On a conjecture of L. Solomon

By Shigeo KUSUOKA

(Communieated by N. Iwahori)

§1. Intreduction and statement of result

Let K be a field, let E be an n-dimensional vector space over K and let G be
a finite group of linear transformations of E. Let g, be the number of elements
of G with an (n—r)-dimensional fixed-point set. Now we will consider the poly-
nomial P(t)=ZT) g.t~. It is well known that P(t) is the product of linear factors of
the form 1+mi {m is a natural number) when K is the set of real numbers and
when G is a group generated by reflections. Solomon [1] proved that P(f) is not
in general the product of such linear factors when K is a finite field F, (or Fp)
and when G is a symplectic group, or an orthogonal group (or a unitary group), and
also Solomon [1] conjectured that P(t) has linear factors of the form 1-+4¢'% (i is a
natural number).

In this paper we prove the following three theorems, and they show that the
conjecture of Solomon [1] is true.

THEOREM 1. Let E be an n-dimensional vector space over Fp with ¢ non-
singular sesquilinear form which is hermitian with respect to the automorphism
a—a® of Fp. Let Gn)=Uln, q% be the unitary group and let g.(n) be the number
of elements of G(n) with an (n—71)-dimensional fized-point set. Then the polynomial
P"(t):; g.n)t" is given by the following recurrence formula

Poit)=1,
(1) Ponsalt) =@+ DtPanlt)+ 1T (1= 1T (14070,
(2) Ponlt) =@ (q#* — 1)t Py )+ 1T (L— %) T1 (L-+%14).

i=0 i=1

Furthermore if v is the index of the sesquilinear bilinear form, P,(t) has n—2v
linear factors of the form 149t (i=1,3,...,2(n—v)—1).

THEOREM 2. Let E be an n-dimensional vector space {n is even) over F, with
a nonsingular alternating bilinear form. Let G(n)==Sp(n, g) be the symplectic group
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and let g.(n) be the number of elements of Gn) with an (n—7r)-dimensional fixed-
point set. Then the polynomial P,E)=3 g,(m)t" is given by the following recurrence
Sformula.

P ¢ (t) = 1’ »
Ponialt) =g @ =)t Paalt) +(1+a*+) T (1—¢20) TT (1+0%).
i=

i=

Furthermore if v is the index of the alternating bilinear form, P,(t) has n—v linear
Jactors of the form 1+¢it (i=1,2,...,n—v).

THEOREM 3. Let E be an n-dimensional wvector space over F, (char F,3:2)
with a nonsingular symmetric bilinear form @, and let G, ®)=0(n, q,®) be the
orthogonal group which leaves @ invariant. Nonsingular symmetric bilinear forms
on E are classified into four types according to the following scheme:

Type n Discriminant Index
1 odd (—1)=-vi2 (n—1)/2
2 odd (—1) =D izgp (n—1)/2
3 even (—1)=2 n/2
4 even (—1)~/2 n/2—1

where w is a nonsquare in F,.

Let g.n, i) (0=1,2,8,4) be the number of elements of Gn,®), where & is of
type i, with an (n—r)-dimensional fived-point set. Then the polynomial Pi(t)=
> g.{n, 0)t" is given by the following recurrence formula. '

m—1 m—~1

(1) {

Phansll) =g~ 1Phs O+ (a0 T (-0 T 40,

(2) PiY=PL),

Pio=1, |
3 . m m—
e {Psm+z<t>=q2’"(qm+l.—1) @+ DEPLG + Lkan) T o) T (e,

Pit)=0, :
4 . m— oom X
Y {P§m+z(t)=qz"'(q'"+‘+1) = 1ePL+ ke T 0o T 0o,

Furthermore if v is the index of the symmetric bilinear form, P,(t) has n—v linear
Sfactors of the form 1-+¢%t (i=0,1,...,n—v-1).
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§2. The calculation of the polynomial

If Sis a finite set, we let |S| dencte the number of elements of S. Let Fy
denote an n-dimensional vector space over F,, and let G be a subgroup of GL(Fy).
Now we introduce the following notations.

If B is a subspace of F%,

H(G, By={g € G; the restriction of g to B is identity},
v(n, r)=|{B; B is an r-dimensional subspace of F|,

w

I g*—1)

X(n, r)=q " 2y(n, r)=q D2 . P’ — ,
I (g*—1) I (¢*—1)
k=1 k=1

siG,r)=_% |HG B

4.(G) is the number of elements of G with an (n—7)-dimensional fixed-point set.
Polt)= 3 9.1t

‘Then we obtain the next proposition.

PROPOSITION 1.

n r—1
Polty= 3 s(G, rit* TT (1= ).

ProOF. We can easily see that
@1 (G, 1) =% gueslG0lk, 7).

On Xx,r) and v(n, r) the next lemma holds.

LEMMA 1.
k3 7—1
@) >, Xin, )= 11 (1+4'),
n r—1
( 2 ) E_:g (_1)n+rX(n’ n—’r) kl_Io (1+qkt) =q" (n=1) [2¢fn

COROLLARY OF LEMMA 1. If the real numbers Yo, Yus -« - » Yur %0s %1y « - - » 2 SALISSY
the relations y,=kz 2wk, ), r=0,1,...,n, then &= Zk (=1)+ey X(r, r—k).

r=

PROOF OF LEMMA 1. From X(n,0)=1, X(n,n)=¢**V/2and X(n+1, 7)=X(n, 1)+
g Xm,r—=1), r=12,...,n, it can be easily seen by an induction method.
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PROOF OF COROLLARY. From (1) of Lemma 1,

% % k-1
go Y q" (r—1) /Ztrzkz—:o 2 j]_;[o (1+qa't)_

From (2) of Lemma 1,
(3 n k-1 E3
2 0 =5 T (LRt 3 (— 1)y, X, ).

i=0 r=k

So it is proved.

From (2.1) and Corollary, g,_.(G)= i (=1)**s(G, r X(r,r—E). So
0l @3 £ (~1)7445(G, 1) X, r— Bt
= éo s(G, 7}t éo (—8)"*X(r, r—F)
n r—1

I

s(@, ritvr T (1—¢ft)
1] =0

r B

il

which proves the proposition.

Now we modify the Proposition 1 in order to obtain the recurrence formula.
Let {#m}n=1,z,... be a strictly increasing sequence of natural numbers, let G. be a
subgroup of GL(Fr=), and let D{m,r) denote

IGm+1 l_ls(Gm—H’ /r) —le ]_ls(va 7').

From Proposition 1 we see that

PG +l(t) 7, -7, PG (t) ”, -1 ey ;.
._._m__.t mF+1 "m m — D s trm+1 1_ AN
(G| (G, % Dl I (A=a

Now we obtain the next proposition.
PROPOSITION 2.
P, (6 =%ﬂ%t"m+r"mpam<t) +D,.(0)

where

Dyft)=| s 5 Diim, 1t T (1—g7t),

§3. The counting argument of s(G, 7) in the case when G is a classical group

Let E be an n-dimensional vector space and let @ be a sesquilinear, symmetric
or alternative nonsingular bilinear form on E. Now we will consider a group
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G={ge GL(E); 0(gu, gv)=0(u, v) for all u,v€ E}.

Here we introduce the following notations.
For a subspace B of E,

G(B)={fe GL(B); ®lgu, gv)=0(u, v) for all u,ve B},
G(E,B)={gcG; gB< B,
V,={B; B is an r-dimensional subspace of HE}.

We write A1 B for the Witt sum of two subspaces A, B of E.

The element of G operates on V, as a permutation. Let Z, be a set of re-
presentatives for those orbits of V, under G. Then it can be obviously seen that
the number of elements of H(G, B) which is defined in the previous section depends
upon the orbit of V, to which B belongs, and that the number of elements in the
orbit of B under G is |G]-|G(E, B)[*. So

s(G,1=1G| ¥ |G(E, B) P H(G, B)|.

But there is a homomorphism G(E, B)—G(B) defined by restriction of G(E, B) to B.
By Witt’s theorem this is an epimorphism and the kernel is H(G, B). Thus

8.1 |GIs(G, )= 3, 1GIBII™

The next lemma helps us to compute |G(B)].

LEMMA 2. Let Bl X be a subspace of E, where B is nonisolropic and where
X is totally isotropic. Then

|G(BLX)|=|GL(X)|-|Hom(B, X) [-|G(Bl.

ProoF. To ¢€G(B), r€ GL(X) and e€ Hom(B, X), we associate ge G{BL X)
which is defined as follows: fe=ce+ee if ec B, pe=ye if ec X.

§ 4. The unitary group; proof of Theorem 1.

Let E, be an m-dimensional vector space over Fp with a nonsingular sesqui-
linear bilinear form &,, and let G,=U(n, ¢* be the unitary group which leaves &,
invariant. Let g(n) denote |G,| and let 7:(n) denote |GL{n,¢®|. 1t is well known

that g(n)=q¢ "/ fll (@F—(—1)) and 7.(n)=¢ =P li (g*—1).
Let A and B be r-dimensional subspaces of E,. A and B belong to the same
orbit under G,, if and only if the dimensions of the maximal nonisotropic subspaces

of A and B are the same, and the necessary and sufficient condition that there is
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an r-dimensional subspace of E, with a c-dimensional maximal nonisotropic subspace
is 0<e<r and 0<c+2(r—c)<n. Let y denote r—e. From (8.1) and Lemma 2

min(#—r,r)

|G [Ts(m, r)= EO [r2y) g™ 2 Blr—y) 12

So D(n, 1) =| G 1 [s{m+1, ¥) —| G, ["'s(n, 7) can be handled similarly for even and odd
n except a little difference.
The case of n=2m (m is a natural number).

Din, 7= {0 if 0<r<m

[72(2m+1—1)g2 Gmtln @r-2m=-1) 8(9p._ Ogy _1)]1 if m+1<r<2m+1.

By easy calculation we can see that

7+l r—1
D,(t)=|Gussl S, Dlt, mitm+:=r T (1—g¥)

m o . | mti )
=[Gpu1l jg [72(m—g)q? =9 @0 p(95 4. 1) - 1gm—i ,I}o (L—q*)
g . mil mtd )
=g™ g,) Xo(m, g)gi @m0 i=1;1+2 (@1 1)gm Eo 1—q*t)
where
II {g**-1)
Xylm, ) =¢f 90— :
(**-1) II (g%*—1)

1 k=1

=

k

Xi(m, j) is X{m, 7) in which ¢ is replaced by ¢2.

Obviously 1—¢?t (:=0,1,...,m) are factors of D,t). We will prove that
1+¢¥%¢ (1=1,2,...,m) are factors of D,(t).

Let ¢, be —g=@0 (r=0,1,...,m—1). Then,

n ) m . . om+l ) m+j—r N
Dut)=a'tr [l 1~a't) {5 Xalm, i)~ =) T @r4n) 7 (@ -1)}
=0 3==0 i=j+2 i=mtl-r
m . m+1 . mn . L mtj—r .
=¢"tr I (1—q't) 11 (qz"‘+1){ 2 Xy(m, ) (—g? )= ﬁ (qz“‘+1)}
=0 i=m+tl-2r i=0 i=j+2
2 n . m+1 )
= T (1-qt) 1 (@+1)
t=0 t=m+leyr

% {,‘i X, (m, ) (—g?m=r-1)=i ":g'; Xylm—r—1, &) (q25+3)"} (from Lemma 1 (1))

mn m41

=t 0 (1-¢'t) T (¢*+1)

=0 i=m4l—7

m—r~1 kid
x "2, Ftm—r=1,0% £ X, ) (—grion) ).
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But

s

[
=

m—'l : ‘ ' .
Xalm, §)(— gt iRy = 11 [1—g¥ (gt 0) =0 k=0,1,..., m—r—1).
i=

3

So D,(t,)=0, which proves our assertion.

The degree of the polynomial D,{t) is n+1 (=2m+1), and D,(0)=1. Thus D,{{)=
}':10 (1—g2t) ,ﬁl (1+¢¥ ). This proves (1) of Theorem 1.

We can similarly prove (2) of Theorem 1 in the case where 7 is odd. Now we
will prove the last part of Theorem 1. It suffices to show that 1-+¢2*t¢ is a factor

of Psii(t). From (1) and (2) it follows that

Prosalf) =g+ 1) 2 D Pages)+ (L4 g%70) T (=) TT (L+77)
so that ,

Prn@l=3 I 05 @+ D@18 +g+) T (-0 T (+a*).

Let t, be —q~@»tD  then

m

Ponnltd=3, I [g-@®=949 (g2+141) (@ — 1))+ )

3=04=7+1

izt At )

(1+q—(2(m—z)+1)) H (1_q-—2(1n—1.))
1=0

=0

Ak

i=m

Il
™z é.><
ma

=0 |qiibgnity I1 041 (g 1)
i=j

.
il
I
b

.ﬁ§

X g +1)(¢*—1)]

i+l

=[] 5 - it)
7=0

=0

where

¢ldi= T [@*+1) (g~ 1] i @+ 1) (g 1)l

i=g+1 i=m—g+

But ¢(5)=¢(m—j), so that Ppu:(te)=0. This completes the proof of Theorem 1.

§5. The symplectic group; proof of Theorem 2.

We sketech those parts of the argument which differ from the unitary case.
Let E,, be a 2m-dimensional vector space over F, with a nonsingular alternative
bilinear form @,, and let G,=Sp(2m,q) be the symplectic group which leaves Dy,
invariant. Let A and B be r-dimensional subspaces of E,,. Then A and B belong
to the same orbit under G,, if and only if the dimension of the maximal noniso-
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tropic subspace of A and that of B are the same. And the necessary and sufficient
condition that there is an r-dimensional subspace of E,, with a ¢-dimensional maxi-
mal nonisotropic subspace is 0<e<r, 0<e+2(r—c¢)<n and that ¢ is even. Let s(k)
denote |Sp(2k, q) |=¢** j]i[l {g#—1) and let y(k) denote |GL(, q)|=gF% 112 ,-li (¢P—1).
From (3.1) and Lemma 2 we have

Galslm, = 5% (plr—2k)g b))t

k=max(0,r—m)
where [ ] is Gauss’ notation. Thus

0 if 0<r<m,

Dim, r)= .
(o, 7) {(7(2m+2—r)q2<r~m—1><2m+2-r>s(r—m—1))-1 it m1<r<om-+2.

So
2m+2 r—1
D,(t)=1G p1s] rgo Dim, rgmiz—r ;}:Io (1—¢*t)
1

=q (m+1) (m42) j2 ’§1X(m -+ 1, j)q—- (m+1) 7 ”ﬁ (qz+ 1) . t’m-{-l—f . ﬁj (1 — qkt) .
7=0 ¢ =0

i=5+1

And by the same argument as the proof of Theorem 1 we can easily see D, (—q¢*=0
(h=1,2,...,m). And by comparing coefficients we have

Dufty=(+¢) [T (1—q't) T (1+4%).
The proof of the last part of Theorem 2 is similar to that of Theorem 1.

§6. The orthogonal group; proof of Theorem 3.

We sketch those parts of the argument which differ from the unitary case.
Let E, be an n-dimensional vector space over F, (char F,%2) with a nonsingular
symmetrie bilinear form @ and let O(n, ¢, @) be the orthogonal group which leaves
O invariant. The nonsingular symmetric bilinear forms on E, are classified into
four types. (See the statement of Theorem 3.)

Let Gi, (i=1, 2,8, 4) denote O(n, g, &) where @ is of type 7 and where n=2m—1
if =1 or 2 and n=2m if =3 or 4. (m is a natural number.) Then we adapt Prop-
osition 2 to each {Gi}m=12... Let A and B be r-dimensional subspaces of E,. A
and B belong to the same orbit under O(n, ¢, @), if and only if the dimensions of
the maximal nonisotropic subspaces of A and B are the same and the types of
the nonsingular symmetric bilinear forms which are the restriction of @ to those
maximal nonisotropic subspaces are the same, and the necessary and sufficient condi-
tion that there exists an r-dimensional subspace U of E, which has a c-dimensional
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maximal nonisotropic subspace and the restriction of @ to U is of type ¢ is as
follows: ‘
0<e<r and 0<c+2(r—e)<n, or 0<c<r, c+2(r—cj=n and @ is of type i.
Let g(n, i) denote [On, g, )| where @ is of type ¢ and let y(n) denote GL(n,q). It
is well known that
/2

n=1)
gn, §)=2q@ 0%t T (¢¥-1) if i=1 or 2,

4=1
(n~2)/2

g{n, 1) =2qr =B [4(gn12—¢) I {#—1) if =3 or 4,
where ¢=-+1 if i=8 and e=—1 if i=4.
From (3.1) and Lemma 2 we have
) ) [r/2]
|GLIs(Gh 1) =
k=max (0,[r+1-n/2])
[(r-1)/2]

(r(r—2k)g** =)~ (g 2k, 3) "+ g (2K, 47

(r(r—2k—1)q@e+D r—2k-1)) 1

k=max(0,[r— (n—1)/2]

X (g(2k+1,1)7+g2k+1, 2)7) +a,(r (n—1)g = Vg (2r —n, 7))

where n=2m—1 if i=1,2 and n=2m if i=8,4, where «,=0 if 0<2r<n—1 and
a,=1 if n<2r, and where we set g(0,3)~'=1 and g(0,4)"*=0 formally.
We write Dilm,r) for |Gl 8(Giny, ¥)—|Gi | 8(GE, ) and we will consider
742 -1
D5 (t) =] G| ZOD"(m, Tt Ho (1—g%t). If 7=1 or 2,
= =
|G IT1D5 ()
2m r—1
=Y (y@m—r)g?r—m @n=r)~Hg(@(r—m), 8)" +g(2(r—m), 4T HO 1—g¢t)
r=m i=
2m—1

+- Z (T(Zm__/r_l)q(2r—2m+1) (2'm-7‘+1))—1

r—1
X (g(2r~2m+1,1)7+g(@r—2m+1,2) )+ T (1—g't)
j=

Zm+1 r—1
+ i (T(2m+1_qn)q(2m+1—r) (27‘—2m—1))—1g (27’—‘2’"@—1, 'L) —1t2m+1—7' ]1) (1_q]t)
r=m+1l Ji=

uid r—1
- 22 (T (zm ___1 — 1,-) q (2m—1—r) (2r—2m-+1) ) —lg(z,r —_ zm__ 1’ i) —lth-l—l—r HO (1 - q]t) A
r=m =

And if =8 or 4,
[Ghad [T D5(E)

g r—~1

= ZZ (r2m—r)gtr=m En=)=Y(g(2(r—m), 3) 1+ g (2(r—m), 4T HO 1—q’t)
r=m i=
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2m41 ‘
+ Z (r(Z’m—’l‘-i—l)q(z"'z"‘_l) (2m—r+1))—1
=m+1

X{g{2r—2m—1,1)" +g2r—2m—1, 2)~)g2mit—r II (1—g7t)
=0
2m+-2

r—1
+ Z (T (2m + 2 — ,r) q (2m+2~r) (2r—2m~2) ) —lg (27- —_ 2m — 2’ 7:) —1t2m+2—r 1‘[0 (1 — qjt)
i=

r=m+

2m -1
— Z (7 (zm — /r) q (@m—r) (2r—2m) )—lg (27. — 271?/) —1j2mt+2—r 1];) (1 —_ qlt) .
. i=

r=m

It is obvious that

ge+1, U =gize+ 1, 2= 2 ¢ i 1)),

@

02039 ==(¢* 1 (o )_1<q2°+q°>,

[

92, 4 t== H - > 1((12°—q°) .

And by the same argument as the proof of Theorem 1 we can easily see the next
proposition.

PROPOSITION 8. Let hir, k)= ( (1 — 2h) gb e~ g 11 (q¥—1 ))‘1. Then

m4j—1

m—1 m—1
him+7, 5) gt I (1—g"t)=h(2m, m)q" pis (1—g*t) i {1+¢*)

i e

1

m mF—-1
Bt 145, )i T (=)= £ hmerd, e "1 (1-gt)

.,
II

m—1 m—1
_h(zm +2 m + 1) ( 4m+2t2 q2m+1(q2m+2 —_ l)t_!_ q2m+2) kI_J;) (l —_ qkt) kl;[o (1 +qkt) .
From Proposition 3 we have

DL=Di =+ T - T (L+a),

Di=(+e ) 1l (1-¢) TL (l+as),
Dit)=(+¢=0) T U~¢9) T (1+a).

This proves the recurrence formula of Theorem 3.
The proof of the last part of Theorem 8 is similar to that of Theorem 1. So
the proof of Theorem 8 is complete.
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