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We describe an agent-based parallel HPSG parser that operates on shared-memory
parallel machines. It efficiently parses real-world corpora by using a wide-coverage
HPSG grammar. The efficiency is due to the use of a parallel parsing algorithm and
the efficient treatment of feature structures. The parsing algorithm is based on the
CKY algorithm, in which resolving constraints between a mother and her daughters
is regarded as an atomic operation. The CKY algorithm features data distribution
and granularity of parallelism. The keys to the efficient treatment of feature struc-
tures are i) transferring them through shared-memory, ii) copying them on demand,
and iii) writing/reading them simultaneously onto/from memory. Being parallel, our
parser is more efficient than sequential parsers. The average parsing time per sen-
tence for the EDR Japanese corpus was 78 msec and its speed-up reaches 13.2 when
50 processors were used.
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1 Introduction

This paper describes an agent-based parallel HPSG parser. Its efficiency is sufficient for

practical use in that it can analyze real-world corpora by using a wide-coverage grammar and

it works efficiently in terms of both analysis time and speed-up.

The HPSG formalism (Pollard and Sag. 1994) is the most widely accepted unification-

based grammar theory in the area of computational linguistics. It is gaining ground as a

non-transformational alternative to the Chomskyan grammar theory, a formal and theoreti-

cally proper linguistic theory. It has attracted much interest among NLP researchers, mainly

because it is mathematically well-defined (Carpenter 1992) and is justified by detailed linguistic

explanations, i.e., on both mathematic and linguistic grounds. Due to its being mathemati-

cally well defined, the HPSG formalism is suitable for computer-based, algorithmic processing

used to develop efficient systems. Due to its being linguistically justified, systems based on it

produce in-depth syntactic and semantic analyses, making them suitable for use over a wide

range of NLP domains, particularly where precise and accurate interpretation is important.
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Studies over the past decade of HPSG-based processing technology by various NLP re-

searchers (Torisawa, Nishida, Miyao, and Tsujii 2000; Kiefer, Krieger, Carroll, and Malouf

1999; Copestake, Flickinger, Malouf, Riehemann, and Sag 1995) have led to drastic improve-

ments in HPSG-based systems in terms of efficiency, accuracy, coverage, and depth of syntactic

and semantic analyses. For example, HPSG-based parsing systems developed by our group

(Tateisi, Torisawa, Miyao, and Tsujii 1998; Mitsuishi, Torisawa, and Tsujii 1998; Makino,

Yoshida, Torisawa, and Tsujii 1998; Torisawa et al. 2000; Miyao, Makino, Torisawa, and T-

sujii 2000) have improved the efficiency, coverage, and accuracy of HPSG-based systems to

the point where they can parse the EDR Japanese corpus in less than 500 msec per sentence

with 98.7% coverage and 88.6% bunsetsu-dependency accuracy. Other groups have shown

that HPSG-based dialog-translation systems can precisely interpret a sentence by using se-

mantic representations (Uszkoreit, Backofen, Busemann, Diagne, Hinkelman, Kasper, Kiefer,

Krieger, Netter, Neumann, Oepen, and Spackman 1994; Krieger and Schaefer 1994; Kasper,

Kiefer, Krieger, Rupp, and Worm 1999; van Noord, Bouma, Koeling, and Nederhof 1999).

The system developed by the DFKI group (Uszkoreit et al. 1994; Flickinger 2000) provided

correct syntactic and semantic analyses for 83% of 8,520 well-formed English utterances found

in the transcriptions of 175 person-to-person dialogs.

Further advances in HPSG-based systems require advances in the efficiency of parsing

techniques. If we could develop a more efficient parser, we would be able to apply more so-

phisticated techniques to the HPSG framework and achieve higher accuracy, wider coverage,

and deeper syntactic and semantic analyses, thereby acquiring more precise interpretation-

s. Though several efficient HPSG-based systems have already been developed, much more

efficient parsers are needed.

The goal of this article is to achieve an efficient parallel HPSG parser. Recent improve-

ments in shared-memory parallel machines have been drastic, and such machines will become

standard in computing environments. By exploiting this parallelism for parsing systems, we

will be able to apply more sophisticated techniques to the HPSG framework.

We have taken two steps in this direction.

( 1 ) We have designed an agent-based parallel programming environment.

( 2 ) We have designed a parallel parsing algorithm.

We propose an efficient programming environment implemented on shared-memory paral-

lel machines for developing parallel NLP systems based on typed feature structures (TFSs;

the TFS (Carpenter 1992) is a basic unit of the HPSG formalism). We call it the “ parallel

substrate for TFS (PSTFS)” environment. It has many computational agents running on dif-
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ferent processors in parallel; these agents communicate with each other using messages. The

system tasks such as parsing and semantic processing are divided into several pieces, which

are simultaneously computed by several agents. We use an agent-based architecture (Agha

1986; Yonezawa and Ohsawa 1988; Taura 1997) so that we can develop an efficient parallel

HPSG parser with ease. Using this architecture, we can divide the development of a parallel

HPSG parser into the parsing algorithm itself and the processing of the TFSs. Another way to

develop parallel NLP systems with TFSs is to use a fully concurrent logic programming lan-

guage (Clark and Gregory 1986; Ueda 1985). However, we have noted that parallelism should

be controlled in a flexible way with deep analyses and consideration to achieve high perfor-

mance. (The fixed concurrency in logic programming does not provide sufficient flexibility.)

The PSTFS environment is suitable for achieving such flexibility.

As the basis of our parallel HPSG parsing algorithm, we chose the CKY algorithm (Kasami

1965; Younger 1967). A parallel CKY algorithm is desirable from the viewpoints of speed-up,

data distribution, and memory efficiency. Several parallel parsing algorithms have been devel-

oped, but most of them are neither efficient nor practical enough (Adriaens and Hahn 1994;

Nijholt 1994; Grishman and Chitrao 1988; Thompson 1994). The efficiency of our algorithm

was shown through experiments.

We describe how to write programs in the PSTFS environment and the mechanism used

to achieve efficiency in Section 2. Section 3 describes our CKY-style parallel HPSG parsing

algorithm, and its performance is shown in Section 4 through a series of experiments. The

performance and time complexity of our parser is discussed in Section 5.

2 Parallel Substrate for Typed Feature Structures (P-
STFS)

The PSTFS is an efficient parallel substrate for TFS processing and provides an agent-based

programming environment. An agent is a unit of parallelism, encapsulation, data distribution,

and mutual exclusion. Each agent runs in parallel and synchronizes itself with other agents

by sending and receiving messages.

From the programmer’s viewpoint, PSTFS has two types of agents:

• constraint solver agents (CSAs).

• control agents (CAs)

The CSAs are carefully designed to attain efficient communication for passing messages

containing TFSs and efficient processing for the TFSs. The CAs have overall control of a sys-
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Fig. 1 Overview of PSTFS environment

tem, including control of parallelism, and they behave as masters of the CSAs (see Figure 1).

When a CA needs to process TFSs, the TFSs are transferred to CSAs by sending messages

containing the TFSs, and then the CSAs process them according to the messages. Note that

the CAs can neither modify nor generate TFSs by themselves. Suppose that one is trying to

implement a parsing system based on PSTFS. The CAs correspond to an abstracted parsing

algorithm, and the CSAs correspond to the application of phrase structure rules. By “ab-

stracted parsing algorithm” we mean a high-level description of a parsing algorithm in which

the application of phrase structure rules is regarded as an atomic operation or a subroutine.

The keys to achieving efficiency for processing and passing TFSs are i) having the CSAs

work independently in parallel, ii) transferring the TFSs as IDs and actually transferring the

actual images of the TFSs only after the IDs have reached the CSAs requiring the TFSs, and

iii) transferring the TFSs via shared-memory.

Programming in the PSTFS environment is described in Section 2.1, and the PSTFS ar-

chitecture is described in Section 2.2.

2.1 Programming in PSTFS environment

The programming language for PSTFS is quite simple and natural; it was carefully designed

to provide both high-performance and ease of programming.

PSTFS was implemented by combining two existing programming languages: the actor-

based concurrent programming language ABCL/f (Taura 1997) and the TFS-based sequential

programming language LiLFeS (Makino et al. 1998). Descriptions of CAs are written in AB-

24



Ninomiya, T. et al. An Agent-based Parallel HPSG Parser

define-CSA-begin

name(

[
FIRST Franz
LAST Schubert

]
).

name(

[
FIRST Johann
LAST Bach

]
).

...

...

concatenate name(X,Y )← X =

[
FIRST 1
LAST 2

]
, Y =

[
FULL 〈 1 , 2 〉
FIRST 1
LAST 2

]
.

Fig. 2 Example concatenate name: description of CSA

define-CA name-concatenator NC
When message “active” arrives, do
R := ∅;
F := wait-for-result (CSA⇐ “{ϕ|name(ϕ)}”); ..... (A)
Tasks := ∅;
forall ϕ ∈ F do
r := (random-integer) mod (# of processors);
Tasks := Tasks ∪ (CSAr ⇐ “{ψ|concatenate name(ϕ, ψ)}”); ..... (B)

end-forall
R := wait-for-result (Tasks);
return R;

Synchronization between agents is done using two functions, ⇐ and wait-for-result.
⇐ is a function with two arguments. “agent ⇐ message” means to assign a task to the agent by
sending a message; this function returns an ID tag that identifies the task, e.g., Tasks in this example
is a set of tags.

“wait-for-result task-IDs” means waiting for the results of the tasks that are identified by task-IDs.

Fig. 3 Example concatenate name: description of CA

CL/f, while descriptions of CSAs are mainly written in LiLFeS.

Figures 2 and 3 show examples of PSTFS coding. The task is to concatenate the first and

last names in a given list. The CA in this example (Figure. 3) is called a name-concatenator.

It gathers pairs of first and last names by sending a CSA the message “{ϕ|name(ϕ)}” (See

(A) in Figure 3). When the CSA receives this message, it regards it as a Prolog-like query in

LiLFeS1, and process it according to the code of a CSA (Figure 2). There are several facts

with the predicate ′name′. When the message “{ϕ|name(ϕ)}” is processed by a CSA, all

possible answers defined by these facts are returned. The obtained pairs are stored in variable

1 LiLFeS supports definite clause programs, the TFS version of Horn clauses.
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F = {
[

FIRST Franz
LAST Schubert

]
,

[
FIRST Johann
LAST Bach

]
, ......}

R = {
[

FULL 〈Franz, Schubert〉
FIRST Franz
LAST Schubert

]
,

[
FULL 〈Johann, Bach〉
FIRST Johann
LAST Bach

]
, ......}

Fig. 4 Example concatenate name: values of F and R

F in the name-concatenator (Figure 4).

The name-concatenator agent next sends the message concatenate name with a TFS to

CSAs (See (B) in Figure 3). The message contains one of the TFSs in F . Each CSA concate-

nates the value of FIRST with the value of LAST in the received TFS by using the definite

clause concatenate name given in Figure 2. The CSAs can basically perform concatenation in

parallel and independently. The result is returned to the name-concatenator that requested

the job. The name-concatenator places the returned values into variable R.

The CA name-concatenator controls the overall process. It controls parallelism by sending

the messages. The operations on the TFSs are performed by the CSAs when asked to do so

by a CA.

This distinction between CAs and CSAs is a minor factor of writing a sequential pars-

er, but it has a major impact in a parallel environment. For instance, suppose that several

distinct agents evoke applications of phrase structure rules against identical data simultane-

ously, and the applications perform destructive operations on the data. This can cause an

anomaly because the agents will modify the original data in an unpredictable order, so there

is no way to maintain consistency. To avoid this problem, one has to determine what is an

atomic operation and how to provide a method to prevent anomalies when atomic operations

are evoked by several agents. In our framework, any action taken by a CSA is viewed as an

atomic operation, so no anomaly can occur, even if CSAs concurrently perform operations

on identical data. This is done by copying the TFSs, which does not require any destructive

operation. The details are described in Section 2.2.

The other implication of the distinction between CAs and CSAs is that agents can efficient-

ly communicate in a natural way. During parsing in HPSG, TFSs with hundreds of nodes

can be generated. Encoding such TFSs in a message and sending them efficiently are not

trivial operations. PSTFS provides a communication scheme that enables efficient sending

and receiving of such TFSs. This is made possible by the distinction between agents. More

precisely, since CAs cannot modify a TFS, they do not have to have an actual image of a TFS.
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R ... Readable
W ... Writable

Each CSA is assigned a portion of the shared heap, and CSAs can write TFSs only to the assigned
portion. Though the writable portion is limited, each CSA can read any portion of the shared heap.

Fig. 5 Architecture of PSTFS

When a CSA returns the results to the CA, it only has to send the IDs of the TFSs. Only

when the ID is transferred to other CSAs and they try to modify the TFS with the ID, does

the actual transfer of the TFS’s actual image occur. Since the transfer is carried out only

between CSAs, it can be directly and efficiently performed by using a low-level representation

of the TFSs used in the CSAs. Note that if CAs modified TFSs directly, this communication

scheme could not be used.

2.2 Constraint Solver Agent: PSTFS Architecture

This section explains the architecture of PSTFS, focusing on the execution mechanism of

CSAs2. A CSA is implemented by modifying the LiLFeS abstract machine (LiAM), which

is an abstract machine for TFSs, originally designed for executing LiLFeS programs (Makino

et al. 1998).

The important constraint in designing the architecture of PSTFS is that TFSs generated

by CSAs must be preserved unmodified. This is because they are used by several agents si-

multaneously. If a TFS were modified by a CSA and if other agents did not know this, the

expected results would not been obtained. Note that unification, which is a major operation

on TFSs, is a destructive operation3. If many agents try to unify identical TFSs simultane-

ously without any mechanism, the modifications would occur simultaneously. Our execution

mechanism solves this problem by letting CSAs copy the TFSs each time they try to modify

the TFSs. Though this may not look efficient at first, it is performed efficiently by using

2 See (Taura 1997) for further details about CAs

3 To be precise, it is difficult to unify a TFS efficiently without destructive operation
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shared-memory mechanisms and our copying methods.

A CSA uses two different types of memory areas as its heap (Figure 5):

• Local heap

• Shared heap

The local heap is used for temporary operations during computation inside the CSA. A

CSA can neither read nor write to the local heaps of other CSAs. The shared heap is used as

a medium of communication between CSAs, and it is implemented on shared memory inside

parallel machines. When a CSA completes a computation on a TFS, it writes the result to the

shared heap. Since the shared heap can be read by any CSA, each CSA can read the results

of operations by other CSAs. However, we limit the portion of the shared heap to which the

CSA can write. Other CSAs cannot write to that portion.

Next, we look at the steps performed by a CSA when it receives a message from a CA.

Note that the message contains only the IDs of the TFSs as described in Section 2.1. The IDs

are given as pointers on the shared heap. See Figure 6.

( i ) A CA sends a message to a CSA.

( ii ) The CSA copies the TFSs to which the IDs in the message point from the shared

heap to the local heap of the CSA.

( iii ) The CSA processes a Prolog-like query by using LiAM on the local heap.

( iv ) If the query receives an answer, the answer is copied to the portion of the shared

heap writable by the CSA. The CSA evokes backtracking in LiAM, keeping the IDs

of the copied TFSs, and goes to Step (iii). If there is no answer, it goes to Step (v).

( v ) The CSA sends a message with the IDs of the resulting TFSs back to the requesting

CA.

Note that the results of the computation become readable by other CSAs after step (v).

To sum up, this procedure has the following desirable features.

Simultaneous copying A TFS on a shared heap can be copied by several CSAs simulta-

neously. This is due to our shared memory mechanism and the property of LiAM that

copying does not have any side-effect on TFSs4.

Simultaneous/Safe writing CSAs can write on their own shared heap without the dan-

ger of accidental modification by other CSAs.

Demand-driven copying As described in Section 2.1, the transfer of actual images of

4 Actually, this is not trivial. A TFS is a graph structure. Therefore, during a copy operation, marking the
traversed region in a TFS is required to detect structure sharing. Note that marking is a destructive operation.
In our approach, TFSs are stored into a continuous region on a shared heap during copying in Step (iv). TFSs
stored in a continuous region can be copied efficiently without any side-effect because such TFSs can be copied
with a simple loop procedure.
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Fig. 6 PSTFS mechanism
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TFSs is performed only after the IDs of the TFSs reach the CSAs requiring the TF-

Ss. Redundant copying/sending of actual TFS images is reduced, and the transfer is

performed efficiently by mechanisms originally provided by LiAM5.

With efficient data transfer in shared-memory machines, these features reduce the overhead

of parallelization.

The PSTFS mechanism seems to require a lot of memory space on the shared heap be-

cause the TFSs to be processed in parallel must be copied to the shared heap first. However,

in many cases of developing NLP systems, such a problem doesn’t arise because we have to

keep the resulting TFSs to support non-determinism even in the sequential NLP systems. For

instance, in a chart parsing for a unification-based grammar, intermediate parse trees must be

preserved untouched. In the case of our parallel HPSG parser, the heap size required by the

parallel parser and that required by the sequential parser are the same. In general, destructive

operations on the results are done after copying them. The copying of TFSs in the above steps

achieves such mechanisms naturally, though it was originally designed for efficient support of

data sharing and destructive operations on shared heaps.

3 Parsing Algorithms

In this section we describe our parallel HPSG parsing algorithm by using CAs and CSAs,

i.e., we describe our algorithm in a PSTFS code. First, we explain a sequential CKY-style

HPSG parsing algorithm (Haas 1987), which our parallel HPSG parsing algorithm is based

on. Our agent-based parallel HPSG parsing algorithm is described using mainly CAs because

the parallelism of CSAs is controlled by CAs.

3.1 CKY-style Sequential Parsing Algorithm for HPSG

To simplify our discussion, we assume that an HPSG grammar consists of a Lexicon and

a RuleSchemata. A Lexicon is a finite set of lexical entries in the form (ω → w), where ω is

a TFS and w is a word. A RuleSchemata is a finite set of RuleSchema, which correspond

to a rewriting rule in CFG and represents the structural relation and constraints between a

mother and her daughters in a parse tree. Our parsing algorithm for HPSG is based on the

CKY algorithm for CFG. In a CKY-style algorithm, RuleSchema ρ is given in the form

ρ =


 MOTHER γ

DTRS 〈α, β〉




5 LiAM has a function to store TFSs into a continuous region on a heap. Such TFSs can be copied efficiently
with a simple loop procedure.
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procedure initialize ()
for j := 2 to n do

for i := j − 2 to 0 do
Si,j := ∅;

end-for
end-for

procedure parse ()
forall 1 ≤ j ≤ n do
Sj−1,j := {ω|ω → wj};

end-forall

for j := 2 to n do ......................................... (loop A)
for i := j − 2 to 0 do ................................ (loop B)

for k := i+ 1 to j − 1 do ...................... (loop C)
foreach ϕ ∈ Si,k do ........................... (loop D)

foreach ψ ∈ Sk,j do ....................... (loop E)
foreach ρ ∈ RuleSchemata do .. (loop F)
W := rule-schema(ρ,ϕ, ψ);
Si,j := Si,j ∪W ;

end-foreach
end-foreach

end-foreach
end-for

end-for
end-for

Fig. 7 Sequential CKY-style HPSG parsing algorithms

, where ρ is a TFS, the value γ followed by the feature MOTHER corresponds to a mother,

and the value 〈α, β〉 followed by the feature DTRS corresponds to her daughters (α corre-

sponds to a left daughter, and β corresponds to a right daughter).

Given w1w2 · · ·wn as a sentence and i, j(0 ≤ i < j ≤ n), we define Si,j as follows:

Si−1,i ≡ {ω|(ω → wi) ∈ Lexicon}
Si,j ≡ {γ|∃kδεϕψρ, i < k < j, ρ ∈ RuleSchemata,

ϕ ∈ Si,k, ψ ∈ Sk,j , ρ �
[
DTRS 〈ϕ, ψ〉

]
=


 MOTHER γ

DTRS 〈δ, ε〉


}

Intuitively, Si,j corresponds to the set of the sub-parse-trees whose leaves are wi+1, · · · , wj .

A sequential version of this algorithm is shown in Figure 7. “rule-schema(ρ, ϕ, ψ)” returns

all possible γ computed by unifying α with ϕ and β with ψ for ρ =

[
MOTHER γ
DTRS 〈α, β〉

]
.

Conventionally, Si,j is represented as a member of a two-dimensional table called a CKY

table. In the example shown in Figure 8, the numbers i, j in each cell correspond to i, j of

Si,j . The table corresponds to a parse tree whose root is an element of S0,n. Si,j for all
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0,1 1,2 2,3 3,4 4,5 5,6 6,7

0,2 1,3 2,4 3,5 4,6 5,7

0,3 1,4 2,5 3,6 4,7

0,4 1,5 2,6 3,7

0,5 1,6 2,7

0,6 1,7

0,7

� ��� � ���� �	 
� �

���

Fig. 8 CKY table; sequential parsing algorithm proceeds along the arrows.

0,1 1,2 2,3 3,4 4,5 5,6 6,7

0,2 1,3 2,4 3,5 4,6 5,7

0,3 1,4 2,5 3,6 4,7

0,4 1,5 2,6 3,7

0,5 1,6 2,7

0,6 1,7

0,7
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�2 , 5

�3 , 6�0 , 2

�4 , 7

�4 , 6

�2 , 4
�3 , 5

�1 , 3

Fig. 9 Correspondence between CKY table and Ci,j

0 ≤ i < j ≤ n can be computed in a bottom-up manner toward the arrows. Parsing completes

when computation of S0,n completes.

3.2 CKY-style Parallel Parsing Algorithm for HPSG

We describe our CKY-style parallel HPSG parsing algorithm in an agent-based program-

ming language style. The algorithm is shown in Figure 10 and Figure 11.

In our algorithm, all Si,j are computed in parallel. Parsing starts by creating a CA called

PARSER. PARSER creates CAs, which we call cell-agents, and distributes them to proces-

sors on parallel machines (Figure 9). For convenience of explanation, we transcribe cell-agents

as Ci,j(0 ≤ i < j ≤ n).

Each Ci,j computes Si,j in parallel. To be more precise, Ci,j(j − i = 1) looks up the word

in Lexicon and obtains lexical entries. Ci,j(j − i > 1) waits for the messages containing Si,k

and Sk,j for all k(i < k < j) from other cell-agents.

When Ci,j receives Si,k and Sk,j for an arbitrary k, it computes TFSs by applying rule
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define-CA parser-agent PARSER
When message parse(w1, w2, . . . , wn) arrives, do

forall i(0 < i ≤ n) do
create-agents cell-agent Ci−1,i;
Ci−1,i ⇐ “active-as-leaf”

end-forall
forall i, j(0 ≤ i, j − i > 1, j ≤ n) do

create-agents cell-agent Ci,j ;
Ci,j ⇐ “active-as-phrase”

end-forall
wait-for-result S0,n.

Fig. 10 CKY-style parallel parsing algorithm for HPSG: PARSER

schemata to each pair of members of Si,k and Sk,j . The computed TFSs are considered to be

mothers of members of Si,k and Sk,j , and they are added to Si,j . Note that these applications

of rule schemata are done in parallel by several CSAs6.

Finally, when the computation of Si,j (by using Si,k and Sk,j for all k(i < k < j)) com-

pletes, Ci,j distributes Si,j to other agents waiting for Si,j .

Parsing completes when the computation of S0,n completes.

To perform this parallelization, we must synchronize the computation of Si,j . In our algo-

rithm, the following Dependency always holds.

Dependency Computation of Ti,k,j must start after computation of both Si,k and Sk,j com-

pletes, where Ti,k,j is a subset of Si,j and is defined as

Ti,k,j ≡ {γ|∃αβϕψρ, ρ ∈ RuleSchemata,

α ∈ Si,k, β ∈ Sk,j , ρ �
[
DTRS 〈α, β〉

]
=


 MOTHER γ

DTRS 〈ϕ, ψ〉


}

As long as Dependency holds, each Si,j can be computed in parallel in any order7. In our

algorithm, Dependency always holds because i) each cell-agent computes Ti,k,j after the arrival

of both Si,k and Sk,j , as illustrated in Figure 11(A), and ii) each cell-agent distributes Si,j to

the agents requesting Si,j after completing the computation of Si,j .

We call the loops from the outermost loop to the innermost loop “loop A, B, C, D, E,

F” in Figure 7. The parallelization of our algorithm corresponds to the parallelization of loops

A, B, D and E, and the inside of loop C is processed in the order that computation of both

6 CSAs cannot be added dynamically in our implementation. Therefore, to achieve maximum parallelism, we
assigned a CSA to each processor. Each Ci,j asks the CSA on a randomly selected processor to apply rule
schemata.

7 Of course, we can give finer grained dependency. For example, we can start computation of Ti,k,j immediately
after one of the members of Si,k and one of the members of Sk,j are computed. But an algorithm that follows
such a dependency condition greatly increases the number of messages passed. This increases the overhead for
message passing, so complex data-flow control is required.
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define-CA cell-agent Ci,j

initial-values : Si,j := ∅; NTASK := j − i− 1;

When message “active-as-phrase” arrives, do
forall k(i < k < j) do
Ci,k ⇐ “request Si,k”;
Ck,j ⇐ “request Sk,j”;

end-forall

When both Si,k and Sk,j for some k arrive, do ....... (A)
Tasks := ∅;
forall ϕ ∈ Si,k do

forall ψ ∈ Sk,j do
r := (random-integer) mod (# of processors);
Tasks := Tasks ∪ (CSAr ⇐ “{ξ|rule-schema(ϕ,ψ, ξ)}”);

end-forall
end-forall
Si,j := Si,j∪ wait-for-result (Tasks);
NTASK := NTASK − 1;
if NTASK = 0 then

send Si,j to all agents requesting Si,j ;
end-if

When message “active-as-leaf” arrives, do
r := (random-integer) mod (# of processors);
Si,j := wait-for-result (CSAr ⇐ “{ω|lexical-entry(wj , ω)}”);
send Si,j to all agents requesting Si,j ;

Fig. 11 A CKY-style parallel parsing algorithm for HPSG: Ci,j

Si,k and Sk,j completes.

Our parallel parsing algorithm is an HPSG version of the parallel CKY parsing algorithm

for CFG (Ninomiya, Torisawa, Taura, and Tsujii 1997). The differences between these two

algorithms are as follows. 1) The parallel HPSG parsing algorithm deals with the TFSs, but

the parallel CFG parsing algorithm deals with the nonterminals. Owing to the PSTFS envi-

ronment, we can neglect the difference between TFSs and nonterminals in the description of

the parsing algorithm. 2) These two algorithms are different in the number of loops which are

parallelized. We parallelized four loops (loop A, B, D and E in Figure 7) in the parallel HPSG

parsing algorithm, but in the parallel CFG parsing algorithm, only two loops (loop A and B)

are parallelized. In general, parallel processing of too much fine-grained tasks decreases the

system performance because the ratio of “the overhead caused by the parallel processing of

each task” to “the execution time of each task” increases. The key to achieving the efficiency
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in parallel processing is to find a good parallelism where the overhead and the execution time

of each task are balanced. In the parallel CFG parsing algorithm, the execution time for the

CFG rule application is extremely short, and hence it is difficult to parallelize 2 more loops

(loop D and E) because the ratio of the overhead increases greater than the balanced ratio. In

the parallel HPSG parsing algorithm, parallelization of two loops was insufficient because the

execution time of the HPSG rule application is longer than that of the CFG rule application.

We have implemented and experimented parallelization of two loops (loop A and B), four loops

(loop A, B, D and E) and five loops (loop A, B, D, E and F) in the parallel HPSG parsing

algorithm, and we observed that the parallelization of four loops was the most efficient.

Another parallel CKY algorithm was proposed by Nijholt (Nijholt 1994). The most sig-

nificant differences between ours and his are as follows. 1) Nijholt’s algorithm is based on

data-flow computation, and the output of Si,j is passed only from one cell to the adjacent

cells in the two-dimensional table, i.e., Si,j is passed to the processor that computes Si−1,j

and to the processor that computes Si,j+1, whereas in our algorithm, Si,j is passed directly

to Si,k(j < k ≤ n) and Sk,j(0 ≤ k < i). 2) In Nijholt’s algorithm, Si,j is passed and received

in a statically predicted order, whereas in our algorithm, Si,k is passed when its computation

completes, and Ti,k,j is processed as soon as computation of Sk,j is completed. From these

viewpoints, our algorithm is more efficient than Nijholt’s.

4 Performance Evaluation

We tested our CKY-style parallel HPSG parser on a shared-memory parallel machine, a

SUN Ultra Enterprise 10000 consisting of 64 nodes (each node is a 250-MHz UltraSparc pro-

cessor) and 8-GB shared memory. The grammar we used is an underspecified Japanese HPSG

grammar (Mitsuishi et al. 1998) developed in September 1998. It consists of 6 ID-schemata

and 39 lexical entries (most of them are functional words) and 41 lexical-entry-templates (as-

signed to parts of speech). This grammar has wide coverage and high accuracy for real-world

texts8. The corpus consists of randomly selected 881 sentences from the EDR Japanese corpus

(the average sentence length is 20.8)9.

Table 1 shows the average parsing time, along with that for a parser written in LiLFeS. As

8 This grammar can generate parse trees for 82% of 10,000 sentences from the EDR Japanese corpus; its bun-
setsu dependency accuracy is 78%. The current version of the grammar was developed in October 1999. It
consists of 134 lexical entries and 53 lexical-entry-templates and can generate parse trees for 98.7% of 2,024
sentences from the EDR Japanese corpus. Its bunsetsu dependency accuracy with a statistical model is 88.6%
(Kanayama, Torisawa, Mitsuishi, and Tsujii 2000)

9 We chose 1,000 randomly selected sentences from the EDR Japanese corpus; the 881 sentences we used were
all parsable by the grammar.
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Number of Avg. Parsing Time (msec)
Processors PSTFS LiLFeS

1 1,029.9 991

10 229.5 N/A

20 123.0 N/A

30 95.8 N/A

40 82.4 N/A

50 78.0 N/A
Table 1 Average parsing time per sentence in EDR Japanese corpus
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Fig. 12 Speed-up of parsing time on a parallel CKY-style HPSG parser

shown in Figure 12, the maximum speed-up reached 13.2. The average parsing time was 78

msec per sentence1011.

The parsing time of our parser reached the level required by real-time applications, though

we used computationally expensive grammar formalisms, i.e., HPSG with reasonable coverage

and accuracy. This shows the feasibility of our parallel HPSG parser and PSTFS. In addition,

our parallel HPSG parser was considerably more efficient than the sequential HPSG parser

written in LiLFeS12. As Makino et al. reported (Makino et al. 1998), a sequential parser writ-

10 We couldn’t measure parsing time with 60 processors because performance was degraded extremely. In gen-
eral, when the number of processes is near or more than the number of existing processors, context switching
between processes occurs frequently on shared-memory parallel machines. We believe the cause for the in-
efficiency when we used 60 processors lies in such context switches. We thus excluded experiments with 60
processors so that we could evaluate the performance of our algorithm precisely.

11 Morphological analysis time is excluded from this parsing time. The average morphological analysis time was
36 msec, so the overall parsing time was around 114 msec.

12 At present, our group has a much more efficient sequential parser called the TNT parser (Nishida, Torisawa,
and Tsujii 1999). Unfortunately, because of chronological inconsistencies in systems and grammars, we cannot
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Fig. 13 Processors status

ten in LiLFeS is more efficient than other existing parsers (Carpenter and Penn 1994; Erbach

1994); we can thus say that our parser is more efficient than other existing parsers.

However, as shown in Figure 12, speed-up was not proportional to the number of pro-

cessors. We think this is because parallelism is not fully extracted in our parsing algorithm.

Figure 13 shows processor status during parsing of a Japanese sentence by our parallel parser.

The black lines indicate busy periods. One can see that many processors were frequently idle.

This idle time does not suggest that parallel NLP systems are inefficient. Instead, it sug-

gests that parallel NLP systems have many possibilities. If we introduce semantic processing,

for instance, overall processing time may not change because the idle time can be used for the

semantic processing. Another possibility is the use of parallel NLP systems as servers. Even

if we feed several sentences at a time, throughput will not change because the idle time can

be used for parsing different sentences.

5 Discussion

We discuss how our parallel HPSG parser works from the following viewpoints, i) the region

where cell-agents are working in the CKY table at any given moment, and ii) the worst-case

time complexity, theoretically and empirically.

5.1 Active Region in CKY Table

We consider the region where Si,j is being computed in a CKY table at any given moment.

compare performance between our parallel parser and the TNT parser.
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Fig. 14 Si,j being computed in CKY table

The start and complete times of the computation of Si,j have the following properties:

Start Time Property Computation of Si,j can start after one of the pairs (for some

k(i < k < j), 〈Si,k, Sk,j〉) becomes available.

Complete Time Property Computation of Si,j completes when the computation of Ti,k,j

for all k(i < k < j) completes.13

We also define the word pair and available.

Pair We call 〈Si,k, Sk,j〉 a pair for Si,j .

Available When the computation of both Si,k and Sk,j has completed, “the pair 〈Si,k, Sk,j〉
is available for computing Si,j”.

For reasons of symmetry and independency of Si,j(j − i = C), which are arranged on the

same horizontal line in a CKY table, computation of Si,j(j− i = C) will complete at the same

time if the amount of computation for each Si,j is equal (an ideal condition). In such a condi-

tion, from the complete-time property, the computation of Si,j proceeds from Si,j(j − i = 1)

to S0,n, line by line, in the CKY table. The first pair to be available for computation of Si,j

is 〈Si,k Sk,j〉 with k close to (i+ j)/2. The region where Si,j is being computed at any given

moment is the shaded portion of Figure 14; the width of the shaded portion (the length of

Y in the figure) is the same as the width of the portion where Si,j has been computed (the

length of X in the figure). For that reason, the shaded portion widens as the parsing proceeds,

so the number of processes running in parallel increases as the parsing proceeds.

5.2 Theoretical Time Complexity

In this section, we explain the worst-case time complexity of our HPSG parsing algorithm.

13 The definition of Si,j is given in Section 3.1 and the definition of Ti,k,j is given in Section 3.2.
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Let f(n) be the worst-case time complexity to compute Ti,k,j for a sentence with length

n. The time complexity of our parallel HPSG parsing algorithm is less than 2(n− 1)f(n)+D

(D is constant) for a sentence with length n under the following assumptions, while that of a

sequential algorithm is less than 1
6n(n2 − 1)f(n) +D14.

Assumption 5.1 The number of processors is infinite.

Assumption 5.2 There is no overhead for parallel processing or distributing messages.

Definition 5.1

Sd ≡ {Si,j |j − i = d}
Ai,j(t) ≡ set of available pairs 〈Si,k, Sk,j〉 for computing Si,j until time t.

Ci,j(t) ≡ set of Ti,k,j whose computation has completed until time t.

td ≡ time when computation of all members of Sd completes.

Lemma 5.1 For all Si,j(j − i = d, d is even),

|Ai,j(tx)| ≥




0 x < d
2

2x− d+ 1 d
2 ≤ x < d

d− 1 d ≤ x

Proof When x < d
2 and d ≤ x, it is easy to see that the lemma above holds. In the case

of d
2 ≤ x < d, we provide inductive proof.

Basis When x = d
2 , computation of Si,i+ d

2
and Si+ d

2 ,j has completed. Therefore, |Ai,j(t d
2
)|

is greater than 1.

Induction Assume that when x = d
2 + h, Ai,j(tx) ⊃ {〈Si,i+ d

2±e, Si+ d
2±e,j〉|0 ≤ e ≤ h}.

That is, |Ai,j(tx)| ≥ 2h+ 1.

When x = d
2 + h + 1, 〈Si,i+ d

2±(h+1), Si+ d
2±(h+1),j〉 ∈ Ai,j(tx) from the definition of

tx. Therefore, Ai,j ⊃ {〈Si,i+ d
2±e, Si+ d

2±e,j〉|0 ≤ e ≤ h + 1}. Therefore, |Ai,j(tx)| ≥
2(h+ 1) + 1.

Lemma 5.2 For all Si,j(j − i = d),

|Ai,j(tx)| ≥




0 x < d
2

2x− d+ 1 d
2 ≤ x < d

d− 1 d ≤ x

14 Cf. The time complexity of a sequential CFG parser based on the CKY algorithm is 1
6
n(n2−1)C+D = O(n3)

because f(n) is constant. In the case of HPSG, f(n) is exponential.
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Proof In the same way as the proof of Lemma 5.1, we can prove that,

for all Si,j(j − i = d, d is odd),

|Ai,j(tx)| ≥




0 x < d+1
2

2x− d+ 1 d+1
2 ≤ x < d

d− 1 d ≤ x

=




0 x < d+1
2 − 1

2

2x− d+ 1 d+1
2 − 1

2 ≤ x < d

d− 1 d ≤ x

From Lemma 5.1 and above, we proved Lemma 5.2.

Lemma 5.3 Let Tg be 2(g − 1)f(n) +D. tg ≤ Tg. For all Ci,j(Tg) s.t. (d = j − i),

|Ci,j(Tg)| ≥




0 g < d
2 + 1

2g − d− 1 d
2 + 1 ≤ g < d

d− 1 d ≤ g

Proof

Basis Until t1, lexical entries are looked up for each word completely in parallel. Therefore,

t1 ≤ D = T1. |Ci,j(T1)| = 0.

Induction We assume that for some x, tx ≤ Tx, and for all Ci,j(Tx) s.t. (d = j − i),

|Ci,j(Tx)| ≥




0 x < d
2

0 d
2 ≤ x < d

2 + 1

2x− d− 1 d
2 + 1 ≤ x < d

d− 1 d ≤ x

From Lemma 5.2 and the assumption tx < Tx,

|Ai,j(Tx)| ≥




0 x < d
2

2x− d+ 1 d
2 ≤ x < d

2 + 1

2x− d+ 1 d
2 + 1 ≤ x < d

d− 1 d ≤ x

Note that in the case of (d
2 ≤ x < d

2 + 1), |Ai,j(Tx)|(= 2x− d+ 1) is 1 or 2. Therefore,

inf(|Ai,j(Tx)|) = inf(|Ci,j(Tx)|) +




0 x < d
2

1 or 2 d
2 ≤ x < d

2 + 1

2 d
2 + 1 ≤ x < d

0 d ≤ x
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This means that the difference between the lower bound of |Ai,j(Tx)| and the lower

bound of |Ci,j(Tx)| is less than 2. Hence the lower bound of |Ci,j(Tx + 2f(n))| is equal

to the lower bound of |Ai,j(Tx)|.

|Ci,j(Tx+1)| = |Ci,j(Tx + 2f(n))| ≥




0 x < d
2

2x− d+ 1 d
2 ≤ x < d

2 + 1

2x− d+ 1 d
2 + 1 ≤ x < d

d− 1 d ≤ x

=




0 x+ 1 < d
2

0 d
2 ≤ x+ 1 < d

2 + 1

2(x+ 1) − d− 1 d
2 + 1 ≤ x+ 1 < d

d− 1 d ≤ x+ 1

Then, for i, j(j − i = x + 1), |Ci,j(Tx+1)| = (x+ 1) − 1. This means that computation

of all Sx+1 completes until Tx+1. Hence, tx+1 ≤ Tx+1.

Lemma 5.4 The worst-case time complexity of parallel parsing for HPSG is less than

2(n− 1)f(n) +D, where n is the sentence length.

Proof In Lemma 5.3, the parsing process completes when g = n. Therefore,

tn < 2(n− 1)f(n) +D.

Theoretical Time Complexity of f(n) Let g(n) be the worst-case time complexity for

unifying rule schemata with two daughters and h(n) be the worst-case time complexity

for merging the equivalent members in a cell of the CKY table. Considering that (i)

f(n) is the time complexity for computing the members of Ti,k,j , (ii) Ti,k,j is computed

by applying rule schemata to the members of Si,k and the members of Sk,j , and (iii)

these applications of rule schemata for two daughters can be done in parallel15, f(n) is

g(n) + h(n).

5.3 Empirical Time Complexity

Unfortunately, the worst-case time complexity of both g(n) and h(n) is theoretically ex-

ponential, and hence the worst-case time complexity of our parallel HPSG parsing algorithm

15 For example, for ϕ1, ϕ2, ϕ3 ∈ Si,k, ψ1ψ2 ∈ Sk,j , a parser applies rule schemata to the following pairs, 〈ϕ1, ψ1〉,
〈ϕ1, ψ2〉, 〈ϕ2, ψ1〉, 〈ϕ2, ψ2〉, 〈ϕ3, ψ1〉, 〈ϕ3, ψ2〉. Our parallel parser can process these unifications in parallel.
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Fig. 15 Empirical time complexity of f(n)(= g(n) + h(n))
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Fig. 16 Parsing time for sentence length n

is also exponential. Though the theoretical worst-case time complexity is exponential, in this

section we show that the empirical worst-case time complexity of f(n)(= g(n) + h(n)) can be

approximated by constant, and we illustrate the parsing time for sentence length n.
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Sentence Avg. Corpus Speed-up
Length Sentence Size (*) Avg. of Parsing Time (msec)
(no. of Length (no. of
words) sentences) 1 PE 10 PE 20 PE 30 PE 40 PE 50 PE
1-10 8.9 50 6.38 75.1 22.7 24.3 13.0 12.0 11.8
11-20 15.6 414 10.05 335.0 83.4 44.4 38.1 34.3 33.3
21-30 24.9 293 13.21 1,282.0 287.3 152.9 117.3 104.9 97.1
31-40 34.6 112 14.47 2,940.8 614.2 334.8 254.2 208.0 203.2
41- 44.2 12 19.48 4,994.8 1,129.7 545.1 432.1 310.9 256.4

(*) ... Avg. Parsing Time (1 PE) / Avg. Parsing Time(50 PEs)

Table 2 Average parsing time per sentence

Empirical Time Complexity of f(n) Figure 15 shows the worst-case computing time of

f(n)(= g(n) + h(n)) for sentence length n16 Though the empirical value of f(n) seems

irregular, it has an upper bound which can be approximated by constant. This empiri-

cal time complexity of f(n) implies that the time complexity of parsing 2(n−1)f(n)+D

can be approximated by Cn+D, where C and D are constant17. From assumptions 5.1

and 5.2, the more processors we have and the less overhead there is for communications,

the closer the parsing time is to linear time.

Empirical Parsing Time Complexity We measured parsing time for each length of sen-

tences. The computing environments, the grammar, and the corpus we used were the

same as those used in the experiments described in Section 4. We divided the corpus

into several corpora according to the sentence length (Table 2). Table 2 and Figure 16

show the average parsing time for each corpus arranged according to the sentence length.

We can see that the more processors we used, the closer the parsing time became to

linear time.

6 Conclusion

We have developed an efficient parallel HPSG parser that is practical in terms of both

analysis time and speed-up. The key to its efficiency is in our parsing algorithm and the

16 We measured the empirical value of f(n) on a sequential machine, DELL PowerEdge 6350 consisting of 550-
MHz PentiumIII processor and 4-GB memory. The grammar used in this experiment was the same grammar
used in the experiment in Section 4, but the grammar version was different. The grammar used in this experi-
ment was the current version developed in October 1999 while the grammar used in the experiment in Section
4 was the older version developed in September 1998. The corpus used in this experiment was the same with
the corpus used in the experiment in Section 4.

17 The empirical time complexity of f(n) highly depends on the property of the grammar used in the experi-
ment. The grammar we used does not have any semantic features but have only syntactic features. Many
of TFSs derived by such a grammar can be merged into one TFS, and therefore the number of TFSs in the
CKY table does not grow exponentially. In general, the empirical time complexity of g(n) and h(n) cannot be
approximated by constant.
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architecture of the PSTFS, a substrate for parallel processing of typed feature structures.

We applied a CKY-style parsing algorithm to the HPSG parser. A parallel CKY algorith-

m is desirable from the viewpoints of speed-up, distribution of data, and memory efficiency.

The main features of PSTFS are efficient communication and a copy scheme for TFSs. This

approach is simple without any anomalies, but imposes significant overhead for copying the

huge feature structures. We thus developed an efficient way to communicate and copy feature

structures on shared-memory parallel machines.

The effectiveness of our parsing algorithm and PSTFS was shown through a series of ex-

periments on parsing Japanese sentences from the EDR corpus. They demonstrated that our

parallel HPSG parser has high efficiency in terms of both analysis time and speed-up and is

efficient enough for practical use even when it is running on one processor. In addition, the

overhead of copying in PSTFS is as small as the overhead on a sequential machine, so PSTFS

achieves high efficiency in a parallel environment.

The time complexity of our parsing algorithm is theoretically 2(n−1)f(n)+D for sentence

length n; empirically this time complexity can be approximated by Cn+D.

We are considering the use of our HPSG parser on PSTFS for a speech-recognition system,

a natural language interface, and a speech machine translation system.
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