Ultradistributions, II
The kernel theorem and ultradistributions
with support in a submanifold

Dedicated to Professor S. Furuya on his sixtieth birthday
By Hikosaburo KOMATSU

The purpose of this paper is to prove the analogues for ultradistributions of
two major theorems of L. Schwartz for distributions: the kernel theorem [12], [13],
[14], [15] and the structure theorem of distributions with support in a submanifold
[11]. We also obtain a Whitney type extension theorem for ultradifferentiable
functions as the dual of the second theorem.

This is the second part of our study of ultradistributions and we use the same
notations as the first part (5], which we will refer to as [I}. However, we change
the terminology of locally convex spaces a little. According to [6] we call a
nuclear space a Grothendieck space and an S*-space a Komura space. Therefore,
an (FN)-space in [I] is called an (FG)-space (=Fréchet-Grothendieck space). An
(LFG)-space is the strict inductive limit of a sequence of (FG)-spaces and a (DLFG)-
space is the strong dual of an (LFG)-space.

M,, p=0,1,2, ---, is a sequence of positive numbers satisfying the following
conditions:

(M.0)
(0.1) My=1;

(M.1) (Logarithmic convexity)
(0'2) MggMp—l p+1 p:]-, 2y et

(M.2) (Stability under ultradifferential operators) There are constants A and
H such that

0.8) M,<AH° min M\M,_,, p=0,1,-+-;

0=¢=p
(M.3) (Strong non-quasi-analyticity) There is a constant A such that

o M- M
0.4 Moz cpp 2o penye,.
04 o i, =P T
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(M.2) and (M.3) may sometimes be replaced by the following weaker conditions:
(M.2)" (Stability under differential operators) There are constants 4 and H
such that

{0.5) M, <AH'M,, p=0,1,---;
(M.8)" (Non-quasi-analyticity)

M,
1 Mp

s

(0.6) <o,

»

An infinitely differentiable function ¢ on an open set 2 in R" is said to be an
ultradifferentiable function of class (M,) (resp. {M,}) if for each compact set K in
£ and h>0 there is a constant C (resp. there are constants % and C) such that

(0.7) sgng“SO(w)léCh'“*Mal, la]=0,1,2,---.

The space of all ultradifferentiable functions of class (M,) (resp. {M,}) on 2 is
denoted by &¥#»(Q) (resp. £¥»(Q)). The spaces &¥»(Q) and & ¥ () as well as
(0.8) DU =DNE¥)(Q) and Q¥ (Q)=J)(Q)NE ¥ (Q)

have natural locally convex topologies.

An element of the dual §)¥»/(Q) (resp. DWA'(Q)) of G ¥ (D) (resp. §) ()
is called an wltradistribution of class (M,) (resp. {M,}).

The associated function

(0.9) M{p)=suplog (0?/M,), 0=p<co
?

plays a very important rdle in our theory. If ¢ is a vector in C*, we write
{0.10) MQ=M(Z) .

In § 1 we prove the Paley-Wiener theorem for ultradistributions saying that an
entire function F(7) on C* is the Fourier-Laplace transform of an ultradistribution
f with support in a compact convex set K in R® if and only if it satisfies the
estimate

(0.11) [FQ)I=Cexp {M(LO+HcQ}, Cecn,
where Hg(¢) is the support function of K defined by
(0.12) He(g)= sup Im {2, 8>

C. Roumieu [10] and M. Neymark [7] have obtained a similar theorem with
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the right hand side of (0.11) replaced by C.exp {M(Lg)+ Hx(Q)+el¢} for any ¢>0.
We eliminate the term ¢¢] with the help of the Phragmén-Lindeléf theorem. In
this process condition (M.3) plays an essential role. As Roumieu shows in [3] we
cannot obtain estimate (0.11) in general without conditions (M.2) and (M.3).

Section 2 is devoted to the proof of the kernel theorem. Our proof is similar
to that of F. Treves [16] in the case of distributions. Condition (M.2) is important
in this section.

We write a point in R*=R™XR" as (z,y) with ¢ R” and y€ R™. Let

(0.13) F={(&,0); z€ R”,0€ R}

be a2 linear submanifold in R*. We prove in §3 that f(x,) is an ultradistribution
with support in F if and only if it is developed in the convergent series

(0.14) fl,y)=3 fa(@)@D%y) .

Roumieu [10] proves that if f(, y) is an ultradistribution of class {}} with support
in F, then it has the development (0.14) which converges in the topology of ultra-
distributions of class {VpIM,}. We prove the convergence in the topology of the
original class.

In the last § 4 we prove that if an infinitely differentiable function ¢ in the sense
of Whitney on a smooth submanifold F satisfies an estimate of class (3,) (resp.
{M,}) then it can be extended to an ultradifferentiable function of the same class
on a neighborhood of F. This generalizes L. Carleson’s theorem [1] in the one-
dimensional case. We prove this by showing that the theorem of §3 is equivalent
to this theorem together with the fact that every ultradifferentiable function whose
derivatives all vanish on F can be approximated by ultradifferentiable functions
whose support does not meet F. We note that the last fact is by no means trivial.

We will employ the theorem of §3 to characterize those weakly hyperbolic
operators for which the Cauchy problem is eorrectly posed in a Gevrey class of
ultradifferentiable functions and ultradistributions.

1. The Paley-Wiener theorem for ultradistributions. Suppose that f is an
ultradistribution with compact support in R” For each (¢ C® the function
exp(—iZx) in z belongs to £*(R*) and it is easily shown that exp(—1¢x) depends
on ¢ holomorphically in the topology of £*(R”), where the asterisk stands for
either (M) or {M,}. Hence

Ly Flo=<exp{—itx), fla)>
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defines an entire function on C*, which we call the Fourier-Laplace transform
of f.

The Paley-Wiener theorem holds also for ultradistributions. The associated
function M) and the support function Hg(?) have the same meaning as in §3
of [I1.

THEOREM 1.1. Suppose that M, satisfies conditions (M.0), (M.1), (M.2) and
(M.3)" and that K is @ compact convex set in R™. Then the following conditions
are equivalent for an entire function f(C) on C™:

(@) flQ) ts the Fourier-Laplace transform of an ultradistribution fe §) ¥’
(resp. D) with support in K;

(b) There are constants L and C (resp. for each L>0 there is a constant C)
such that

(1.2) |F@)=Cexp M(Lg), £ckr,
and for each ¢>0 there is a constant C. such that
(1.3) | 7Q=Ceexp{HeQ+elc}, Cec.

If M, satisfies (M.2) and (M.3) in addition, then these conditions are also
equivalent to the following:

(¢} There are constants L and C (resp. for each L>0 there is a constant
C) such that

(1.4) [fOISCexp(M(LO+HK(Q}, Cecr.

A subset B of Q¥ is bounded in ¥ (R") if and only if we can choose con-
stants L and C (resp. for each L>0 a constant C) independent of fe B such that
(1.2) kolds.

A sequence f;€ DD’ (resp. DPe") converges if and only if for some L {resp.
Jor any L>0)

(1) exp(—MI(Le))f;(8) converges uniformly on R™

If M, satisfies (M.2) and (M.3), then this is also equivalent to each one of the
Sollowing:

(if) exp(—M(LL)fi(Q) converges uniformly on a strip |Im¢|<a<oo;

(il) exp{—M(LL)—Hg)}f5(C) converges uniformly on C*.

PrROOF. (a)=(b). Suppose that B is a bounded set in @*(R" included in
%. By Proposition 5.11 of [I], it is also bounded in the dual E*(R™ of the
reflexive space £*(R"). Hence there are a regular compact set K, in R* and
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constants i and C (resp. and for each k>0 a constant C) independent of fe B such
that

| Do) | »
(1.5) l<¢,f>[§0%1£m, peEXRY .

If we take o(x)=exp(—iz€), £€ R", then the right hand side of (1.5) is bounded
by

Csup ﬁ%% =C sup%l% =Cexp M{&/h) .
Hence we have (1.2).

Since ultradistributions are imbedded in the hyperfunctions without changing
the support, (1.8) follows from the Ehrenpreis-Martineau theorem (Hormander [4],
Theorem 4.5.3). We will give here a direct proof, however.

Let ¢>0 and let K. be the set of all points z in R® such that the distance
from 2z to K is less than or equal to e. We take an ultradifferentiable funetion
x(x) € )Mo ki2(R™) with support in the interior of K. which takes the value 1 on
a neighborhood of K. Then we have

o, fr=e.fy, ¢e&*R", feB.

In view of [I], Propesition 2.7 we have for some C,

[ Do) () |
o IS0 mp g,
<C,sup | Do) | peE*RY .

ze e (R)2)1* Miq) ’
Let o(x)=exp (—1i¢x) with € C*. Then we obtain
|/ 1=C, exp (M(2¢/R) + H (O} -

Since Hy, () <Hg(Q)+¢¢] and since M(p)=o0(p) as p—oo (1], (4.7)), this implies (1.3).

(b)=(a). Suppose that B is a set of entire functions f({) on C* satisfying (1.2)
and (1.3) with a uniform constant C.

If oc YU (R™) (vesp. W (R™), then it follows from the Paley-Wiener
theorem for ultradifferentiable functions (I}, Theorem 9.1) that for each h>0 there
is a constant C, (resp. there are constants k and Cy) such that the Fourier-Laplace
transform &(g) satisfies
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(1.6) [$(0)1=C, exp{—M((/h)+ Hg, ()},
where K, is the convex hull of suppe.
Hence for each fe B
[5()/(—8) I<C\C exp{M(L&)— M(g/h)}

is integrable on R" by Proposition 8.4 of [I]. Thus

L j e fi—2)de
n n

1.7 o, f>= @) )

defines a linear functional f on @*(R". The boundedness of {f;fc B} follows from
the proof because we can choose a uniform constant C; in (1.6) for all ¢ in a
bounded set in G)*(R™).

The fact that suppfCK may also be proved by the Ehrenpreis-Martineau
theorem but we prove it directly.

Suppose that p € 9%, where K; is a compact convex set in R* with KNK,=J.
We choose a >0 smaller than the distance between K; and K. Then there exists
a real unit vector &, such that

Heg,(i&) + Hg(— &) =sup <{x, & —inf <z, &y <—45 .
z€ Ky 26K
We consider for each £¢ R* the holomorphic function
Flz)=0(&+&02) fl—&—£02)
defined on the upper half plane Im2>0. By (1.2), (1.3) and (1.6) we have
| Fl2) | <C.Cexp{—M((+&x)/h)+ M(L(E+&1)}, Z€R,
and

| F(2)|<C,Ce eXp{_M((S‘f‘foz)/h) +HK1(502)+HK(_502) +el&+&020}
ZC.Ceexp{—M{(e+&2)/h)—3Im z+eg|+elz]}, Imz=0.

Let & be the component of & orthogonal to & and &=2,8,+&. Then we have by
Proposition 3.4 of [I]

exp{—M{(¢+&w)/h) + ML(E+ &2} S A(L+] e+ &z )
SAll@+z+1+E )", zeR.

Applying the Phragmén-Lindelsf theorem to (24 o+ (1+|&’])i)*e~*F(z), we have
finally
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|B(&+ict) fl-e—icg) IS A (1+]E)", £€RY, ¢=0.
Thus we can deform the domain of integral of (1.7) to R*-+ir&, and obtain <y, f>=0

asg oo,
Sinee every pc ¢)*(R" such that suppeN K= can be represented as the
sum of a finite number of ¢; ¢ g)*(R*) with the above property, we have supp fC K.
In order to prove that fF{¢) is the Fourier-Laplace transform of f, we consider
the regularization

(5] ) o) =L@y ~2), fl2)),

where ¢ ¢ @*(R"). Since the Fourier transform of ¢(x,—2) is equal to e*ofd(—g),
we have by (1.7)

(G4 () = S et e fede .

1
(2z)»
Since ¢=f is a continuous function with compact support ([I], Theorem 6.10), this
proves that $(&)f(&) is the Fourier transform of ¢=f. Let

Pelw) =" {w)e)

with a ¢,(x) ¢ §*(R™ such that | ¢;(z)de=1 and that ¢,{—z)=¢,(z). The mapping
fdexf on £ (R into itself is easily shown to be the dual of the mapping
o—@xde on EF(R™ into itself and the latter converges to the identity mapping as
e—0. Hence ¢xf converges to f in &*(R™ so that §.(£)f(&) converges to the
Fourier transform of f. Since $:(&) converges to one, f must coincide with the
Fourier transform of f.

(b)=>(c). For each real unit vector £, we write

So=Hxl(i&) =sup <z, &) .
ack

Then for each &¢ R™ the holomorphic function
Fe)=flg+6&x7)
on the upper half plane Im 2>0 satisfies
|F(z)|<Cexp M(L{+&2)), ®ER,
and
1 F(2)|<C, exp {6, Im 2+¢]&]+-¢l2]}, Im2=0.
Let
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(L.8) Plo)=TI (1_ iL(e+a+] ¢ Ii)> ,

=1 M,

where &£=ux,£,+& is the same decomposition as above. Then we have by (10.5)
of [I1

| Plx)tettoe Fz) 1< C, TER,
and
|P(2) e F2) |<C: explel§]+elz]},  Imz=0.
Hence it follows from the Phragmén-Lindelsf theorem that
| Fl2)|[<C| Plz)e™ "0 |<C|P(2) | exp (Hx(E+£02)) -
On the other hand, we have by Proposition 4.6 of [I]
| Plz) < A exp (ML (§+&02))

for some constants A and L/. Consequently (1.4) holds.

Trivially (¢} implies (b).

The strong topologies of @*(R™ and £*(R*) coincide on §F’. In fact, if x
is a function in J)*(R" which is equal to one on a neighborhood of K, then we
have for every f¢c g&’

o, /o=, >, ¢ P¥R"

and the multiplication by y is continuous on &*(R™ into J)*(R™.

In particular, )@’ (resp. D) is a (DFS)-space {resp. an (FS)-gpace) as a
closed linear subspace of the (DFS)-space & ™2 /(R" (resp. the (FS)-space §)¥s!/(R").
In both cases a sequence f; converges if and only if f; are contained in an absclutely
convex compact set B and f; converges in the norm of the Banach space X3
generated by B ([6], Theorem 1.12.3 and Theorem II1.9.5). In case *=(M,), the
least constant C of (1.2) is exactly the norm of Xj for some B. In case x={M,},
the above proof shows that (i} implies the uniform convergence of f; on every
bounded set in {)*(R®). The converse is clear.

If M, satisfies (M.2) and (M.3), then the proof of the part (b)=(c) shows that
(i) implies (iii). The implications ()= ({)=>() are trivial.

2. The kernel theorem. We say that a subset K of R" has the cone property
if for each xz¢€ K there are a neighborhood UNK of z, a unit vector ¢ in R* and
a positive number ¢, such that (UNK)+ee is in the interior of K for any 0<<e<e,.
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In this section we denote by £’ and 27 open sets in B and R™ respectively.
A point in £’ (resp. in 27) is denoted by = (resp. y). Similarly we denote by K’
and K” compact sets with the cone property included in £’ and £” respectively.

THEOREM 2.1. Suppose that M, satisfies (M.0), (M.1), (M.2) and (M.8)". Then
the bilinear mapping which assigns to each pair of functions ¢(x) on Q' and $ly)
on 8" the product o(@)dly) on QX Q" induces the following isomorphisms of locally
CONVEXT SPACES:

@2.) E9 (QNRE W (07)=E 9 (2 X 27) 5
2.2) &0t (QNQE VR (Q7) =E P (% Q") ;
23) DR De” =D e 5
2.4) DEIRD " =Del s
@.5) D Q)R D HQ") = G QX Q") .

ProOF. Since &*2), % and 9)*(Q) are Grothendieck spaces ({Il, Theorem
2.6), the projective topology = and the biequicontinuous topology e coincide on the
tensor products.

Since the polynomials are dense in &*(@) ({Il, Theorem 7.8), EXNRQEXL)
is dense in E*(Q/ X 2").

The continuity of multiplication £*(Q/) X £*(Q7)—>E*(2'X2”) ({1, Theorem 2.8)
implies that the induced injection EFRNRQEHQN—E* (2 X 27) is continuous.

To prove that it is an open mapping onto the image, we consider arbitrary
equicontinuous sets A in £*(0Q’) and B in E*(Q"). Then there exist regular
compact sets L/ in £’ and L” in 2", and constants &, C’ and C” (resp. for each
B>0 constants ¢’ and C”) such that

28) p*(e) =sup| <o, Y I=C i‘%%——l;ﬁ:}’}}ﬁ',
3
@ pri61=sapl. 010" mp UL

Suppose that y € & (Q)QE*(Q"), f€ A and ge B. Then we have by M.2)
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1Dz e, wigtuidy
2.8) I ﬂ 2@, y)f (x)g(y)dwdyl =t 5%153 o

DDy (@, y) |
<Crer 0 .l_”_y___’_
=C (x,y%gpxm WFIM o Mg

| DLy (2, y) ]
< 7\ .
=40c b (W H)T M

Thus the semi-norm

2.9) pA®P(x) = sup [{x, k)|
he ARB

is bounded by a continuous semi-norm on &*(2’x 27). In other words, the e-topology
on E*(QVRE*(Q”) is weaker than the induced topology from EX' X Q).

Since &*(Q'x Q") is complete (I}, Theorem 2.6), we obtain the isomorphisms.
(2.1) and (2.2).

The proof of (2.5) is similar. To prove that Q)™ (Q)® Q) ¥ (Q7) is dense in
DU XQ", let pc DM’ XQ"). Let L {resp. L”) be the projection of
supp ¢ into Q' (resp. 27). We choose a y’ € ¥ (Q") (vesp. %" € )™ (2")) which
is equal to one on a neighborhood of L’ (resp. L”). By Lemma 7.1 of [1], there
is a sequence ¢;€ (2'x Q") which converges to ¢ in £ % Q"). By approxi-
mating ¢; by polynomials, we can find a sequence of polynomials ¢; which converges.
to ¢ in & (L), where L is a regular compact neighborhood of supp x’ X suppy”.
Then it is easy to see that 2 @)1y, y) € DHHQNRQP M Q) converges to ¢
in QR (Q % Q7).

The multiplication is hypocontinuous on §)¥st(Q7) x G) ¥z (Q”) into g) s (2 xQ"
({11, Theorem 2.8) and )% (0’) and )™ (Q”) are (DF)-spaces. Hence the multi-
plication is continuous by Théoréme 2 of Grothendieck [2] and therefore DR,
PR (QM~ DM (O x Q") is continuous.

Let A and B be equicontinuous sets in §)™s/(Q’) and D (Q7) respectively.
Then for any regular compact sets L/ in £’ and L” in £” and for any k>0 we
can find constants C’ and C” such that (2.6) and (2.7) hold for all oc D and
g€ P,

We have by the same computation as above that the semi-norm P4®F defined
by (2.9) is continuous on J)!¥2},. Since every compact set in £/xQ” is included

in a compact set of the form L/XL”, it follows that pA®E is continuous on
@{Mp) (QIX .Q”),
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Lastly we prove (2.3) and (2.4). Since )i is regarded as a closed linear
subspace of £*(Q), Q)}’z@)e@}p is identified with a closed linear subspace B of
Ex(’x"). Clearly R is included in )%«xs. On the other hand, if the support
of ye Q¥yxr is included in a compact set in the interior of K'xX K", then y can
be approximated by a sequence of elements in Q¥R Di- as in the proof of (2.5),
so that y belongs to E.

Since K’ K” has the cone property, such y form a dense linear subspace of
QD¥rigr. In fact, let ¢ be an arbitrary element in ¥ xr. There is a partition
of unity 1=3 ¢; on a neighborhood of K’XK” which is subordinate to the open
covering associated with the cone property. Every ¢,0 may be translated to a
function y; with a compaect support in the interior of K’XK”. Since the trans-
lation is continuous in )*(Q) as was shown in the proof of Theorem 6.10 of [Il,
e=Y ¢;0 is the limit of a sequence of functions in @k «xr with compact supports
in the interior of K’XK”. Thus R coincides with )#/xx-.

As for (2.8) and (2.4) we have the following more precise results.

PROPOSITION 2.2. Suppose that M, satisfies (M.0), (M.1), (M.2) and (M.S)’ and
that K' and K" are compact sets with the cone property. Then for every h>0
(resp. every k>0) we can find a k>h (resp. an 0<h<k) so that we have the following
continuous inclusions of Banach spaces:

2.10) {M b h® @g’{} b gllx}x}; .
1) P, QU C DI D
(2.12) ;{l‘fﬁ}Kﬁ QU ® Qt

PROOF. (2.10) follows from the continuity of the multiplication g% by

3 A
D' > D

If T:X—X: is a nuclear linear mapping and S:Y—Y, is a continuous linear
mapping, then T®S:XR:Y — X;®-Y; is continuous (cf. Pietsch 8], Satz 7.3.2).
Hence (2.11) is proved by the fact that QY "—PEH* is nuclear ({1}, Proposition
2.4).

(2.8) shows that the norm of DL *®.Pir""* is bounded by a constant times
the norm of §)MP:*". We can prove in the same way as above that PR

AN 3 VRH

Wk s dense in Dy in the norm of DEIE for some h<k/H. We can
also start with A.
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ILet X and Y be locally convex spaces. Then we denote by B{X,Y)
(resp. B(X, Y)) the space of all separately continuous (resp. continuous) bilinear
functionals on XX Y. Under a mild condition we can introduce in it the topology
of bibounded convergence or the topology of uniform convergence on the sets of
the form AX B, where A and B are bounded sets in X and ¥ respectively. The
space B*(X,Y) (resp. B(X,Y)) equipped with this topology is denoted by B(X, Y)
{resp. Bs(X, Y)).

L(X,Y) denotes the space of all continuous linear mappings T:X—Y and
Lp(X, Y) stands for L(X,Y) equipped with the topology of uniform convergence
on the bounded sets in X.

The following is the kerwnel theorem for ultradistributions.

THEOREM 2.8. Suppose that M, satisfies (M.0), (M.1), (M.2) and (M.3)'. Let %
be either (M,) or {M,}. Then we have the canonical isomorphisms of locally convex
spaces:

213 BiDHQ), DHQ")=LADH@), D¥(@")=LalD*2"), D*(27)
=P ()R D (2" =P Q' XQ") .

PrROOF. Since J*(2') and *(2”) are reflexive spaces ([I], Theorem 2.6),
B (D*(2'), D*(2")) is the same as the space B:((D* (7)), (D (Q7))1) of separately
weak*-continuous bilinear functionals equipped with the topology of biequicontinuous
convergence. The latter space is canonically isomorphic to Le(()*/(2")), DM
equipped with the topology of equicontinuous convergence ([16], Proposition 42.2).
Since P*(Q2’) is reflexive, this is in turn isomorphie to Ls(J)*(0), ("), Similarly
we have the canonical isomorphism Bj(*(2), P*(27)=Ls(D*(2"), P*'(2)).

Secondly, since G)*(Q) and Q)*'(2”) are complete Grothendieck spaces, we
have by Théoréme 6 of Grothendieck 3], Chap. II the canonical isomorphism

Bi((D*(Q)or, (D*(Q27)30) = D* (2R D* (27) .
Lastly the multiplication Q*(2') X D*Q")—>P*(2'XQ"), which is separately
continuous ([I], Theorem 2.8}, induces a linear mapping
i (@ X Q) —B(DH@), D*2") .
Let K’ and K” be arbitrary compact sets with the cone property included in £’

and 27 respectively. By Théoréme 12 of Grothendieck [8], Chap. II we have the
canonical isomorphisms of locally convex spaces:

By D%, Di)=Bol D, DEN=(DERDE); .
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The last space is by Theorem 2.1 isomorphic to (D¥/«x); and hence we have
(2.14) By( D%, Din=(DErxx")t -

Sinee the compact sets of the form K’XK” form a fundamental system of
compact sets in 97X 27, it follows that 4 is bijective. In fact, suppose that i(f)=0
for an fe Q¥ (9Q'xQ"). Then the restriction of 4(f) to ¥ X D% vanishes and
hence by isomorphism (2.14) the restriction of f to Q¥xx- vanishes. Thus we
have f=0. Similarly if K¢ B(P*(Q"), D*(2"), then its restriction to Qe D
gives rise to an element frxxr of (D xxr)’. Since frxxr are compatible with
restriction, they define an ultradistribution fe )*/(2'x2”) such that K=i(f).

Since every bounded set in )*(2') ete. is a bounded sets in some 9%/, ete.,
the topological isomorphisms (2.14) imply the topological isomorphism

(2.15) By(D*(2"), D*Q") =(DH' x5 -
In case x={M,}, the topological isomorphism
(D=2 (D) = (D*Q' X Q"))

may also be proved as the dual of (2.5) by Théoréme 12 of Grothendieck [3],
Chap. II.

3. The structure theorem of ultradisiributions with support in a submanifeld.
Suppose that F is a linear submanifold of R* Under a suitable ccordinate system
it is written

3.1 F={,0); x¢ RV, 0€ R"} .

A point in R* is denoted as (x,y) with x€ R” and ye R™. If 2 is an open set in
R", we write

(3.2) =Fng

and )*() ete. stand for spaces of functions on 2’ of n’/ variables. We recall
that

(3-3) D (2)=1{fc P*(Q); supp fCF} .

We have the following analogue of the structure theorem of distributions with
support in a submanifold (Schwartz [11], Théoréme 36).

THEOREM 3.1. Suppose that M, satisfies (M.0), (M.1), (M.2) and (M.3) and that

F is a linear submanifold as above. Then every flz,y) € Do/ (Q) (resp. DE(Q
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1s uniguely represented as
(3.4) Sfla,y)= Zﬁ) Fe@)QD%(y)
with
€ PHp(2') (resp. J)0a1(27))

satisfying the following conditions:
For every compact set K'C Q' with the cone property there are constants L, h
and C (resp. and for every L>0 and h>0 there is a constant C) such that

(3.5) 1Fel guary.n , SCLP Mg .
o

Conversely if a family of wltradistributions fsc Q*(2) satisfies the above
estimates, then (3.4) converges in Q¥ (2) and represents an fe DL (Q). We have
moreover

(3.6) supp f= Lﬁ) supp fs .

PrOOF. We prove the converse part first. Suppose that {fs(z)} C @* (2')
satisfles the estimates (3.5).

Let K” be a compact set with the cone property in R* such that K/ x K" Q
and let k=(2L)~*. Then the bilinear functional fs(x)QD%{y) on Dk X DE. satisfies
the estimate

| S Xso(x)sb(y)fﬁ(x)ma(y)dxdy <2 OIK ligl g0 41 g« -

Thus the right hand side of (3.4) converges absolutely in the norm of

B, D) = (D E B D

Hence it follows from Proposition 2.2 that (3.4) converges absolutely in the

norm of (PLw;)5 for an I (resp. for all I>>0). Sinee the compact sets of the form

K'XK” form a subbase of compact sets in 2, (3.4) converges in Q). It is
known that §)¥(2) is a closed linear subspace of §)* () ({11, Theorem 5. 8) Hence
the sum belongs to {)}'(2). We have also the inclusion supp fCU supp fs.

If (3.4) converges in @*’(Q’ then we have for every ¢(x) € *(2') and 8

Hso(w)x(y)(—iy)ﬁfw, Y)dady=<p, fi>8! ,
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where % is a function in §)*(R™) which is equal to one on a neighborhood of 0
and has a sufficiently small support. Hence f5 is uniquely determined by f and
has a support included in suppf.

To prove the direct part, let fe 9% (Q). First we consider the case where
supp f is included in a compact convex set K in Q.

Let f¢, o), where {=&+1ip and p=c¢-+ir, be the Fourier-Laplace transform of
fle,y). Then it follows from the Paley-Wiener theorem for ultradistributions that
there exist constants L and C (resp. for each L>0 there exists a constant C}
such that

[F(C o)1= C exp{M(LY) +M(Lp) +Hx (C)} .

Hence if we write
(3.7) f& 0= %f}(C)p"

with

' — 1 f(Cv 10) d
70 (ZM.),,,§ el —gp,

then we have

) exp{M(L) +H (0}

3.8) fils ing  Cexp ML)

<Cexp{M(LL)+ He(Q}(V" L) # Mg, .

Thus it follows from the converse part of the Paley-Wiener theorem that fa(Q)
are the Fourier-Laplace transforms of fse 3'(Q’). Clearly f3(0)p? is the Fourier-
Laplace transform of fa(x)QDF(y). Estimates (3.8) prove that

2, exp{— ML) — M(2V'n"Lo) — Hx(Q}f3(0) 0*

converges absolutely in the supremum norm. Therefore we have (3.4) by the last
part of the Paley-Wiener theorem (cf. [I], Proposition 3.6).

To prove (3.5), let K’ be a compact convex set in F. If oc PU¥*, then we
have by Lemma 3.3 of [I]

|38 <| K| exp{—ME/WWE)Hel .
Hence we have

Ko, fo)l SCIK' |l exp{—M(E/ (VW) + MLE} | 11.zm ol (V0" L) 12 Mg .
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By Proposition 3.4 of [I] there is a & (resp. for each %.>0 there is an L) such that
exp{—M(/(Vn'k))+M(L&)} is integrable. Consequently we have estimates (3.5).
When the support of f is arbitrary, we take a partition of unity
1=2 %;(@)
in @)*(2’) such that the convex hull of each suppy; is included in £/. Then each
term of
Slo, ) =2 1@ f(z, )

has the expansion (3.4). In view of (3.6) we can sum up the coefficients of D®(y)
with respect to j and obtain expansion (8.4). Since every compact set K’ in 0/
meets only a finite number of suppy;, we have also estimates (3.5).

4. The Whitney extension theorem for ultradifferentiable functions, Let F be
a linear submanifold of R”, let 2 be an open set in R™ and let 2'=9NF as in
§3. We define
4.1) EX QT ={p(x, y) € £*(Q); Diplr,0)=0 for all g} .
Clearly this is a closed linear subspace of £*(Q).
4.2 DHDF =P NE DT

is also a closed linear subspace of §)*(Q).

We are interested in the quotient space £*(Q)/E*(2)F. To describe it we
introduce the space &%(2’) of all arrays (ps(x); € N™) of functions ¢s(z) € £*(Q)
such that for each compact set K’ in £’ and k>0 there is a constant C (resp. there
are constants k and C) satisfying

(4.3) sup | D*os(z)| S CRI“ A M igrg -
zCK'

We have the following expressions of &%(0'):

Cy (@)= lim  lim S HEY)
dm

{4.4) Pansaall
Eeg! ko
“@5) Cys(9)= Jim  lim EH(KY)

K'@Q’ h—o

where &i¥:*(K)’ is the Banach space of all infinitely differentiable functions
{D2pp) in the sense of Whitney on the regular compaect set K’ (see page 41 of [I])
which satisfies {4.3). We introduce in £%(2’) the locally convex topologies defined
by (4.4) and 4.5).
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Similarly we define locally convex spaces 9F(2’) by

(4.6) Puy(@)=lim  lim Pt

K'eQ’ h—>0

@ Dy @)= lim i POE,

K'ed’ h—oo

where g)g@;h is the closed linear subspace of & ®sh(K’) composed of all ¢=I(¢s

such that every component ¢s is extended by zero to a funetion in Qe (RY). We
note that

(4.8) supp o= y SUpp ¢s

is a compact set in 2’ for any ¢ PFR).

By Proposition 2.4 of [I] the inductive limits relative to in (4.5) and 4.7y
are regular. The inductive limits relative to K’ in (4 6) and (4.7) are strict. Hence
all spaces are Hausdorff. A bounded set in @' (2') (resp. DH(R') is a bounded

set in some QP2 (resp. Pyr").

Similarly to Theorem 2.6 of [I] we have the following (cf. [6], Chap. 111, § 11).

PROPOSITION 4.1. Suppose that M, satisfies (M.0), (M.1), (M.2)/ and (M.3).

Then EM(Q)) is an (FG)-space, DI (2) is an (LFG)-space and DI Q') is

a (DFG)-space. In particular, these spaces and their strong duals are complete
reflexive bornologic Grothendieck spaces.

Next we determine the duals of the above spaces.

PROPOSITION 4.2. Suppoae that M, satisfies (M.0), (M.1), (M.2) and (M.3)’.
Then the dual of QP (27} (resp. DY (27)) 1s the space of all arrays (fslx); BE N™)
of ultradistributions fa(x) € ,@‘MW (21 (resp. QMa17(Q7) such that for each compact
set K' in Q' there are constants h, L and C (resp. and each h>0 and L>0 there
is a constant C) satisfying

(4.9) Hfﬁ” (@}{R{p),h),échl/Mlm .

The dual of EX(R’) is the subspace of (DE(Q") composed of all f=(Fa) such
that
(4.10) supp f=U supp fs

is @ compact set in Q.
The canowical bilinear functional is given by the absolutely convergent series
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4.11) pe)s (fo>= TP

PROOF. Let is: P*Q)— DEQ) and ps: DEQ) — @*(Q') be the canonical
injections and projections respectively. Clearly s are continuous. p, are also
continuous because we have by (M.2)

(4.12) Rt M g = ARH) < Mo Mg,

Let f be a continuous linear functional on §)#(£2’). Then there exist f, € ()
such that

(@), [r=X0pfors  9s€ DHQ).
Since for each pc Q¥ ("

4.13) @Z% 1500(¢)

converges absolutely, we have (4.11).
The continuity of f implies that for each compact set K’ in £’ there are
constants i and C (resp. and ~>0 there is a constant C) such that

| Deps(ar) |
lz<¢ﬁ,fﬁ>1<0sup,m§";m—+m

ngup th —a—lesll 5 b

for all (pg) € @% z. Hence (4.9) follows.
Conversely suppose that ( J) satisfies (4.9). If 0<k< min {b/H,1/2HL}, then
we have for (¢4) € Db«

> l<soﬁ,fﬁ>1<z(sup‘5 ?};}I I')GLW/MW

<§: AC(HLE)¥ sup ]%'}a(_]( HE >1a1
[o 4% +ﬁ

=2 AClell, gl -

Hence the right hand side of (4.11) is a continuous linear functional on QEN
The statement for the dual of £%(2’) is proved in the same way as 11,
Theorem 5.9.
Similarly to [1], Theorem 5.12 we have

PROPOSITION 4.8. Under the assumption of Proposition 4.2 £ 22 and its
strong dual are complete reflexive bornologic Grothendieck spaces.
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We are now able to prove the Whitney type extension theorem for ultra-
differentiable functions.

Let c:£*(2)F—E*(2) be the canonical injection and let p:E*(Q)—E5(R27) be
the mapping defined by plolx, v)=({—D,)%(x,0)). Clearly p:E*(Q)—EF(Q’) and
0: D Q- G52} are continuous linear mappings.

THEOREM 4.4. Suppose that M, satisfies (M.0), (M.1), M.2) and (M.3). Then

(4.14) 0——EX(Q)F—> EX(Q)—— (@) —0
and
(4.15) 0 DH(Q)F —— P* () —— %) —0

are topologically exact sequences of locally convex spaces.

Under the dual o of p the strong duals of £%(2') and PR’} are topologically
isomorphic to the linear subspaces EF(Q) and DF(2) of E¥(Q) end D¥(Q)
respectively.

In particular, the set of all functions o€ E*(Q) (resp. D*(2)) such that
supp e NF=O is dense in EX(Q)T (resp. PD*(AF)

PrOOF. By the definition ¢ is a topological isomorphism and we have

im:=kerp.

Next we prove that o’ is a topological isomorphism onto the closed linear
subspace £¥(9Q) (resp. P (Q)) of £*(Q) (resp. P (2)

Clearly im p’ is included in the orthogonal space [£*(2)F1° (resp. [PD*(2)F1°) of
ker p. It is also clear from the definitions that

[EHQFIcE¥ (@) and [PHATI CDF(Q)

Hence o’ maps (£5(2)) (resp. (DF2")) into &F () (resp. DF(Q)
It f=(fs) € (EEQY) (resp. (D5(2)), then we have for every ¢ E*(Q)
(resp. 9*(2))

{p, p’(f)>=<p(<p),f>
:Z<( D,)fo(x, 0), fa(x)>

“Z@x, ,Je(@) Q@D (y)>

This shows that
(4.16) o' ((f4) Zfﬁ @QD?(y) .
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In particular, o’ is injective. Theorem 3.1 together with Proposition 4.2 shows
that im o’ coincides with £¥/(2) (resp. D¥'(2)). Its proof shows also that (o)! is
continuous. In fact, if a compact convex set K’ in £’ is fixed, the topologies on
DE induced from ¥ (Q) and G)*'{(9) coincide and make DM’ a (DFG)-space
and QY an (FG)-space. In view of the last part of Theorem 1.1 we see from
the proof of Theorem 8.1 that (o’)~! which assigns to f=F f,®D* the components
(fs) is continuous. Since the multiplication by a partition of unity is obviously
continuous, (¢/)~* is continuous in all cases.

Since £*(Q), £5(27), D*(Q) and DE(Q") are reflexive spaces, the mapping p
may be regarded as the bidual (p’)’. Hence it follows from the Hahn-Banach
theorem that p is surjective. Sinece £*(02) efe. have the Mackey topologies, o is
also a homomorphism ([6], Theorem IIL.3.7).

In the course of proof we have shown that [£*(Q)FI°=E¥(2) (resp. [ A)F1°=
DE(2). Since £F(Q) (resp. Y% (Q)) is the orthogonal space of the space D of
all e &) (resp. P*(2) with suppeNF=, this proves that D is dense in
EFQ)F (resp. §*(2)F) by the bipolar theorem.

Let A, be a sequence of positive numbers such that 4, and A, /p! are
logarithmically convex and that

P>

1
(4.17) lim (%) ”s0.

Then Roumieu [10] proves that the space of ultradifferentiable functions of class
{M,} is invariant under ultradifferentiable coordinate transformations @ of class
{A,;}. Similarly we can prove that the ultradifferentiable functions of class (M)
are stable under coordinate transformations of class (4,). If

. MNP
(4.18) lim <E> oo,
we can also prove that the ultradifferentiable funetions of class (M,) are stable
under coordinate transformations of class {4,}. Since A,=p! satisfies (4.18) for
all M,, we see in particular that the spaces &W», £t ) and )i are
always invariant under real analytic coordinate transformations.

The isomorphisms on spaces £*(@) and *(2) onto £*(@1L)) and P*(O~1Q))
are shown to be topological isomorphisms. Hence we have also isomorphisms of
spaces of ultradistributions.

We will say that a submanifold F of R* with boundary is sufficiently smooth
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if there is a sequence A, satisfying the above conditions and at each point z€ F
there is a local coordinate system ¢;(x) of class {4,} or (4,) which maps F onto a
neighborhood of zero in a linear submanifold or a half linear submanifold.

THEOREM 4.5. Suppose that M, satisfies (M.0), (M.1), (M.2) and M.8) and that
F is a sufficiently smooth submanifold with boundary of an open set Q in R
If o=(D*¢) is an infinitely differentiable function in the sense of Whitney defined
on F and if for each regular compact set K in F and h>0 there is a constant
C (resp. there are constants h and C) such that

(4.19) sup [ Do) |<CH“ My,  |a|=0,1,2,---,

then there is an ultradifferentiable fumction ¢ ¥ (Q) (resp. EWA(Q)) such
that

{4.20) Dep=D*Plp.

PRoOF. TFirst we consider the case where F has no boundary. Then at each
point z€ F' we can find a sufficiently smooth coordinate system which maps a
neighborhood of « in F onto a linear submanifold. Applying Theorem 4.4, we can
find an ultradifferentiable function ¢, of class (3,) (rvesp. {}M,}) defined on a neigh-
borhood U, of x in 2 which extends ¢lray,.

We take a partition of unity

1=30 y;(x)
on 2 subordinate to the covering {U}U{@\F}. Then
@) =2 x;(@) s, ()

gives the desired function.
When F has the boundary aF, we construct an ultradifferentiable function ¢,
on 2 such that
Doy lop=Dpp .

Then the function ¢,=(D%—D4¢;) on F vanishes on 3F together with all the
derivatives. Hence it can be continued by zero beyond the boundary GF. Then
we can apply the first method and obtain an extension ¢, on 2. ¢=¢;+¢; gives
the desired extension.

For each open set 2 in R* we can find an increasing sequence K, of compact
sets with real analytic boundary such that 2=Uint K,. Hence we have by
Yoshinaga’s criterion of (DLFG)-spaces ([6], Theorem IIL.11.6) the following.
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THEOREM 4.6. Suppose that M, satisfies (M.0), (M.1), M.2) and (M.3)., Then
EMi(9) is a (DLFG)-space and hence £ #/(2) is an (LFG)-space.
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