.3) H=HDh,Dhe®k, (or Hy=H).

Here H,, H and ﬁa’s are the operators defined in section 2 and section 3. The
identification operator J= B(D;, 9s) is defined by Ju=u,+2 000 1="(lo, 0a;
o5 0)ED:. G(z) stands for operator (H,—z)/Ri(z) and Y(z) is the operator
defined by

(4.4) Y(2)u=4Y2)u, Yol2)u, Y2)u, Y (2u), UED,.
We shall need the following auxiliary Banach spaces:

4.5) X=X, DX DX D%,

where ?él,ozéj Ly(R: )QLAR; ), X1 o= L3R )+ L R3)°, etc.

(4.6) (=X D¥LDX DXL,

where %;,ozg (LR )RQLARG )", %= LYK ), etc.

4.7 X,=Ly(R")+2 Li(R: JOLHR,)" -

By the definition of spaces the following statements are obvious:
(4.8) XCX,;

4.9) X (or %,) is continuously embedded in 9,;

(4.10) E.(D¥] (or E, (X)) is dense in E,()D:;

(4.11)  ExD)X, is dense in E(1)D;.

Our main theorems in this section are the following two theorems.

THEOREM 4.1. Let Hypothesis 1 and Hypothesis 11 be satisfied. Then Y(z)
is a B(X,, X)-valued analytic function of z iwn II.(I). Moreover there exists a
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closed null set e.CR* such that the function Y (2) can be extended to I .(I\J(I\e.)
as a B(%,, X,)-valued locally Hilder continuous functions.

THEOREM 4.2. Let Hypothesis 1 be satisfied. Then there exist operators C, D
and a Hilbert space & such that

(1) CeB(&®,%,);

(2) D is an operator from 9, to & and is Hy-smooth;

(3) B, &-valued analytic function DR(z) originally defined on I1.(I) can
be extended to II.(I) as a locally Holder continuous function.

4 G@u=Ju+CDR.(Z2)u, uck, zell.(I).

We prove Theorem 4.1 by a series of lemmas. We shall use the following
functions po(xs) and fu(ye):

4.12) ol xg)=1+]x4]%) %2
(4.13) ﬁa(}’a)zzan oa(xa) | 2ﬁ§(| Valxg)l Toxpdxs.

The functions ¢z and pz satisfy Hypothesis I, pa'{p.lAs 02'{0|B; and
82'<¢@alps are bounded operators from $ to LX(R7 ) if S+« (see Ginibre-Moulin

2.
The following lemma is due to lorio-O’Carrol [5], Ginibre-Moulin [2] and
Kato [6].

LEMMA 4.3. Let M(z) be any one of the operators A.R(2)Bs and A«R¥2)B;.
Then B(D)-valued analytic function M(z) originally defined on C\[0, o) can be
extended to the closed cut plane cut along (0, 00) as a uniformly Hilder continuous
Sfunction. M(z) is uniformly bounded there and satisfies the relation lleirn (M=)

=0. Furthermore M(z) is a compact operator if a+f for any z in the closed cut
plane.

LemMA 44. For any z€Il.(I), 0,.H(z)=B(X,, D). B, D)-valued function
B H(z) is analytic and uniformly bounded on I1-(I) and can be extended to IT .(I)
as a uniformly Holder continuous function.

ProOOF. By definition, resolvent equation and (3.15) we have

(4.14) Oa.ol] (Z)Zﬁ% A Ro(2)—Rg(2))

:23, AdRo2)— Ri(2)— lop75(2)Xpsl).

By virtue of Lemma 4.3, A.R(z) and A,R%(z) obviously satisfy the statement of
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the lemma. On the other hand by Lemma 2.1 and the remark following (4.13),
Al 72Xl = Al o5t 657 2)0s 05 pgl o7 p7* is bounded from Lj(R*™) or

%(R;7)®L2(R;7)° to £ and satisfies the statement of the lemma if y+p. Hence
it is sufficient for proving the lemma to show that A.|ep7x(2){¢;s| satisfles the

statement of the lemma as a B(L%(Rgﬁ)®L2(Rzﬁ)°, H)-valued function. This fact
will be proved as follows. In the right hand side of

(4.15) Adlope(2)osl = Aal @bzt 87 (2) s !,

the first factor is pounded from Lz(Rgﬁ) to ® and the second factor is obviously
B(L%(R;;‘S)(X)LQ(R;'B)O, L%R;Q}valued analytic function on I7.(J). (Q.E.D)

LEMMA 45. For any z<Il.(I), 0..H() € B&E,, 2R3 ). B&,, L2(R;.)-
valued function 0,,H(z) is analytic and uniformly bounded on Il .(I). Furthermore
0..H(z) can be extended to IT.(I) as a uniformly Hélder continuous function.

PrOOF. Let U(k., po) be a smooth function defined on R* such that

e B ph 8 e ke PE
Uk, pay=1 if D + o, =a+ 5 4 and Uk, poy=0 if e + S =qa+24.

Uk, pa)=1—U(ks, pa). Let U, (or U) be the multiplication operator by Uka, Da)
(or U(kw, po) and let U=F"U.F (or U= U,%). By definition, 0, H(z)=
?a(z)<g0alBa0a,0H(z):_;ara(zx%zlVQRO(Z)V/;?R.&(Z). Hence by virtue of Lemma 2.1
and the argument uslced in the proof of Lemma 4.4 it is sufficient to prove that
each summand of the right hand side of

(415) <§0al VO:'R0<Z> VBR18<Z):<<‘003[ VO(UR()(Z) Vi3R13<Z>+<§Da| VaﬁR()(Z) VﬁR,B(Z)

satisfies the statement of the lemma as a B(X,, ¥, o-valued function. Since
(pal VUpzt € B®, IR} )), and  puRy()VsRy2)=pdRo(2)—Ry(2), Lemma 4.3
and the proof of Lemma 4.4 show that the first summand satisfies the statement

of the lemma as a B(%,, X, ,)-valued function. For the second summand, we first
note that

(4.16) (0u| VAT RW(2)V 3R (2)={0a] Aups p3' BeU Ro(2)pa' Ag BspaR5(2) .

In the right of (4.16), the first factor {p.lA.o:;= B(®, L}R},)) since a=p.
Since FURWZ)F™* is a multiplication operator by U(fa, pa)l(@ma) kit Cna) ' b
—2)"* and Ulka, pal((@ma) e +2n)  p2—2) *(1+EL+p2) is uniformly bounded,
the second factor of (4.16) pg‘Balj Ry(z)pa' Az satisfies the properties of the lemma
as a B($)-valued function of z. Finally by an argument similar to the proof of
Lemma 44 we can show that Bzp.R;(z) satisfies the properties of the lemma
as a B(X,, 9)-valued function of z. Combining these facts, we complete the proof
of the lemma. (Q.E.D.)
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COROLLARY 4.6. (.| V Ry(2)VsRs2) (a#p) satisfies the property of Lemma
45 as a B(X,, X, »-valued function.

We define the space 9 by
V=D LL(R; )DODLL(R; JDDD L AR7,) .

LemMA 4.7. For any zell.(I), A@)eB®). BM)-valued function A(z) is
analytic and uniformly bounded on IT.(I) and can be extended to II.(I) as a
uniformly Holder continuous function. Furthermore A(2)? is compact for any
zell (D) and |1n1,izr&w”A(z)2”:O'

We denote the boundary values of A(z) on the reals by A(A+10).

COROLLARY 4.8. For zelIl.(I), (1+A(z)"* exisis. Moreover there exists a
closed null set e.CI such that (1+A(2)™! can be extended to II.(I)\J(J\e.) as a
B(Y)-valued locally Hélder continuous function.

Corollary 4.8 is an immediate consequence of Lemma 3.1, Lemma 4.7 above
and Lemma 6.2 of Kuroda [13], see also Faddeev [1].

PrROOF OF LEMMA 4.7. We prove the lemma by estimating each component
of matrix A(z).

(a) Aa[gaa)eB(Lz_a(R;S), ) if a#pB. This is obvious.

(b) AxR4(z)B; satisfies Lemma 4.1.

(© For zell.(I.), 72)va|V.RY2)B;= B9, L2y(R;,) if a#f. The oper-
ator valued function 7 (2){p.!V.R42)B; satisfies the statement of Lemma 4.1
as a B(9, L%(R;B))-valued function. Statement (¢) will be proved below.

(@) For z=Il.(,), 7a(z)<goa|Valgo§>eB(L35(R;§), Lrs(Ry ) if a==f. Oper-
ator valued function 7.(2){p.|V.l@s> satisfies the statement of Lemma 4.1 as
a B(LL5(Rjp), L15(Ry,))-valued function. (d) is almost obvious.

Combining statements (a) to (d), we can easily get the lemma. Let us prove
(c). It is obvious that for proving {(c) it suffices to prove that operator
{pa| VoRY(z)Bs (a+ ) satisfies (c) as a B(9, ¥, ,)-valued function. By the resolvent
equation and the definition of Rj(z),

(4.17) {pul VaRY2) Bs={0ul VaRy(2)B{Q s~ AsR4(2)B3) -

By virtue of equation <{@.!V.Ry(2)B:={0ul VaURy(2)Bs+ 0. V.OR(2)Bs, we
can easily show in the same way as in the proof of Lemma 4.5 that
{@alVaRo(2)Bs satisfles the statement as a B(®, X, ,)-valued function. Hence
Lemma 4.3 and the fact Q:;=B(9) imply the statement. This completes the
proof. (Q.E.D)



Three-body scattering 127

COROLLARY 4.9. For z&ll .(I), {¢alV.R¥2)Bs=B(D, %,,.). The B(D, %, .-
valued function {p.\V.Ri(z)Bz is analytic in I .(I) and can be extended to
I1.() as a locally Holder continuous function.

This is a corollary of the proof of Lemma 4.8.

COROLLARY 4.10. For zell (D), 0..K(z)=B(¥%,, ). B(X,, ©)-valued function
0.0K(2) is analytic in I.(I) and can be extended to II.(I)\U(I\e.) as a locally
Holder continuous funciion.

COROLLARY 4.11. For zell.(), {BupallaK(z)=B&,, %, ). B, ¥,0-
valued function {BuopalOa0.K(2) is analytic in II.(I) and can be extended to
II.(J(I\e.) as a locally Hilder continuous function.

Combining the above lemmas, we get easily Theorem 4.1.

PROOF OF THEOREM 4. Let us define the Hilbert space & by 8=9DL*(R} )
DODLAR; JDODLAR;,) (=9). Let Uulka pa) be the function defined on R*" by

e 2 (1 if Qny)ip=a-+24
a\Cay pa -
10 it (2ng) " pL>a+24

and U, be the multiplication operator by Uylk,, p.). We define the operators C
and D by
Cﬁ:z (1+ ] xal Z)NB/ZUaua_]_E 82 Va|§9‘3>15‘§10'13
a a pra

for =y, 0, Ug, 03, Uy, 0,)ER and

Du=41+ x| Vatto, PuOa, =+, L+ 11,1072V 14, f:0;)

for u=(uo, 0o, 05, 0,)ED,. Then it is obvious that Ce€B(R, ¥,) and that D is
Hl-smooth.v Statement (3) is an obvious consequence of Lemma 4.3. Since
Glz)=(H,—2)JR.(z) and u=X, statement (4) is obvious. (Q.E.D)

§5. Three-body scattering.

In this section we shall apply the abstract theory given in section 1 to the
three-body scattering theory.

THEOREM 5.1.  Let Hypothesis 1 and Hypothesis 11 be satisfied. Let ¢(A) be a
real-valued piecewise continuously differentiable function satisfying (1.5) for any
precompact open interval of R'. Then the limits in the following formulas
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(5.1) st-lim g tpa}e’“é(ﬁa’oaz W®6,, o.=L¥R;)
and
(5.2) s-lim @8 itdHy = Oy, ue LY R*)

t>xoo

exist and the limils ave independent of the choice of such function ¢(2). Moreover
the completeness of the wave operators hold:

(5.3) Range(W ©)pZ Range(W @)=, ..(H),

where D, ..(H) is the spectrally absolutely continuous subspace of 9, with respect
to operator H.

PROOF. We shall give the proof for the case that ¢()=A. Other cases can
be proved similarly. Let G(z), Y (2) etc. be the operators defined as in sections
3 and 4. We first make the following two preliminary remarks.

(1) If there exists a sequence {I;}3, of precompact open intervals so that:

(A) the Lebesgue measure of R‘\(DI 5 is zero; (B) Assumption 1.1 to Assump-
J=1

tion 1.5” are satisfied for every I;. Then by virtue of Theorem 1.7 we get that

the limits of the formula

(54) s-lim e*#2fe ME (I )=W.,;

t>xe0

exist and W. ; are unitary operators from F,(/;)9, onto Ey(I;)9,. The defini-
tion of the operators implies that

(5.5) s-lim (et tHOE (] Nu+3 e | paretmad (I Vo) =W., ju,
U=(thy, 6, 03, 0,)ED1,

where E (dX), &,(d2),-,&{d2) are the spectral measures of operators H,, F,
-+, hy. On the other hand, (54) also implies that

(5.6) Jim er‘“”‘El(lﬂu!|2=t1irn lle=#®e W, ull=E Hul®.
Hence each summand of the left of (5.5) becomes asymptotically orthogonal each
other as t—4-co. Therefore the limits

s-lim e E(T Ju=W u

to=oc
and

s-lim "7 pql e had (I Ju=Wu

toxoo

exist and
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RW2 )ORW ED---DRW E)=Ey )D,.

Then the usual localization scheme implies the result of the theorem.
(2) By Theorem 4.1, we can choose a sequence {/ ;171 of precompact open

intervals such that: the Lebesgue measure of R,\\U I, is equal to zero; for each
=1

I; there exists q;€R' and I[;&(a;—4, a;+ H\(e,\Je), where e. is the set of
exceptional points appearing in Theorem 4.1 replacing I by (a;—4, a;+4); each
I; satisfies one of the conditions appearing in (5.9) below.

By (1) and (2), for proving the theorem it is sufficient to prove that for any
precompact open interval I; satisfying the condition I;E(a;—4, a;+A\(es\Jel),
the assumptions 1.1 to 1.5 are satisfied. To proceed we use several lemmas. In
what follows we shall take and fix one of the intervals {I,;} satisfying (2) and
corresponding real number «; and write them by I and ¢ and we shall assume
—k%=—r3=—r} without loss of generality.

For 2z0, let y(2) {or I'(A)) be the operator from CZ(R™ (or CS(R™) to
LHS™ ") (or L¥S*™ 1) defined by

5.7) (PO = TP T )y weS™
(or
58 (P W)= XDV T ), @S,

LEMMA 5.2. Let y(2) (or I'(Q)) be the operator defined by (5.7) (or (5.8)). Then
the following statements hold.

(1) Operator y(2) can be extended to L3(R™ by continuily and is uniformly
Holder continuous as a B(LY(R™), LXS™ Y)-valued function of 2=0.

(2) For 2>0, operator I'(Q) can be extended to 2 LY(RE )QLHRG ) by con-
tinuity and is strongly continuous as a B(3 L?;(Rﬁa)(gi)L?(Rga), LS Y)-valued
Junction of 2>0. ¢

ProoOF. Statement (1) is well-known, see Kuroda [14], for example. State-
ment (2) is Lemma 2.2 of Ginibre-Moulin [2]. (Q.E.D.)

We define the Hilbert space § by

{0to{0d {0t {0} it IC(—oco, —£),

OIS LAS™ HD {0} B {0} it IC(—ry, —£3),
(5.9) b= {0 DLAS* HDLAS" HD {0} if IC(—x3 —£d),

{OBLHS B LHS» HBLAS™™) it IC(—x%,0),

LS HBLAS™ HBLAS HDLAS ™) it 1C(0, ).
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For 1=—«k% we define operator f,(2) by

(5.10) (D)=~ 2m o 7 2m£%+2) .
and for 1>>0 we define operator To(2) by
(.11 TQ=I"DU,

where U is the unitary operator

Xa

- 1 e Ja
UfXxa y“>_2"\/mana nf(v2%r \/QE) .

Operator-valued function T'(1) from ¥, to % is defined by

0 if 1<—«kZ,

0Dt (BP0 if —ki<A=—r},
(.12) TN (tho, Oay 03, 07)=\ 0DLLDDEDDO it —rj<a=—r},

0Dt LVDE o DDEA2) if —r3<i=0,

Tl DPtLBt (DB i 2>0.

Then the next lemma is almost obvious (see Kuroda [14]).

LEMMA 53. Let ICR! be any Borel set. Then there exists an operator F
from L¥I,%9) such that the family {9y, F,9, %, T(R)} satisfies the assumptions 1.1
and 1.2.

The following lemma is proved by Howland [3].
LEMMA 54. Let H, and J be the operators defined as above. Then (1.1) holds.

CONTINUATION OF THE PROOF OF THEOREM 5.1. Let us choose I and ¢ as
in the first part of the proof. Then Lemma 5.3 shows that Assumption 1.1 and
Assumption 1.2 are satisfied. Lemma 5.4 implies Assumption 1.3. Relations (4.8)
to (4.11), Theorem 4.1 and Theorem 4.2 imply Assumption 1.4, Assumption 1.5
and Assumption 1.5°. This completes the proof of the theorem. (Q.E.D.)

Finally we shall discuss the eigenfunction expansions associated with the
three-body Schrodinger operator briefly. In what follows we assume that m,=1
and n,=1 for every pair «, for simplicity. We always take [ as in the proof
of Theorem 5.1.

Let Y, j=1,2, - (or Y, j=1,2, --) be the complete orthonormal base of
LS (or L¥S?*) consist of n-dimensional (or 2n-dimensional) spherical
harmonics. For each pair ¢ and j=1,2, ---, we put
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(5.13) o0, y= gt reme| YRy w4,

sn-1

A>—kL y,eR™
and

61 0,0 X):%,zn-lg NTXLYE(QQ,  1>0, Xe R,

S2n-~1

Then (4, -)& LL(Ry )N(LHR™)* ¥ NC=(R™ XL, OQ2, VEN (L2(R:, ) QLR )
NC=(R*™)XF, and

(5.15) (a2, ¥)=20, ¥2)
(5.16) (H@ )4, X)=29 ;(X).

Family of functions 0051 7019=P ;)PP LBeL 5 72=1,2, -} is a complete
system of generalized eigenfunctions associated with H,. We define the function
u(tJ'OvJ'yfz:J's)(R’ X> by

(5.17) UGy iy inint X)=Y QR0 o 5050 50(R, <)

Then uf,, ;. 55 794, X) satisfies Lippmann-Schwingers equation

(5.18) GQREI* UGy, i1, 19,59 D= Goipim iRy =)

and a simple calculation shows that ug,,;,,;, ;, Satisfies the differential equation
(5.19) HuGo 5150050 V=28 51,50 79 +)

in generalized sense. By Theorem 5.1 and a similar argument used in the proof
of Theorem 3.2 of [17] show that {u3, ;. ,, ;0 XDy Jo Jir Jor Js=1,2, =, A€}
forms a complete system of generalized eigenfunctions for operator HE,(I).
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