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§1. Introduction

In the present paper, we mainly investigate the existence of strong solutions

for the following abstraet Cauchy problem in a real Hilbert space H:

(C.p.) %(tHaW(u(t))—aW(u(t)) 3/, ul=u,

where 3¢¢ are the subdifferentials of lower semicontinuous convex functions ¢ from
H into ]—oo, +-oo] such that ¢iss+oo (i=1,2).

When 9¢?=0, various nice properties of the strong solution for (C.P.) have been
obtained by the monotone operator theory so far (for instance see [1],[2]). In the
case of 9¢?20, however, it would not be appropriate to attack this equation with
the monotone operator theory alone, since d¢'—od¢? is no longer monotone-type in
general. In order to avoid this difficulty, we first consider an approximate solu-
tion uz(t) (for each 2>0) which is the strong solution of (C.P.) with 8¢® replaced by
its Yosida approximation 8¢%, and next we introduce a compactness argument for
the convergence of u:{t) as 4 tends to zero.

The outline of the present paper is as follows. In §2 we shall review some results
on the monotone operator theory and fix some notations which will be used later.
In §3 we shall study the condition which assures the existence of strong solutions
of (C.P.) for an arbitrary initial data %, in D{¢Y)={uc H; ¢*(u)<+oo}. On the
other hand, the strong solution of (C.P.) does not always exist globally for every
uy € D(¢Y), that is to say, there is a case that the strong solution of (C.P.) blows up
in a finite time (see [3],[8]). This case will be treated in §4, where we construct
a subset of D(¢Y), W (so-called “Stable Set”), such that there exists a global strong'
solution of (C.P.) for every u,€ W. In §5 we shall give some results for the case
that u, belongs to the closure of D{¢?") in the H-norm, which are analogous to those
of §3 and §4. In particular, as the analogue of the result in §4, we can give
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some conditions under which there exists a global strong solution of (C.P.) as long
as the initial data is sufficiently small in the H-norm. The last section is devoted
to applications of the results obtained in the previous sections. For example, we
shall see that the initial-boundary value problem

ou 0
=3 —
ot @ 0=k ax,-(

wlx, £)=0, teagx]o, T[, ulz, 0)=ue{x) , z€Q, a>0,

- 2au

ulz, t)+f(t) {z,t) € 2%[0,T7,

can be studied with the aid of our abstract theory.
The study of related topics and the time-dependent equation

du

g D i) ~o¢  u(®) 3518),  ul0)=wu,

will be developed in the subsequent papers.

§2. Preliminaries

Let H be a real Hilbert space with the inner product (,), and the norm |+ la-
The Banach spaces L*(0, T'; H) and G([0, T1; H) are defined in the usual way with
the norm Iu[zp(o T-H):jTlu t lZdt (1SZ7<°°) lu]Lm(o T H)———ess SUD lu( )IH’ Iulc([o 710 =

tn%?}jg {u(t)|z respectively. For the sake of simplicity, we often denote |-z by | -]
€

and |- |z20,0:m bY |- la-
When A is a (nonlinear multivalued) operator from H into H, we identify A

with its graph in HXH and set Az={yc H;[z,y]€ A}, DA)={xc H; Ar=},
R(A)':}GJHA“’ At ={ly, a]; [w,yl€ A}, 24={x, y]; [z, y1€ A}, A+ A,={z, y;+v.);
[z, yi1€ Ay, [z, ¥:1€ A3}, A is said to be monotone in H if

2.1) (1=, ¥1—92)20  for every pair [z;,y]€d (i=1,2).

A monotone operator A is called maximal monotone if R(I+A)=H, (or equivalently
B(I+2A)=H for any 2>0). Let A be maximal monotone. Then, for every >0,
we can define singlevalued operators J;, A, (Yosida approximation of A) on H by
Ja=(I+24)7%, A,=2"(I-J,) respectively. The following properties are well-known
{see [1],2]).

PROPOSITION 2.1. Let A be a maximal monotone operator in H. Then the
Jollowing properties (i)-(iii) hold.



Existence of strong solutions 577

(i) A is demiclosed, i.e., x,—~x strongly in H, y,—y weakly in H and [2,, Y,] € A
imply [z, yl€ 4, '

(i) |Jax—Jwylg<|e—ylg for every m,yc H and 2>0,

(iii) A; is monotone and Lipschitz continuous on H, moreover

(2.2) Az e AlJx) for every x€ H and 2>0,
2.9) lAleggiGILf[y],g:[ﬁxIH for every x€ D(A) and 2>0.
K’ z
Here A is the minimal section of A, that is, Ag is the nearest point of the
set {Ax} from the origin.. (Since {4z} is a closed convex set in H, Ais single-
valued and D(A)=D(4).)
Let ¢ be a proper lower semicontinuous convexr (we often write,“p.l.s.c.” for

the simplicity) function from H into (—oo, +-o0], where “proper” means ¢=--oo.
We define

(2.4) D(¢)={u€ H; ¢u)<+oo},
(2.5) oplw)={fe H; ¢v)—pu)=(f,v—u) for all ve D(¢)}.

Then it is well-known that 8¢, (which is called the subdifferential of ¢), is maximal
monotone in H and has various nice properties. We recall some of those which
will be used later (see [1],[2]).

PROPOSITION 2.2. We define ¢, for a p.l.s.c. function ¢ by
PUTS I ST
2.6) gutw)=int {Glu—ob+glo)} , 250
Then ¢: is a proper convex Fréchet differentiable function on H and satisfies
@.7) $a(u) =~2%—]u——Jzulz+gb(un)=%l AuP+om),

where A=0d¢, Ji=I+214)7".
Movreover, we have
{2.8) dalu) S (u) as ANO for all uc H,
2.9) 3(¢2)=A1=(0¢)1 -
PROPOSITION 2.3. Let ui(t) and du/dt belong to L0, T; H) and assume that

there exists g(t) € L2(0, T; H) satisfying g{t) € a¢{ult)) for a.e. t in 10, T{. Then the
Sfunction t—g(ult)) is absolutely continuous on [0, T1. In addition, if we denote
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by _ the subset of [0,T]1 where ul(t) and ¢{ut)) are differentiable and where
u(t) € D(8¢), we have the following equality:

2.10) %(/)(u(t))=<h(t), %(t)) for all te [ and hit) € 0gult)) .

§3. Main results (I)

Now, we consider the following abstract Cauchy problem:

{(3-1) %(t)+6¢’(u(t)) —ogf i) of1),  telo, T1,

(3.2) {0} =1u, .

In this paper, we shall be concerned with the strong solution of (3.1)-(3.2) in the
following sense.

DEFINITION 3.1. A function u(f) € C([0, T1; H) is said to be a strong solution
of (3.1)-(3.2) if the following (i)-(iii) are satisfied:
(1) w(0)=u, ' '
(ii} wu(t) is absolutely continuous on 10, T,
(

iii) There exist functions ¢'(t) satisfying ¢'(t) € 8¢ (u{t)) and

(3.3) %{t)#—gl(t)—gz(t):f(t) for a.e. t€70, T[ (1=1,2).

Obviously 9¢'—8¢? is not monotone in general, much less maximal monotone,
50 it is no wonder that we make some assumptions on 8¢, ¢* for the existence of
the strong solution of (3.1)—(3.2). In order to formulate our theorems, we gradually
introduce several eonditions for 8¢¢, ¢t

Throughout the present paper, we denote by M{-) a locally bounded monotone
increasing function on [0, 4-oof and C positive constants which do not depend on
the elements of the corresponding space or set. In different places these constants
will in general have different values.

Furthermore, we always assume that ¢i(u)=0 for all uc H (1=1,2). We now

introduce the first three conditions.

(A.1) For every positive constant - L<+oo, the set {u€ H; ¢'(u)<L} is compact
in H.

(A.2) D{a¢*)cD(6¢* and there exists a constant k such that
B4 [o*u) la<k-pd ) lu+ MigHu), 0<k<1, for all ue D¢,
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where ag&' denote the minimal sections of d¢' (1=1,2).
(A.3) There exists a constant & such that
(8.5) o) gk-uy+C, 0=k<1, for all we D(¢Y).

We now state the first main theorem on the existence of the strong solution
for (8.1)-(3.2).

THEOREM 3.2. Let (A.1), (A.2), (A.8) be satisfied. Then, for every u,€ D(¢)
and f(t)€ L*0, T; H), there exists a strong solution u{t) of (8.1)-(3.2) satisfy Ying:

du

(3.6) g

() e L}0, T; H),

(8.7 ¢Hult)) are absolutely continuous on [0, T] (i=1,2),
8.8) gilt) in (8.8) belong to L*(0,T; H) (i=1,2).

PROOF OF THEOREM 3.2. Let u:(t) be the strong solution of the following initial

value problem:

{(&9) OZ'; )+ 06 ualt) — 03 (walt)) 3418) . £E10, T,

(3.10) 42(0) =1%o .

Since 8¢% is Lipschitz continuous on H, the existence of the strong solution U (L)
of (8.9)-(3.10) is assured by Proposition 8.12 of [1]. At the same time, relations
(8.6)-(3.8) for u.(t), ¢ ua(t)) and ¢3(ua(t)) are likewise derived. In order to investi-
gate the convergence of u:(t), we need the following a priori estimate.

A priori estimate: Multiplying (3.9) by dua/dt, we have, by Proposition 2.3,
d

—d—tsb‘(uz(ﬂ) -

du 2
dt

(3.11) (t)|2+ %%(ux(t)):(ﬂt), dd”;‘ (t)> for ae. £ 10, T[.

Integrating both sides of (8.11) on [0,1], we get

d?l/;

(3.12) SO

l )| ds+ ¢ (ualt)) — &4 (uat)

du;

< 5% (o) — 1) § (Afleids  for all £€ [0, T].

By virtue of (A.3) and the fact that ¢%(u)<¢%(u), we obtain
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3

{3.13) %&

%(s) ] s+ (1—B) - 4 (uae)

0

§¢1(uo)+C+‘;‘jt [f(s)Fds  for all t€[0, T].
]

Therefore, it follows from (3.13) that

(3.14) %{ <C,  for all 250,
@t |y
(3.15) S {t))<C;  for all £te[0,T1 and >0,

where C; denotes a general constant depending only on ¢*(u,) and | fla.
Hence (3.14), (8.15) and (A.2) yield:

(3.16) |04 (ua(t)) |« <C;  for all 2>0,
(3.17) 13y« =<C,  for all >0,
where

gilt)=~ OZ? (&) +0¢%ua(t) +f() € 8¢ {ualt)) .

Convergence of ua(t): We first claim that us(t) enjoys the following properties:
(3.18) {uslt)}1>0 1is equicontinuous on [0, T'],
(3.19) {us(t)}2>o forms a compact set in H for each ¢ fixed in [0, T].

Indeed, (3.19) is a direct consequence of (3.15) and (A.1). In order to see (3.18}, it
suffices to recall (3.14) and the following inequality:

(3.20)  walt)—walt’) IHgC-{ Cf;;‘

|t—t'f~2 for all t,¢'c[0, T].
K
Consequently, Ascoli’s theorem assures that there exist a sequence {2,} tending to
zero as n-»-+oo, and a function u(f) € C([0, T1; H) such that
(8.21) Uz (8) —>u(t) in C(0,T]; H) as n—> +oo.

Next, for a p.ls.c. function ¢ on H, we introduce a function ¥ on L0, T; H V=9
by

T
. .
(8.22) W"‘):p dlulthdt if ¢lul) e LY0, T)

4o otherwise.

Then ¥ is a p.l.s.c. function on 4{, and furthermore, for a given function g(t) € 4,
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gcol(u) if and only if g{t) € 8¢ (u(t)) for a.e. ¢ in 10, T'T (see [11,[2]). We define ¥
and 7% similarly for functions ¢* and ¢% (i=1,2).

We now assert that there exist a subsequence {2} of {1,} and functions ¢*(t) € I
{1=1,2) such that

dua,, du
G, | du

{3.23 i

(3.23) oy i weakly in 4(,
{8.24) g, —> g € 0¥ {u) weakly in 9,
{3.25) o¥3 (us,,) —> g* € 0¥ % (u) weakly in 4.

"To see the above assertion, we first note that
{3.26) T3} (t) =04 (ult)) for a.e. £t 10, T,
{3.27) 0T uy e o¥2(Ju), where Ji=(I+23¥?)t.

Noting (3.16) and (3.26), we know that |9¥%(u) |« is uniformly bounded as 2\0. This
fact and estimates (3.14) and (3.17) imply the existence of a subsequence {1,} such
that du,,/df, ¢, and 993 (us,) converge weakly in 4. On the other hand,
uz,,—u strongly in J{ by (3.21).

Since d/d¢ and 8% are demiclosed in 4{, we obtain (3.23) and (3.24). Next,
recalling the relation 1-8%%(u.) =u:—J3uz and the uniform boundedness of |9%%(uz)l«,
we observe that J2u; converges strongly to # in 4 as 2\0. Thus, (3.25) follows
from this fact and (8.27) at once.

Now, relations (3.23)-(3.25) and (3.21) imply that u{t) is a strong solution of
{3.1)-(3.2). Moreover (3.7) can be easily verified by (3.6), (3.8) and Proposition 2.3.

[Q.E.D.]

REMARK 3.8. In Theorem 3.2, it is not necessary to assume that ¢*(u)=0
(i=1,2) for all we H. Indeed, since there exists a constant C such that —¢*(u)<
— ¢y <C-(ulg+1), i=1,2, for all uc H and 21€10,1] (see [1]), we have the very
ssame a priori estimates as (3.14) and (3.15). (In this case, however, we should
replace ¢Hu) by |¢u)| in (A.2).)

€4. Main results (II), Stable set

In this section, we shall study the case that (A.1) and (A.2) are satisfled, but
not (A.3). In this case, the strong solution of (3.1)-(3.2) for an arbitrary u,€ D(¢?)
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may blow up in a finite time (see [3],[8]). For initial data which are sufficiently
small in a sense, however, we can deduce the global existence of a strong solution
(cf. Theorem 5.11). In order to illustrate this situation, we introduce the notion.
of “Stable Set” as in [5], [8] and [9].

Following condition (A.3), let us consider the subset D, of D{(¢%) defined by
Dy={uc D{¢Y); )<k -$*(w)}, 0<k<l. Unfortunately, this subset may not be
stable for the evolution equation (3.1)-(3.2). More precisely, even if u, stays in
D,, there is no knowing whether the strong solution u(f) of (3.1)-(3.2) still stays.
in D, for every ¢ in [0, T'1.

Roughly speaking, the stable set is the subset of D, where ¢(u)—¢2(u) stays.
below the so-called depth of potential well (see Proposition 4.2) and is stable for
the evolution equation (3.1)-(3.2).

For a wider applicability of our results, we introduce new functions ¢t % and
express the stable set in terms of them. Namely, we assume the following con-
ditions (A.4)-(A.7):

(A.4) The following (i)-(iii) hold:

(1) 0=g*u)<¢*(w) and 0=<¢*(w)<d2w) for all ue H,
(i) ¢%is a p.ls.c. function on H; furthermore D(3¢")C D@42 and the follow-
ing (4.1) is satisfied:

(4.1) |0g* () la=M(g*(w)) - 10 )|z +1}  for all we Diog) ,

(i) w,—u (strongly in H) and ¢*(u,)—¢ () imply &(u,)—>GHu).
To formulate other conditions, we put

(4.2) Ji(w) =g u)—¢iw) ,
4.3) J(u)=¢u)—¢*u) ,
(4.4) J(w)=¢*(u) — F*(u) ,
{4.5) Nig)=lue H; pu)=0  (¢=¢% Y.

Here we note that J(u)<J(u)<Jx(u) for all we D@ ND(@?).
{A.5) The following (i)-(v) hold:

(i) JO)>—oo,
(if) For each ue D(@YW\N(Y, J(r-u) is a continuous function of r¢ [0, +co)
and C' in (0, +0). Moreover, there exists a real valued function of u,
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70 DIGW\NGYH—(0, +<0]P such that dJr-w)idr>0 for all r¢(0,r,) and
ad (r-w)jdr|,—,, =0,
. (i) w,—w (strongly in H), ¢*(u,)—¢ ()50 and $*(u,)—>¢*w) imply 7., —7
(iv) There exists a number ¢>0 such that 0<{¢'(u)=e¢ implies r,=1,
(v) in£j(u)=d2>>0, where S? ={ue D(¢V\N(Y); r.=1}.
%€
Generalizing [5], [8] and [9], we now introduce the Stable Set W by
{4.6) W={ue DI¢g"\\NFY); Ju)<d, r,>1}
and assume
(A.6) W=@¥; furthermore ue W, Ju)<d,<d imply ¢*(u)=Mdy).
(A7) ue N(¢Y) implies ¢?(u)<C<+oo.

REMARK 4.1. Let ¢! be a homogeneous function of degree ;>0 and (A.3) be
satisfied. Then, putting §'=¢' and ¢§*=k-¢'+C, we easily find that r,=+co for all
e D(¢Y)\N(¢Y) and d=+oco. That is to say, W coincides with D($Y)\N(¢Y).

A useful and simple non-trivial example of ¢* and ¢? satisfying (A.5)-(A.7) is
provided by the following proposition.

PROPOSITION 4.2. Let ¢ and $* be homogeneous functions of degree ey and as
respectively (0<a;<ag). Let N(FY)=N{@") and {uc H; 0<* (u)<e}=I for all £>0.
In addition, suppose that

(4.7) S =G (w) <C-{F w)els  for all ue D(¢Y .
Then (A.B)-{A.T) are satisfied.
PROOF OF PROPOSITION 4.2. By simple caleculations, we have immediately:

(4.8) Jir-uy=ra-gHu) —re-§*(u) ,

’ _ a1¢~1(u) 1/ (ag—ay) o 1/ lag—ay) - iley . vo
wo r=(Zp) Tz ST 0 it fso,

and r,=+o0 if ¢*u)=0,

) We put ry=+4oco if dJf{ru)/dr>0 for all r€10, +ool.

) When S={5, we put d=-4oo. d is closely related to the “depth of potential well” in
Sattinger [7].

3 Let (iv) and (v) of (A.5) be satisfied and e=min(d,e), then {u¢€ H; 0<¢gNu)<Le} is
contained in W. So {u€ H; 0<¢Hu)<elx implies Wx(J.
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ag—ay/ ay \7 e
4.10) dg——az Ca2> >0,
(4.11) W={ue DIg"\N(¢"); ¢*(u) — ¢*u) <d, a;- §*(u) — az- $2(u) >0} .

Then (A.5) and (A.7) are direct consequences of (4.7)-(4.10). Moreover, by virtue
of (4.7), there exists >0 such that

(4.12) a:fHu) —aa§() 2 o — @ Cefra 2 14) - §1(u) >0,

for all u satisfying 0<¢*(u)<e,. Putting e=min e, d}, we easily find that {uc H;
0<giu)<eJcW. This shows that W, Furthermore, e W and Ju)<d,<d
imply that ¢*(u)—F*u) <J(w) <d, and @@ () —a,d?(w)>0. Hence we have J*(u)<
{ay/{@z—ay)}-dy and Sbl(u)§do+¢‘2(u}§do+¢v2(u)§{42/(a2“%)}'do- Thus (A.6) was.
verified. [Q.E.D.]

Now, we have the second main theorem ag follows:

THEOREM 4.3. Let (A.1), (A.2) and (A.4)-(A.7) be satisfied. Then, for every
we W and f(t)e L*0, T; H) such that d—Juy)>(1/4)-1f [, there exists a strong
solution u(t) of (8.1)-(8.2) satisfying (3.6)-(3.8).

PROOF OF THEOREM 4.3. Again we employ the following approximate equation:

{(4.13> %i(t)+a¢1(uz(t))—3¢3(ux(t)) A, telo, T,

(4.14) w2 (0)=1u, .

The ecrucial point of the proof is to establish a priori estimates of ¢'(u,(f) and
ldua/dt |y such as (3.14) and (3.15).

Step I: First, we notice that there exist 2,>0 and 0<k<1 such that
(4.15) d—{Jx(uo)+Ell; y f]£}>0 for all 1€ [0, 2],

since J (o) \J (%) as ANO.
Next, multiplying (4.13) by dus/dt and integrating on [0,¢], we have

dux

ds

{s)

(4.16) g

9

du;
7s (s) l ds.

" s+ 2 (ualt)) < Tl) + jl £9)- [

Hence, putting do=Ju,(uy) + (1/4k) -] fla, We obtain
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t

LCE®

i ds+ Jaualt)) <d,<d - for all £€ [0, T and 2€[0, 4] -

0

@1 (1—k) 5

Step II: For the time being, we fix 2 in [0, 4,]. Let us recall that ua(¢) and
' (ua(t)) are absolutely continuous on [0, T']; there exists gi(t) € L*(0, T’ Hc? satis-
fying g4(t) € 8¢ (ua(t)); and that duz/dt belongs to L*(0,T; H). Then 8% ua (1)
belongs to L0, T; H) by (ii) of (A.4). Furthermore, in virtue of Proposition 2.3,
we observe that $%(us(t)) is also absolutely continuous on [0, T]. Thus, (i) of
(A.5), together with (iii) of (A.4) and facts mentioned above, says that

4.18) T4,(t) is continuous in {€[0, T'1; ()0} .
Here, we claim that

4.19) w;(t) € fue DIGYW\N(GY; J(u) <dy, 7,>1} U N($Y)
for all £¢[0,T] and 2€10, 2,] .

To show this, we first note that (4.17) gives
(4.20) Jua ) LTluat))<dy  for all €10, T and 2€[0, 2,1

Suppose now that there exists £,€10, 71 such that ¢*(ua(t))=0 and 7, (t)<1.
Let us recall here assumption (iv) of (A.5) and the fact that wa(0)=u,€ W implies
Ty, >1 and $(u2(0))>0. Then, considering the continuity of »,,» and SHua ),
we can find ¢, in 10, %[ such that r,,;,=1. Therefore, (v) of (A.5), the definition
of “d”, yields

(4.21) Jualt) =T (ualty) =d>d, .

This contradicts (4.20). Thus {4.19) was verified.
Step II: In view of (4.19), (4.20), (A.6) and (A.7), we have

(4.22) Put)=C,  for all t€[0,T] and 2€[0, 4],
where C; is a constant depending only on d,.

Next, in the case of uy(t)e W, we find
(4.23) Ja(ua(t) = (u2(8)) ZJ(0)> —c0,

since J(r-u;(£)) is monotone increasing function of r€([0,1]. As for the case that
ua(t) € N(gY), (A.T) gives

(4.24) Ja(a(t)) = — P4 (ua(t)) = — P*(ux(t) 2 —C>—oo .
It now follows from (4.17), 4.23) and (4.24) that
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<C; -

(4.25) }%(t) < - for all 2€[0,].
. 1%

dt

Since we have established estimates (4.22) and (4.25), we can complete the proof
by the same procedure as in the proof of Theorem 3.2. [Q.E.D.]

REMARK 4.4. It is clear that the same assertion as in Theorem 4.3 holds also
true in the case that u,e N(¢Y) N D(@Y and J(ue)+ (1/4)-|fE<d.

REMARK 4.5. We have actually proved the assertion in Theorem 4.3 under
somewhat weaker assumptions than in Theorem 4.8. That is to say, since the
approximate solution u,(t) always stays in W,=D(3¢") N[{uc D(GY\N($Y; Jin) <d,,
7,>1}UN($Y)], in place of (A.2), we have only to assume that (3.4) is satisfied for
all ue W, where dy=d(u,)+ (1/4) -7 L.

For example, let (A.1), (A.4), all assumptions in Proposition 4.2 and the following
(A.2) be fulfilled:

(A.2Y D(ag)cD(0¢? and the following (3.4)’ is satisfied:
(8.4) [0¢%(w) la=C-{g* W)} { 00 () g+ M(¢*w))}, @>0, for all ue D(ag?) .

Then there exists a positive constant & (depending only on d, «, a, a;) such that
for every u, € D(¢?) and ft) € L*(0, T; H) satisfying 0<J(u,) + (1/4) -1 f % =d,<4, there
exists a strong solution of (3.1)-(8.2) satisfying (3.6)-(3.8). Indeed, since uec W
implies that 0<<¢'(u)<{ay/(@s—a))}-dy, (A.2)’ assures that (3.4) is satisfied for every
u € W, when d, is sufficiently small.

REMARK 4.6. In Theorem 4.3, let all assumptions in Proposition 4.2 be fulfilled,
and in addition let ¢*(u)=Cjluls, p>1, C,>0, for all ue H. Then, it is proved
that there exists a positive constant ¢, depending only on ay, @, d, p, Cy, but not
on T, such that for every u,c D(¢') and f{t)e L>(0, T; H) satisfying 0= ug) +
\f [’,j’oé’;;, 2;3, =<0, there exists a strong solution of (3.1)-(3.2) satisfying (3.6)-(3.8).
(Remark that if we put f(t)=f in Theorem 4.3, |fli=q.r:m =Iflg ought to depend
on T. See Otani [6].)

§5. Uniqueness and further results on smoothing effect
§5.1. Uniqueness

In this section, we shall study the uniqueness of the strong solution of the
following equation:
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{(5.1> %(tuasbl(u(t))—B(u(t» A8, teld, Tl,

(5.2) u{0) =1, .

Here B is a (nonlinear multivalued) operator from D(B)CH into H, and the strong
solution of (5.1)-(5.2) is defined by Definition 8.1 with 8¢? replaced by B.
We here introduce the following condition:

{A.8) D@\ D(B), 0 D¢, and the following (5.3) and (5.4) are satisfled:

(6.3) (v—b, u—Ma<M(ulz+ 25 ')+ @)} lu—al,
for all u, 7€ D(¢Y) and all ve Blu), o€ B4},

(6.4) [Bw), wlg<k-¢*u)+M{ulg), 0=<k<1l, for all ue D(og?h),
where [B(u), u]lg denotes sg(p) (v, Wg .
vE %,
Then we have the following uniqueness theorem.

THEOREM 5.1. Let (A.8) be satisfied and f(t) belong to L0, T; H), then the
strong solution of (5.1)-(5.2) is unique.

The proof of this theorem is based on the following lemma.

LEMMA 5.2. Let 0¢ D(¢Y) and u(t) be o strong solution of (5.1)-(5.2) satisfying
the following (5.4) for a.e. t inm 10, T[.

(5.4) [Bult), wt)la<k-¢"w®) + M{ut)lz), 0=k<L.

Then there exists a constant C; depending only on | f liiwmm, | %0) lodort:m, ¢4(0),
M(-) and k such that

T
5.5) S St dt =C; .

PrOOF OF LEMMA 5.2. Since u(t) is a strong solution of (5.1)-(5.2), the defini-
tion of a¢?t gives

{5.6) —¢1(0)+¢1(u(t))§<— LJgf(t)%-gz(t) +f(), u(t)> , where ¢(t) € B(u(t) .

In view of (5.4)/, we obtain

4

7 [u(t) P+ fu(@)] + ¢4 (0) + M{ult) ) -

6.1 (1—k)-¢1(u(t>>g-%
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Then, integrating both sides of (5.9) on [0, T, we deduce (5.5). [Q.E.D.}

PROOF OF THEOREM 5.1. Let wu{t), 4(t) be strong solutions of (5.1)-(5.2). Then
w{t)=ult)-i(t) satisfies

(5.8) %(t) +0gMu(t)) — g (4(¢)) — Blult)) -+ Bla(t)) 0.

Multiplying (5.8) by w(t) and using the monotonicity of ¢t and (5.3), we deduce

(5.9) = S Wl PEM(ul) e+ 2) o) - {9 () + 41 @)} -l wie) 2,
where |- lc=|- ledortim -

Here, recalling Lemma 5.2, we see that ¢'(u(t)) and ¢'(a(t)) belong to L'(0, T H).
Then Gronwall’s inequality yields

(6.10) |wit)z=w(0)|z- exp (Cit)  for all t€[0, T,
where (5 is a constant depending only on |u(t) e, |4%)l ¢, |flzte r:m, ¢10), ete.

Now, the uniqueness follows from (5.10) at once. [Q.E.D.}

§5.2. Further results on smoothing effect (I)

We now consider the Cauchy problem (3.1)-(8.2) in the case that the initial
data , is an element of D{¢)%. When 84?=0, it is well-known as the smoothing
effect that for every u,€ D(¢") and f(t) e L?(0, T; H), there exists a strong solution
u(é) of (3.1)-(3.2) such that u(t)e D(@¢") for a.e. t in 10, T[, ¢-¢*(ult)) € L=(0, T),
V'tdu/dte L0, T; H), ete. (see [1],12]).

In this section, we shall study the existence of strong solutions for this case
under the situation similar to that of Theorem 8.2. First, we mention the following
theorem.

THEOREM 5.3. Let the following (A1) and (A.9) be fulfilled.
(A1) For every L<+oo, {ue H; ¢*(w)+{ulg<L} is compact in H.
(A.9)  Di¢")cD(ag?, 0€ D(¢Y), and the following (5.11) and (5.12) are satisfied:

(6.11)  [8¢%u), ulask-$'w)+C-(ulk+1),  O0<k<I1, for all ue D(¢Y),

4 D(¢") denotes the closure of D(¢Y) in the H-norm.
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(5.12) | (wila=<Mluln) -0+ o )} 71, 0<r=1, for ol ue D),

where [0¢*u), wlg= sup (v, u)g and [aH*(W)|lz= sup |v|x.
ve8dZ(w) 2€8¢2%(w)

Then, for every u,€ D(¢Y) and ft) e L*0, T; H), there exists a strong solution u{t)
of (8.1)-(8.2) satisfying:

(5.13) «/7%%@) e 120, T; H),

(5.14) PHult)) € L0, T) 1=1,2),
(.15) t-@iult)) e L0, T) and ¢ult)) are absolutely continuous on 10, T] (1=1,2).

(5.16) g t)e L2(s, T; H) and g*lt)e L=, T, HYNLYO, T; H)  for all 6>0,
where gHt) € 0¢Hu(t)) are the function in (3.3) (1=1,2).

Roughly speaking, the outline of the proof of this theorem is as follows. Let
w*t) be a strong solution of (3.1)-(3.2) for the initial data ufe€ D(¢') such that
ui—u, in H as n—-+co. We first establish some a priori estimates for »(f) by the
standard argument. Next, as for the convergence of u*(t), we employ nearly the
same argument as in the proof of Theorem 3.2. However, the situation of this
case is rather delicate, since the a priori estimates (near £=0) are not so fine as
in the proof of Theorem 3.2. In order to avoid this difficulty, we shall make use
of a relation between u"(f) and #{t), where #(t) is a strong solution of da/dt+
aHAL) D FE), 4(0)=u,. Before we proceed to the proof of this theorem, we
prepare the following two lemmas.

LEMMA 5.4. Under the same assumptions as in Theorem 5.3, for every u, € D{¢")
and f(t)e L*0, T; H), there exists o strong solution u(t) of (3.1)-(3.2) satisfying
(3.6)-(3.8).

PROOF OF LEMMA 5.4. We first notice that
(6.17) PHu) < (v, )+ ¢H{0) for all v*€ o¢i(u) (1=1,2).
Then, by virtue of (5.11), we deduce the following (5.18) and (5.19).
(5.18) Gy <k-¢Hu) +ClulP+1)+¢20) for all ue D{¢"),
(5.19) [892(u), ulg=(v\, ) +C{uP+1)+¢*0) for all ue D(@¢") and v*€ o¢ () .

We now consider the following Cauchy problem:
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{(5-20) Z—?(t) +og ult)) +oL(ult) —og*(u(e) 35¢),  tel0,T1,

(6.21) w{0)=wu, .
Here I,{-)® is a p.ls.c. function on H defined by

0 if |ulg=Zr,

(5.22) Ir(u)={+oo it Julg>r, r>0.

‘Since {0} € D(¢")NInt D(I,)®, we can write 9 '=ad¢'+al,, where d'=¢'+I. and
,D(gﬁl)zD(gle) ND(IL) (see [11). On the other hand, recalling (A.1)’, (5.12) and (5.18),
we see that ¢! and ¢ satisfy (A.1), (A.2) and (A.3).

Hence, if we put |%,|<r, we can apply Theorem 3.2 to Cauchy problem (5.20)-
{5.21).

Multiplying (5.20) by w(t) and taking (5.19) into account, we get

(5.23) %{u(t) PL@EOC+L) - Jult) P+ P+H2C+2¢41(0)  for a.e. t€[0, T],

where we used the fact that (v, u)=0 for all we D(GL) and ve ol (u).
‘Thus, we have the following a priori bound for |u{t)l|z.
(6.24)  Jult) Z=Z{upZ+| 1+ 2C+2410)) - T} €200 T=C] for all ¢¢[0, T'1.

We now let r=24/C], then the strong solution u(t) of (5.20)-(5.21) stays in Int D(1,)
for all ¢ in [0, T]. This implies that aL.(u{t))=0 for all £ in [0, T]. That is to say,
u{t) is also a strong solution of (3.1)-(3.2). This completes the proof. [Q.E.D.]

REMARK 5.5. Above argument also assures that Theorem 3.2 holds true with
(A.1) replaced by (A.1)’ under the additional assumption (5.11) of (A.9).

LEMMA 5.6. Let u(t) be a strong solution of (3.1)-(8.2) satisfying (3.6)-(3.8).
Suppose that 0€ D($Y)CD(¢?) and ult) satisfies

6.11)" {(g%@), ult) a =<k - ¢ (u(t)+Clult) F+1), 0Zk<l, for ae. t in 10, T[ and
all g(t) € ag*(ult).

Then, we have the following estimates:

(5.25) @) [z=C,  Sfor all t€[0,T],

% I.(-) is called the indicator function of {u€ H; |u|z<r}. Int D({I,) denotes the open
kernel of D(I,).
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T
(5.26) S GHult)dt =Cy,
(5.27) t-giult)<Cy  for all te10,T1,
T du 2
(5.28) Sot E(t)!gdté@,

where C, denotes a constant depending only on |flx |u(0)lm $1(0), ¢*(0) and k.

PROOF OF LEMMA 5.6. By the same argument as in the proof of Lemma 5.4,.
in parallel with (5.18), (5.19) and (5.24), we easily obtain the following (5.29), (5.30}
and (5.31).

(5.29)  ¢ult))<k-¢*(ult) +Clult) F+1)+4%0) for a.e. €10, T'L,

(5.30) (g%(t), () < (g*), w®) + Clult) P+1)+¢"0) for a.e. €10, TT and all
gi(t) € 9¢i(ult)) (1=1,2),
(6.31) [u(t) |g=Cy for all ¢€10,T1.
Moreover, relation (5.29), combined with Lemma 5.2, gives (5.26). In order to-

establish (5.27) and (5.28), we multiply (8.1) by s-du(s)/ds and integrate on [0, £],.
then we have

2

(5.32) gts. ]%@(@ ds+t- g ult)) —t- P2 (ult)
o S

t
éss-
0

Hence, by virtue of (5.29), we obtain

du

s (s)

1 8) zds+j Suls)ds  for all t€ [0, T].

t
0

2

(5.33) S:s-\‘fi—@s‘(s) ds+2- (1—F)-£- 6 (ult))

< SZS-If(s) Pds+2- S:¢1(u(s))ds+2t{C-(]u(t) P+1)+¢*0)} for all t€[0, T]..

Then, (5.25), (5.26) and this relation imply (5.27) and (5.28). [Q.E.D.].
Now, we proceed to the proof of Theorem 5.3.

PROOF OF THEOREM 5.3. Step I: Let u,€ D(¢Y) and {u5} be a sequence in
D(¢") such that uj—u, in H as n—+co. We take a sufficiently large integer =,
such that |u8lz<2-|u,lz for all n satisfying n=n,. By Lemma 5.4, we can find a.
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strong solution u*{¢) of (3.1)-(3.2) satisfying u*(0)=u} and (3.6)-(3.8). Moreover,
since (5.11) assures that (5.11)" is satisfied for each ur(t), applying Lemma 5.6, we
have the following a priori estimates which are uniform with respected to n»
{n=mn,).

(5.34) [u @) z<C,  for all tc[0,T],

(5.35) rszﬂ(un(t))dtgc,i,

(5.36) t- G @) <C,  for all t€10, 77,
T dun 2

(5.37) jot : ‘ 2] de=c.

Step II: Since we have estimates (5.34) and (5.87), there exist a subsequence
'} of {n} and a function #(t) € L0, T; H) such that

{5.38) u" (£} —>(t) weakly in L2(0, T; H),
(5.39) V- 5‘% () —vE- %}(t) weakly in L2(0, T H) .

Moreover, with the aid of Mazur’s theorem (see [10]), the convexity and lower
semicontinuity of ¢! and (5.35), we obtain

T
(5.40) L Sa)de<C, .

In view of (5.36) and (5.87), for an arbitrary positive number 5, we have the same
type of estimates as (8.14)-(8.17) which are uniform in n (n=n,) and tels, T].
Then, selecting a subsequence {ny} of {n’} as in the proof of Theorem 3.2, we find
that there exists two functions g%(t) € L*(1/N, T; H) and uy(t) € C([1/N, T1; H) such
that
3.3)" ) g — Gl =Fl)  for ae. te ]l, T[,

dt N

where gil{t) € 8¢ uy(t)) (i=1,2).

Furthermore, we notice that

d

{5.41) uyn{t)=a), r7

_da 1
Un(t) = 7 (¢} for a.e. te ]N’ T[ .

Again choosing a subsequence {ny;.} of {ny}, we can find two functions gina(t) €
L*A/(N+1), T; H) and uy.,(t) € C(I1/(N+1), T1; H) satisfying (3.3)' with N replaced
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by N+1. Repeating this procedure for N+2, N+38, ---, we can define two fune-
tions u(t) and ¢i(t) € 8¢ (ult)) on t€10,T] (1=1,2) by

(5.42) ) =uplt) i 0<%gt for all £€10, T,
(5.43) o) =ginlt) it 0<~2\1r7§t for a.e. €10, T].

Then, we find that u(f) is absolutely continuous on ]0, T'] and that

duw ,, _di

{(5.41) ult)=aft), = B="—>

() {t) for a.e. t€10,77.

Moreover gi{t) and g3{t) belong to L%, T; H) for all 6>0 and satisfy (3.8) for
a.e. te10, TL.

Step III: In order to see u(t) be a strong solution of (3.1)-(3.2), it suffices to
verify that u(t)—u, as t—+0,.

To this end, we consider the following two strong solutions, u{t), 2{f)}® satis-
fying:

5.44) %i(t) +agt (un(t) — 4% (wle)) 350), w"0)=us,
da " I
{5.45) praChs ogH(a(t)) 3/@), 4(0)=uo.

Then w™t)=u"({t)—a(t) satisfies

(5.46) D19+ og{ur () — 090t — 047wt 0.

Multiplying (5.46) by w*({t) and using the monotonicity of 9¢!, we obtain

(5.47) — —Zlw{t) P A{gE(), w™t)) for a.e. tc10, T(,
where gi(f) € o¢*(ur(t)) .

Hence it follows from (5.12) and (5.34) that
(5.48) Ed?lw"(t)]§C4'[{¢'1(u”(t))}1‘7+1] for a.e. t€10, T1.

Integrating both sides of (5.48) on [0,¢], we have

6) There exists a (unique) strong solution of (5.45) for every wu, in D(¢%) and f¢) in
L0, T; H) (see Brézis [1]).
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(5.49) we(2)] éluo"—uo]+C4-St{¢1(u”(8))}“7d8+04't
0
Zluf—uol+Cy 87+ {Ysbl(u”(sr))dS}l-r-kCyt .

Then (5.35) gives

(5.50) Jw () [Slu—ugl+Ct"+C¢ for all £€10,T7.

Hence, for each t€10, T], making {ny} tend to +oo (where 0<<1/N'<t), we find
{5.51) lu@)—2@) |<Cyer+8)  for all £€10,T7.

Now, let us recall the fact that [4()—u,lz—0 as t—+0 and |u{t)—u,lzg <
[u{)—a@) g+ 2E)—uylg. Thus it follows from (5.51) that [u(t) —u,lz—0 as t—+0.

In order to see (5.13) and (5.14), we have only to recall (5.39), (5.40) and (5.41).
Estimate (5.36), together with the lower semicontinuity of ¢!, gives that ¢-olu{t)) <
C, for all ¢ in 10, T]. Hence, by (5.12), ¢2(t) belongs to L=, T; H)NLY0, T; H)
for all 6>0. In addition, by virtue of Proposition 2.3, (5.13) and (5.16) imply that
¢i(u(t)) are absolutely continuous on 10, T1 (=1, 2). [Q.E.D.]

We can formulate another theorem on the smoothing effect corresponding to
Theorem 3.2 in a slightly different manner as follows.

THEOREM 5.7. Let (A1), (A.2) and the following (A.10) be fulfilled.
(A.10) 0e DY D(Y? and the following (5.52) vs satisfied.

(5.52) (% (u), wlg+ ¢ (—w) SC-[A+{ulF} - {7 +Hulh+17,
0<r=1, for all ue DY ND(a¢?) .

Then there exists a strong solution u(t) of (8.1)-(8.2) satisfying (5.13)-(5.15) and
the following (5.16).

(6.16)" g't)e L%, T; H) for every 5>0, where g't) ¢ od*(ult)) are the functions
n (3.3) (2=1,2).

Proor orF THEOREM 5.7. We employ much the same idea as in the proof of
Theorem 5.3. First of all, applying Young’s inequality to the right side of (5.52),
we can easily deduce an inequality corresponding to (5.11) in (A.9). Then in view
of assumptions (A.2) and 0¢ D(¢)C D(¢%, we can carry out the very same proce-
dure up to (5.47) as in the proof of Theorem 5.3. Hence, to prove the theorem,
we have only to deduce (5.50) from (5.47). We now estimate the right side of
(5.47). By virtue of (5.52) and the definition of 3¢?, we get
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(5.53) (glt), ur(t) — ()

Z{gh(), —u(t) —a(t) +2- [0 w @), w(t)]a

Z¢H—alt) — P urt) +2- 1047w 1)), u(6)]a

ZCy- Lo a7 +{g w7 +11,
where we used the facts that [8¢%w), uly=—¢%0) for all we D(¢*)ND([E¢? and
[w) la+|2() |g<C, for all tc[0,T]. Then, recalling that [¢*(@(f) L0 =Cy We
deduce (5.50). [Q.E.D.]

§5.3. Further results on smoothing effect (II)

In this section, we shall study the existence of the strong solution of (8.1)-
(3.2) for the initial data u,< D(¢") under the situation similar to that of Theorem
4.3. When we intend to deal with this case, we could not assume conditions such
as (5.11), (5.52) which may imply relations equivalent to (A.3) as we have seen
above. Without assuming those, however, we can study the local ewistence of
strong solutions as follows.

THEOREM 5.8. Let (A.1) and the following (A.9) be fulfilled.
(A.9) 0eD(¢YcD(B¢?) and relation (5.12) in (A.9) is satisfied.

Then, for every uc D(¢Y) and f(t)€ L*0, T; H), there exists a positive number T,
depending only on |uelm, | flas M(-) and ¢0), such that in the interval [0, T,]
(T,<T), the problem (3.1)-(8.2) has a strong solution u(t) satisfying:

(5.54) VT Dy e 120, T 1),

{5.55) diuit)) € LU0, Ty) (t=1,2),

{5.56) t-iult)) € L=(0, To) and ¢Hult) are absolutely continuous on 10, T
(1=1,2),

(5.57) gty e L35, Ty; H) and g%(t) € L5, To; H)NLM0, Ty; H) for all §>0,
where git) € 8¢ (u(t)) are the functions in (3.3) (i=1,2).

PROOF OF THEOREM 5.8. Step I: Applying Young’s inequality to the right
side of (5.12), we deduce

(5.58) [0 (u), Wlz=llp¢*w)llx -z
<(1—p)-¢"uw)y+M(ulg)  for all ue D(gY),

where Mi(s)=s-M(s)+7-(s-M(s)}*/7. Recalling (5.17), we obtain
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(5.59) (,/Jz(u)g(l—r)-¢1(u)+M([u[)+¢2(0) for all ue D{¢Y),
(5.60) [8¢%(w), ulg<{(vY, u)+M([u])+¢1(0) for all we D(6¢") and vie d¢t{u) .

We again consider Cauchy problem (5.20)-(5.21). As in the proof of Lemma 5.4,
we easily see that for every wu,e D(¢*) and f(t) € L%(0, T; H), there exists a strong
solution u(t) of (5.20)-(5.21) and that, in parallel with (5.23), u(t) satisfies

(5.61) %g;lu(t)12§M(Iu(t)l)+i—lu(t)12+lf(t)lz+¢1(0). for a.e. te[0, T].

Integrating both sides of (5.61) on [0,£], we get

1]

(5.62) lult) P<Pi+2- 'rM(lu(s) Dds  for all ¢€[0, T7,

where Po={uol,+2-¢(0)-T+2-[fZ}"2 and M(s)=M(s)+(1/4)s®. Putting P=p, if
Py>0, and P=1 if P,=0, we define T, by

. hP?
5. = — .
(5.63) Ty=min (o T)

Then it easily follows from (5.62) that
(5.64) lut) g<4P  for all te 0, T,].

We now let r=>5P, then oL (u(t))=0 for all ¢ in [0, T,]. This implies that u(f) is
a strong solution of (3.1)-(3.2) in the interval [0, T,] satisfying (3.6)-(3.8) with T
replaced by T,.

Step II: We define ug, u*(t), n, as in the proof of Theorem 5.3. Then, by the
same reasoning as in Step I, we obtain

(5.65) | un () 1§§4P§+2-5t11~4(]u"(s) Nds for all te[0, T] and n=n,,
[}

whence follows that

(5.66) |u*(t)|z=<4P  for all £€[0, T,] and n=n,.

Furthermore, combining (5.58) with (5.66), we find that

(5.67) [og*ur(t), w )= (1—7)- ' (u"(t)) + M4P) for a.e. tc[0, To] and all n2m,.

Then applying Lemma 5.6, we deduce estimates (5.35)-(5.37) with T replaced by
T,. Hence, repeating Step II and Step III in the proof of Theorem 5.3, we complete
the proof. ' [Q.E.D.]
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We can formulate another local existence result corresponding to Theorem 5.7
as follows.
COROLLARY 5.9. Let (A.1), (A.2) and the following (A.10) be fulfilled.
{A.10) 0e D(¢YycD($? and following (5.52)" is satisfied.

(5.52) [0¢%(w), wlg+ P (—w < M{ulg) - [1+{g" w71, 0<r<l,
for all we D{¢YYND(ag?) .

Then the assertion of Theorem 5.8 remains true with (5.57) replaced by the
Jollowing (5.57)/

(6.57) gty e Lo, To; H)Y  for all >0 (1=1,2}.

Now, we study the existence of the global strong solution of (3.1)-(3.2) for the
initial data u,€ D(¢') under some additional assumptions compatible with those of
Theorem 4.3. To this end, we introduce the following conditions (A.9)” and (A.10)":

(A9 D¢ty D(a¢?), ¢*(0)=¢%0)=0, and the following (5.12) is satisfied:
(5.12) llog2ulla< My uls)- g )i, 0<r=1l, for all uecD{$").
{A.10)” D¢ cD(¢?, ¢1(0)=¢*0)=0, and the following (5.52)” is satisfied:

{6.52)" [0¢2(w), ulg+ X —u) S Mol ulg) |ulg- P )7, 0<r=1,
for all we D(¢Y) N D{8g%).

Here M,(-) denotes a locally bounded monotone increasing function on [0, +oo[ such
that there exist positive constants 7,, K, satisfying

(5.68) My(8) S K, -s+t2r47 D for all s€[0,1].
Now, recalling the formulation of Theorem 4.3, we have the following theorem.

THEOREM 5.10. Let all assumptions of Theorem 4.3 and (A.9)” be satisfied.
Then there exists a positive constant &, such that for every u,€ D(¢') and f{t) €
L2(0, T; H) satisfying Po={ud%+ 12 )V2<d,, there exists a global strong solution
w(t) of (8.1)-(8.2) satisfying (5.13)-(5.16). Here &, depends only on d,as, az Ky 71

and 7, but not on T.

PROOF OF THEOREM 5.10. In the case of P,=0, i.e., #,=0¢ N(¢'), Remark
4.4 assures the existence of the strong solution. Then we may assume that P,>0.

7 Note that if My(s)=Ki-s~1+27, (A.9)” and (A.10)” imply (A.9) and (A.10) respectively.
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Since (A.9)” implies (A.9), applying Theorem 5.8, we see that for every u,e D¢y
and f{t) € L*0, T; H), there exists a local strong solution %(t) of (3.1)-(8.2) in [0, T}
such that

(5.64)" lut)lg=4P,  for all ¢tc[0, T\],

2 -~
(5.63)" TD:TO(PD)zmin<ﬁﬂ%P—), T), where My(s)=7-sti7- {M,(s)}/7 .
9 0 0

Furthermore, in view of (5.68), we can take §,>0 such that
(5.69) M,4P)<P:  for all P,e10,4,].

Then we can take Ty(P)=1 if P,<s,. (We assume that T>1 without loss of
generality.)

Here, we recall that (5.12) in {A.9)” implies
(5.58) [0g*(u), uly<(1—7)-¢*(w)+M(ul)  for all we D(g.
Hence, by (5.64) and (5.69),

(6.70) PAult)) S[og*(ult), ut)la<{1—7)- o (ult) + P}
for all Py€10,4,] and a.e. £€10,1[.

Now, recalling relations such as (5.7) and (5.33), we obtain

(5.71) r- S:gb‘(u(t))dté%I " 12+S:If(t) Il ult) [dt+ P
S Pi+4P%+Pi=6P2

(5.72) 2.7+ g {u(1)) gﬁt]f(t) Pdt+2-j:¢1<u<t»dt+zpa
<3PiL 2-j1¢1<u(t>>dt .

Combining (5.72) with (5.71), we have

~ 3P} . 6P%

(5.73) Pl 22t

Here, recall that there exists a positive constant ¢, such that fue H; 0<gt{u)<el
W (see footnote 3)). Hence, we can choose a positive constant &, (6,=48,) such that.
u(1) belongs to WU{0} and J(u(l)+(1/4)-|fl&<d if P,<8,. Now, Theorem 4.3
assures the existence of the global strong solution of (3.1)-(3.2). [Q.ED.J]

In parallel with Corollary 5.9, we have the following result.
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COROLLARY 5.11. Let all assumptions of Theorem 4.3 and (A.10)" be satisfied.
Then the assertion of Theorem 5.10 remains true with (5.16) replaced by (5.16).

§6. Applications

Example I: 1In the first place, we consider the initial-boundary value problem
of the form:

ou r 9 /| dulrtou
61 Lo 5 2|2 I sl 250, (w8 € OX0,TL,
1{6.2) u{z, £)=0, (x,t) € I'X10, TT,
1{6.3) u{x, 0) =uelx) , xEL.

Throughout this section, let 2 be a bounded domain in R* with smooth bound-
ary I'=082, and p—2 be a non-negative real number.

Tsutsumi [8] gave existence (and non-existence) theorems for global solutions
of (6.1)-(6.3) when u,(z) € W?(2), f#)=0 and B(u) is of the form glu)=|ul*-u (¢>0)
by using the Galerkin’s method. Applying our abstract theory to (6.1)-(6.3), we
can prove some existence theorems similar to those of [8]. What is more, our
method enables us to obtain some new results. For example, we can improve the
regularity of u(z,t) (in z-variable) and study the case that u,(x) € L%Q).

We now introduce the following condition for B.

Condition (8): B is a maximal monotone graph in R'XR' and there exist
positive constants K, K;, a such that

(4.6) B Ky |7+ K,  for all re R,

Let I be a p.ls.c. function on R! such that 8l=p, and define a function ¢* on
L%(Q) by setting
u{x))dx if Iu{x))e LYD),

65 ¢2(u):{§g< (@) (x)

4 oo otherwise .
Then 42 is a p.l.s.c. function on L%Q) and moreover for a given function g(z) € L*(£2),
geagt(u) if and only if glx)€ B(u(x)) for a.e. z in Q. Next, we define another
function ¢, on L) by

(6.6) )= {3155 P ; ‘ gZ

+co otherwise.

dn it we WErl2),
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Then, we have D(#,)=W;?(2) and 8¢,(u)=— E (8/0x;)(| oujox;|P~2(0u/ox;)). Hence,
{6.1)-(6.3) can be reduced to (3.1)-(8.2) with 8¢?, a¢2 replaced by 9¢,, 8¢? respectively.
Now, we can study the existence of strong solutions of (6.1)-(6.3) by our theorems
developed so far. First, we mention the following theorem for the case that
2+a<p.

THEOREM 6.1. The case 24+-a<p: Let Condition (B) be satisfied. Suppose that
2+a<p if nEp; and 2+a<p, 20+a)<np/(n—p) if n>p. Then, for every uy(x) €
L2y and f(t)e L*0, T; L*(Q)), there exists a strong solution u(t) of (6.1)-(6.3)
satzsfymg.

6.7) VT Z?()emo T; L2(9Q))

(6.8) [ult) [%5,1;(9) s absolutely continuous in 10, T1 and belongs to L0, T),
{6.9) 06, (ult)) € Lo, T; L¥HQ)) for all 6>0.

Furthermore, if uyiz) belongs to Wie(Q), there exists a strong solution of (6.1)-
(6.3) satisfying:

(6.10) (ZL( Ve L0, T%; LA(Q)),
(6.11) | (&) I%}),mg) 2s absolutely continuous on [0, T],
(6.12) 9¢,(u(t)) € L*0, T; L*Q)) .

PROOF OF THEOREM 6.1. Let H=L:Q), ¢*=¢, and ¢?=¢?. Then Sobolevs
embedding theorem gives
(6.13) [0¢2(u), ulg=C- (| u|35%a g, +1)
=C-{g (w)}*@/»+C for all ue D(¢)=W3*(Q),
(6.14) 182 la=C- (Julptfee g, +1)
ZC-{P ) Fair+C for all ue D(gY)=WEe(Q),

which imply (A.9). Furthermore Rellich’s compactness theorem assures (A.1).
Hence, Theorem 5.3 (or Theorem 5.7) and Lemma 5.4 lead us to Theorem 6.1.
[Q.E.D.}

REMARK 6.2. In Theorem 6.1 we have only to assume 2+a<p if n<1l.

We now proceed to the case that 2+a>p. When u,(x) belongs to Wi?(Q) we
obtain the following theorem.



Existence of strong solutions 601

THEOREM 6.3. The case 2+a>p, u,€ We?(@2): Let Condition (8) be satisfied
with Ky=0. Suppose that 2-+a>p if n<p; and 2+a>p, 2(1+a)<np/(n—p) if n>p.
Then it is possible to construct o stable set such as in Theorem 4.3. In particular,
there exists o positive comstant &, depending only on Ky a,p and n but not on T
such that for every u,(x) € We2(2) and f{t) € L*0, T; L*(Q2)) satisfying O=[u, lwi»c0) +
|F B 2rsntion <00, there exists a strong solution u(t) of (6.1)-(6.3) satisfying (6.10)-
(6.12).

PROOF OF THEOREM 6.3. Let H=I2(), §'=¢'=¢,, ¢*=¢* and

—1{—2— . 2+a, ‘f Sta
(6.15) Ju)=12+a L‘“(w” de if wule)e LH*(Q),
T it wulx) e LAQ\L¥(Q) .

Then $* and §? are homogeneous functions of degree p and 2+« respectively. More-
over Sobolev’s theorem gives (6.14) and

{6.16) FHu) <C-{P )y @r@ir  for all we D(¢Y) .

Hence, applying Proposition 4.2 and Theorem 4.3, we deduce Theorem 6.3, since
there exists a positive constant ¢ such that {u€ H; 0< P uy < W. Q.E.D.]

As for the case that (@) € L) and 2+a>p, we have the following theorem.

THEOREM 6.4. The case 2+a>p, w€ L*Q): Let all assumptions in Theorem
6.3 be satisfied. In addition, suppose that p<2+a<2p/n-+p. Then, for every
uo(®) € LAQ) and f(t)€ L*0, T; L¥Q)), there exists a local strong solution of (6.1)-
(6.3) in the interval [0, Ts) satisfying (6.7)-(6.9) with T replaced by T, (T, depends
on |Uoli2y). Moreover, there exists a positive number 8,, depending only on K,
a,p and 1 but not on T, such that for every uolz) € L8 and ft) € L*0, T'; LA*Q))
satisfying 0<|uoli2o +1f 2002w <00, there exists a global strong solution wu(t)
of (6.1)-(6.3) satisfying (6.7)-(6.9).

To prove this theorem, we need the following lemma (see Theorem 2.2 in [4]).

LEMMA 6.5. Let r<q<-+oo if p=n, and r<q<np/(n—p) if p<n. Then, we
have
(6.17) luIL«m)éC-lulfvwm-luléifg) Sor all we Wp(9) ,

where p=1, r=1 and

2G50
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PROOF OF THEOREM 6.4. Let H,¢' ¢* be as in the proof of Theorem 6.3.
Then, by virtue of Lemma 6.5, we obtain

(6.19) log*ullz=C-{g*w)te +air.[u |78 4+ for all we DigY) ,

where
1 1 1 1 1\t
—(1_ T R S Y
£ (2 2(1+a)> (n p+2> =

The relation 2+a<2p/n+p, together with simple caleulations, implies that
p-(1+a)/p<l and (1—p)-(1+a)>—~1+2{1—o(1+a)/p}, which assure (A.9)”, {Note
that (A.10)” is also satisfied.) Now, we can apply Theorem 5.8 and Theorem 5.10
to (6.1)-(6.8). [Q.E.D.]

REMARK 6.6. In Theorems 6.3 and 6.4, we can replace |fl 20,20 bY
[flz=o,m:220)) (see Remark 4.6).

REMARK 6.7. As has been seen in Remark 4.5, we have only to assume (A.2)’
instead of (A.2) in Theorem 6.3. For example, let p=2, n<8, ®<3, then the asser-
tion of Theorem 6.3 remains true.

REMARK 6.8. In Theorems 6.1, 6.3 and 6.4, we may replace Condition (8) by
the following:

Condition (8)’: B(r) is a locally Lipschitz continuous function on ]—o00, 4o
and satisfies

(6.20) B SK,fre for all re R,

In proving above theorems under Condition (8, we need some modification. For
instance, ¢%(u) needs to be replaced by

(6.21) gﬁi(u)=ﬁ(u, Balsw)ds, >0,
where
Blu(z)) i <,
{6.22) Bilu)lx) =
1\ ulz) . 1
ﬁ<2)lu(x)l t ol >

Ezample II: We consider the following initial-boundary value problem:

)(6.23) %;i(x, 8 —dulz, t)—Blulx, 1)) 37¢), (x,t) e 2x10, T[,
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(6.24) —Z—Ziw terlul, ), (@ telx10,T0,

(6.25) w(x, 0)=u,(x), €2,

where 9/on is the outward normal derivative and y(-) is a maximal monotone graph
in R*X R' such that 7(0)>0.
We define a function ¢'(u) on L*(2) by

1[0 &0
(6.26) ¢1(u)={259§1 om;

400 otherwise ,

u(x) lzdx -l—SPj(u(x))dF if e Wh2(Q) and j{u(z)) € LX),

where j(-) is a p.ls.c. function on R! such that 8j=y and j(r)=0 for all r¢ B
Then, we have 9g'{u)=—4du with D(ag')={uc WaHQ); —oulx)/onc rlulz)) a.e.
x on I'} (see [2]). Thus (6.23)-(6.25) can be reduced to (3.1)-(3.2) with 8¢ and 3¢*
replaced by 8¢* and 3¢® respectively. Let us assume the following condition for
Jl-):
Condition (j): There exists a positive constant K, such that

6.27) jiry=K,-|r2  for all re R'.

Then, under this assumption, replacing p, Iu]’,?yg,p(m and Wi?(Q) by 2, ¢*(u) and D(g")
respectively, we have the very same results as Theorem 6.3 and Theorem 6.4 with
respect to (6.23)-(6.25). In order to see this, we put ¢'=¢', ¢*=¢* and introduce
another funection ¢! on L*2) by

0

1 7
(628) gl"l(u) = { 2 SQ El axi

40 otherwise.

u(x) lzdw +K,- Splu(x) Al if we WHHQINLAT),

We also define ¢2 by (6.15). Then, we have ¢'(u)<¢'(u) and
{6.29) [u}%p%,zm)_s_c-ggl(u) for all we D{¢Y),

which assures (A.1). Now, making use of (6.29), we can repeat the very same
procedure as above.

REMARK 6.9. Until now, we have been concerned only with the case that &'
and ¢? are homogeneous functions. However, we can give an example of ¢* which
is not a homogeneous function. For instance, let y{u)=|u|""%-u with 2<9<2+a in
(6.23)-(6.25), and put
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iu(x)rdx-i—%j lw@)idl if we WHQ) AL,
r

1 %
(6.30) ¢1(u)=¢71(u>={ Se;
too it we L@\ W) nLIUT)} .

Then, under suitable assumptions for # and «, we have

(6.31) FHu) < C-u L% o, SC- ) @+ 24 blu) @+ 19]
<C-[Pa)erory (Fiw)er=ie]  for all we Digh,

where

;;iu(x)’zdw and b(u)zgrlu(x) fdr .

Making use of this inequality, we can easily verify (A.5)-(A.7). For example,
{iv) of (A.5) can be verified as follows. Since r, always satisfies a(u)+b{u)-ri 2=
2+a)d%u) -7, 7,=1 implies that 2- ¢ (u) <a(u)+b(u) < (2+a) - $2(u), which contradicts
(6.31) when ¢'(u) is sufficiently small. Thus, there exists a positive constant ¢ such
that ¢'(u)<e implies r,>1. (This fact also implies that {u € D(¢"); 0< g (u) <l CW.)
Hence, we have the very same theorem as Theorem 6.3 for (6.23)-(6.25) (with
p, Wir(Q), ete. replaced by 2, D(¢!), ete. respectively). Also we can obtain the
same result as Theorem 6.4.

Example II1: As an application to ordinary differential equations, we consider
the following typical example:

{(6.32) {‘%—(t)w(y(t}—y(m), p=%1, teD,T1,
(6.33) y0)=5,.-

The case p=1: Let H=R', ¢'y)=y*4 and ¢*y)=9*/2 with D(¢")=D(a¢)=
D(¢*=D(o¢* =]—oo, +oo[. Then it is clear that all assumptions in Theorems 3.2
and 5.1 are satisfled. That is to say, for every y,€]—oo, +oo[, there exists a
unique strong solution of (6.32)-(6.33).

The case p=—1: Let H, ¢' and ¢? be as above. Then it is easy to see that
all assumptions in Theorems 4.3, 5.1 and 5.8 are fulfilled. What is more, Wn {0}
coincides with J—1, +1[. Hence, for every ¥, € ]—oo, +oo[, there exists a unique
local strong solution of (6.32)-(6.33). Moreover, if y, belongs to 1—1, +1{, the local
solution can be continued globally.
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