A classification of some even dimensional fibered knots

By Sadayoshi K0oJIMA

{Communicated by I. Tamura)

§1. Introduction

In [5], J. Levine has shown that there is a one to one correspondence between
isotopy classes of odd dimensional simple knots and s-equivalence classes of ma-
trices of Seifert’s type. In fact, he classified isotopy classes of simple Seifert sur-
faces by means of Seifert (or linking) forms, (compare with M. Kato 4], A. H.
Durfee [1]). The purpose of this paper is to classify isotopy classes of even dimen-
sional simple fibered knots.

A fibered knot K2*c S22 is simple if r,(S¥+2— K2 =x,(S") for i<n—1 and
(S — K™ is torsion free. Let F be the fiber, then in §2, we shall define two
linking forms 6 : H,(F)QH,(F)—~Z and 0’ : (the torsion free part of 7, (F)&
(the torsion free parto f z,.,(F'))—>Z,, provided n=4. And a pair of each repre-
sentative matrix with respect to a suitable basis is called L. P. matriz. The
equivalence relation of L. P. matrices is defined as follows; (A, By~(4’, B') if and
only if there are an integral unimodular matrix X and a Z,-matrix Y such that
Y-tX is symmetric over Z, A’=!X"'-A-‘X and B=X-B*X+X - (E—*A)-'Y+
Y-A-'X {mod 2). A unimodular matrix A is s-unimodular if A—E is also uni-
modular, where E is the identity matrix. Making use of the above notion, the
theorems are formulated as follows. v

THREOREM 1: L. P. matrices of isotopic simple 2n-fibered knots are equivalent,.
provided n=4.

THEOREM 2: For each integral s-unimodular matriz A and each Zy-symmetric
matriz B which is the same size as A, there is a simple 2n-fibered knot K*"C S

whose L. P. matrixz s (4, B), provided n=4.

THEOREM 3: Let n=4 and K¥, KI* simple 2n-fibered knots with equivalent
L. P. matrices. Then K3 is isotopic to K3™

The author would like to express his heavy thanks to Professor M. Kato for

% (. Kearton [12] independently classified some even dimensional knots. His result is more
general than ours.
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helpful and encouraging suggestions.

§2. Definitions

In this paper, we shall work in the smooth category, therefore all manifolds
and maps are C=.

An n-fibered knot {of codimension two) will be a smooth closed oriented sub-
manifold K*cS"*2, where K* is homeomorphic to the n-sphere S*, together with
a smooth fibration z:8**2—K"—S' which satisfies the following property; there is
a trivial tubular neighborhood K*x D? of K” and the following diagram is com-
mutative.

KX (D*—1{0}) ., Suz_ g
x o /

where ¢ denotes the inclusion map and p denotes the trivial projection onto the
seeond factor. For an n-fibered knot K*<S™*?, using the covering homotopy theorem,
we can choose a one-parameter family of diffeomorphisms

ht:FO__)Ft

for 0<t<2x, where F; is the closure of z~1(¢*)=71(¢®*) U K" and h, is the identity.
The range of a parameter ¢ is naturally extended to R. And then the monodromy
map h,, is uniquely determined up to isotopy as a diffeomorphism of F,. A pair
{Fo, {hy)) is called a fibered knot system associated with K»cSw+2,

From now onward, we shall be exclusively concerned with even dimensional
knots. Let K*C S22 be a 2n-fibered knot and (F,, {k.}) be a fibered knot system
agsociated with K**cS**2. And let a (resp. 8) be the element of the torsion free
part of H,(F,) (resp. H,.,(Fy). Then the first linking form!

0. H (F)QH, ((Fy)) — Z

is defined by letting 6(a®pB) be the linking number Lla, i+8), where i:F,—S2w+2
—F, is defined by translation in the negative normal direction. Let {a;}i; be a
hasis of the torsion free part of H,(F,) and {8}7; be a basis of the torsion free
part of H,.;(Fy) such that the intersection number «;-g;=4;; for ¢, 5=1,2, ---, r.
A first Seifert matriz A of K* is a representative matrix of 6 with respect to
this basis, i.e.
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0 (011@‘31) T 0 (‘h@ﬂr)
!
(0, By) - 0, DB,)

If a 2n-fibered knot K2*c S22 is simple, then the fiber Fi2**! is (n—1)-con-
nected and x,(F,) is torsion free. In the following, we shall assume that n=4.
Then by the Haefliger’s embedding theorem, Fj is considered as follows (refer to
[10D); let E? be an (n+1)-dise bundle over Sy, E?*! an n-disc bundle over Sf** and
x; (vesp. x;) the base point of S? (resp. Sy*'). Let W, be the plumbing of E}
with E?+ at x, and 2;/. Then F, is diffeomorphic to the boundary connected sum
15_ W, of W,, where r is the rank of =,(Fy)=H,(Fy). F(,:jlWi has the natural

i
1

handle decomposition corresponding to the plumbed structure of F,. We can con-
sider that S+ represents the generator g of the torsion free part of z,.:(Fy)
and also the generator g8; of H,(Fy) (i=1,2, «--, 7). Let @:my4y(Fo)—>H,41(Fo) be
the Hurewicz onto homomorphism, then @(84)=p; (#=1,2, ---, 7). Such a basis
{Bi}71 of the torsion free part of z,4;(F,) which corresponds to the handle decom-
position of F, is called a nice basis.

Next, we are going to consider a link in the sense of A. Haefliger [3]. This
is the generalized notion of a linking number in the classical sense. We shall define
it only for our necessary case. Let Si™ and Sz be embedded spheres in S#2
such that S3*'NSpi=@. If @2n+2)—(n-+1)=8, then S**2—Sp* has the homotopy
type of S*, hence for a suitable orientation of S», Sz determines the element
L/(Sy*, Sz of 7,41(S"), which is called a link. For nz=3, Tp(S") =Z, and then
a link is commutative, i.e. L/(S3™, Sg)=L'(S3", S3™) (see [3]).

If n=4, then by the Haefliger’s embedding theorem, each element of z,y(Fy)
can be represented by an embedded (n-+1)-sphere. Let B, 8;€ 7,1 (Fy), then the
second linking form

0" 711 (Fo) Q711 (Fy) — Z,

is defined by letting 6'(3,Q8}) be the link L’ (Sg Sg; 1y, where SZ; is the embedded
sphere in F, representing f; and Sg;‘l is the translate in the negative normal direc-
tion off F, of the embedded sphere in F, representing f;. It is easy to verify
that 6’(8:®p}) does not depend on the choice of embedded spheres. A second Seifert
matriz B of K?»cS8™2 i3 then a representative matrix of ¢ with respect to a
nice basis of the torsion free part of =, (Fb), i.e.
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0" (B4 @pag) - 8 (5D B)

By the definition of a link, a second Seifert matrix is Z,-symmetric. A pair (4, B)
is called L. P. matriz of a 2n-fibered knot K#»c S#et2,

(0’(ﬁ1#®ﬂ1£) """"""" 0’(51#@,&3))
B= : ‘

§3. First linking forms

In this section, we study homological properties of a simple 2n-fibered knof.
Let z:8%*+2— (K?xInt D%—S* be a smooth fibration of a simple 2n-fibered knot
K S and put W=zI), W =z"I"), where I={¢"*| 0<t<r} and I'={et|z<t
<2r}. There are isomorphisms
Eints exc™t
¢ : H’n(W) = Hn+l(SZn+2’ W) = Hn+l(W/7 aW)
P.D. D.
= H"Y(W') = H,. (W)
and
. a1 exc™ !
O Hy(W) = H,o(S™2, W) = H, (W, oW)

.D. D.

= H{W') = H(W"),

-

which will be called the Alexander isomorphisms, where P.D. is the Poincaré
duality isomorphism and D. is the dual isomorphism. And there are homomorphisms

—1 -1

p o HAW) = HylS™2 W) H\o (W', 0 W) ——> H(6W)

p' H(W)=H,(S**?, W)=H,(W, dW) — H,(0W)

q P Hol(W)=H,0o(S™2, W)=H, (W, 0W) —> H,..(0W)
and

9 Hos(W)=H,o(S*2, W)=H, (W, W) —> H,.,(6W).

The Mayer-Vietoris exact sequence shows that the following exact sequences are
split and their splitting homomorphisms are given by », 9/, ¢ and ¢’ respectively.

0 —> H,(W') ——> H,(0W) —> H,(W) — 0
0 —> H,(W) — H,(0W) — H,(W") —> 0

’

0 — Hy o (W) — Hys 0W) ——> Hyo(W) —> 0
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and
0 —> Hyoy (W) ——> Hyya0W) —> Hyn(W) — 0,

where 4y, 7% are homomorphisms induced by inclusion maps.

Let {u}i, (resp. w}i) be a basis of H (W) (resp. H,.(W)). Putting ¢{u;)=
v¥ and ¢'(v)=u¥ (¢=1,2, ---, 1), then {uf}l. (resp. {v¥}) is a basis of H,(W')
(vesp. H,(W"). By the definition of the Alexander isomorphism, the linking
number

L(u,, v¥)=6;;  for ,5=1,2,---, 7

and

L(Ui’ u;k):(sw for 7:, j:l, 2, ceey, 7.

Moreover, putting #;=plu;), aF¥=p"u¥), 9;=qlv;) and vF=¢ (v} (i=1, 2, ---, 1),
the intersection number on oW
ﬁz',ﬁizﬁ:k.ll_);k:() for i? j:l, 2, e T
and
wFv;=u;vF=09;;  for ¢,7=1,2, -, 7.
The above fact will be used in the proof of Theorem 2.

Now, let (F, {h)) be a fibered knot system associated with K**c S+ and {a;}i-1
(resp. {85=) & basis of H,(Fy) (resp. H,.(Fy)) such that the intersection number
a;-B;=36;; tor i, j=1,2, ---, r. For the inclusion map j: Fo—>0W, we assume that
(iogjohe)sla) =u; and (Fojohe)s(fs)=v; (i=1,2, ---, 7), where #:0W—W is the in-
clusion map. The following proposition shows that a first Seifert matrix of a
simple fibered knot K S22 ig always s-unimodular.

PROPOSITION 1: The following (1), (2), (3), (&) and (5) are equivalent.

*
5V

s

1) {Joho)x (B} =7+

J=1

#

INgR

2)  (Joho)wlas) =%+ X (0;—a;)uf

j=1

.
i

B) @-1(iegohoa(B)= X aists

J=1
r

) @i ogohg)slas) = 2 (05— @) V5

i=

ey

and
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where ' :0W—W' is the inclusion map.

PRrOOF: First of all, we shall show that (1) and (5) are equivalent. From (1),

o (Johe)a(B) = 32 Q0¥ eveneiaernin. (%).

j=1
Therefore for a small positive number e,

4 (%@.35) =L (ho)*(ai)’ (h—s)*(ﬁa))

The converse is similar.

@,
i
-

L{{ho)+(85), (h—s)sla;))=Lw;, kzzlb;kuif )
=bi5.
By the fundamental property of a linking number (see [6]),

L((ho)(eti)y (B—c)s(B3)) — L{llo)slars), (he)s(B) =i~ B5=30,,
and
L((ho)s(By)s (h-c)slas))=(=1)" "I -1L((ho)x(as), (he)x(B)).
Thus b;;=6;,—a;;, and (1) and (2) are equivalent.
From (2),
o lgoha)ala) = X 0=zt

This and (*) imply that (2)&=={) and 1)=@3), completing the proof.

§4. Second linking forms and Proof of Theorem 1

The purpose of this section is to prove Theorem 1. For this reason we must
consider a generalized intersection number which is introduced by C.T. C. Wall.
The following theorem has been proved in [11].

THEOREM (C. T. C. Wall): Let 2m=>3s+38, s=2 and M™ a compact smooth mani-
Jold. If M™ is (2s—m-+2)-connected, then there is a (—1)*-symmetric bilinear map

22w (M) Xz (M) — 7,(S™).
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For the definition of this map, we shall refer to C. T. C. Wall [11] page 255.
Under the same assumption as in this theorem, the following is established.

LEMMA 1: Let S; and S; be embedded s-spheres in M™ which intersect trans-
versely to each other and V¥ ™=SiNS;. Then there is a dise D™ in M™ which
meets S and Sy respectively in one disc containing V™. In other words, D™
NS=D¢ for 1=1, 2 and DD V=™,

The proof of this is similar to that of Hilfssatz in [11] page 257, thus we shall
refer to it. Then by this lemma, a linking pair (D", D, Dg)=(S=, Si™%, S§7%) is
obtained and since (m—1)—(s—1)=3, a link LS, S5t € o,y (Sm57Y) is defined by
the same process as the definition of L/(,). The slight observation supplies the
fact that 2(S;, S=S-I/(S:, SiY), where S:z,(S™*~Y) — =, (S™) is the sus-
pension homomorphism.

LEMMA 2: Under the above assumption and notation, 2(Si, S5 =0 if and only
if there is am embedded s-sphere Sy which is homotopic to S: and disjoint to S;.

PROOF: Since 2m=>3s18, the suspension homomorphism is isomorphie. Thus
(S5, S5)=0 if and only if I/(S;™?, Sy)=0. By the Haefliger’s theorem {see [3]),
there is a dise D°in S™! which is bounded by S and does not intersect with
Si-1, Since (Si—D2)uDs is homotopic to Si in M™, it represents the element [S{]
of =,(M). Then by the Haefliger’s embedding theorem, we can approximate it by
a smooth embedded s-sphere S;’. This completes the proof.

Let n=4 and F, the fiber of a simple fibered knot K**S?*#%, then F, admits
a handle decomposition which is described in §2. There is an isomorphism

Tup1 (F0) E2Hpr (Fo) D (HL(F) R Z5),

where the projection on the first summand is the Hurewiez map and the injection
of the second is found by composing an element of H,(F,)=x,(F,) with the gener-
ator 7 of z,4;(S")=Z,. Let ; be a generator of the torsion part of z,..(Fy) obtained
by composing a generator «; of H,(Fy) =mr,(F,) with 2. And let {8i}i=1 be a nice
basis of the torsion free part of m,..(F}) such that «;-8;=4;;, where §; is the image
of Bi by the Hurewicz map @:rm,.(Fo)—>H,n(Fy). Now the automorphism ¢:
T (Fo) =, (Fo) has to be of a form

¢(l8i3):jglxﬁﬁjﬁ'*'kgyikﬁkﬁ 1=1,2, -, 1.

And then there is a unique automorphism ¢ :H,(Fo)—H,(F,) such that the inter-
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section number (¢'(a;))- (Pod(B)) =a;- B;=0;;. Let ¢'(a;)= éziﬂj and put X=(x;;),
Y= (y;;) and Z= (zij)° 7

LEMMA 3: If nz4, then {$(Buw)lie i3 a wice basis if and only if X is uni-
modular, X=*Z"' gnd Y-*X is symmeiric over Z,.

PrOOF: Since n=4, Lemma 2 can be applied to our case. By the definition
of a nice basis, 2(8:s, 8, =2(7:5, 7;) =0 for all 3%, and (B, nz) =05 And by the
obstruction theory, an (r-+1)-dise bundle over S* has an non-zero section, so that
A7, 7:2)=0 for all ¢. Now, in [11] there is a relation that (B, fi)=Sepo N(Bi)
where N{(8y) € z,(SO(n)) is the characteristic class of the normal bundle of By D
is induced by the projection of SO(m) on S*-* and S is the Freundenthal suspension
homomorphism. Since F, is in S22 in our case, N{(By) is the image of the boundary
0: 7,11 (S") =, (SO)). But the composition pod is zero, so that A(Bis, B} =0. Then,
making use of these information, (¢(8:), @(B;1)) =0 implies that Y-*X is symmetrie
over Z;. Moreover (¢'(a;)) (@o¢(Bs)) =a;-B;=0;; implies that X=tZ-1,

Conversely, put T= .Ql(S?’I‘S?H) {disjoint union), where SzHS?*! denotes that
Sr and SP intersect tli;.nsversely at exactly the base point. A one to one map
J:T—F, whose restrictionTto each sphere is an embedding, is called a nice embed-
ding. By Lemma 2, we can take 2 nice embedding f:T—F, such that f(Sf+!) rep-
resents ¢(8x) and f(S?) represents ¢'(a;). Let F’ be the boundary connected sum
of connected components of a smooth regular neighborhood of f(T). Then F,—
Int#” is an h-cobordism. This completes the proof.

Let 24 be an automorphism of 7,(F;) induced by the monodromy map ks,
and of a form

s (Bae) = 3 tiiBse+ X Viaas
J=1 k=1
Put U={(u;;) and V=(v;;), then the following lemma is easily proved.

LEMMA 4: Let (4, B) be an L. P. matriz of K*C S22, then

1) U=E—~t4—
2) V=*A"'.B-(E—A)' (mod 2).

The automorphism induced by the monodromy map is in fact the action om
T (S K =7 .. (F,) induced by the covering transformation of the infinite
cyelic covering SeviZ— Rz, Therefore, it does not depend on the choice of the
fibration. Lemma 4 states a one to one correspondence of automorphisms with L. P.
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matrices. In other words, any knots with same action have same L. P. matrix for
some basis of 7,4 (F,). In particular, isotopic fibered knots have same L. P. matrix
up to the base change of x,:1(Fo).

TaEOREM 1: L. P. matrices of isotopic simple 2n-fibered knots are equivalent,
provided n=4.

ProoF: By Lemma 4, it suffices to examine the change of an L. P. matrix cor-
responding to a change of a handle decomposition of a fiber. For a first Seifert
matrix, this is clear by Lemma 8. Let B be the second Seifert matrix with respect
to a nice basis {8i}i-;. By the base change ¢ of Lemma 3, the second Seifert
matrix B’ with respect to a nice basis {#{8:)}=: is given by (0’ (${8:)Q¢(B))). By
the property of a linking number, we have that

6,<,Bki}®7?li§):al'ﬂk‘—ﬁ(al®{8k) {mod 2)

& (@ Bu) =00 QB0 (mod 2)
and

0’ (91:Qmua) =0.
This shows that
B=X B X+X (E—A)*Y+Y -A-*X (mod 2),

where A is the first Seifert matrix with respect to bases {a;}i=: and {8;}7_.. This
completes the proof of Theorem 1.

85, Proof of Theorem 2
THEOREM 2: For each integral s-unimodular matric A and each Zysymmeiric

matriz B which is the same size as A, there is o simple 2n-fibered knot K2 CS+2
whose L. P. matriz is (4, B), provided n=4.

ProOF: Put A=(a;), B=(b;;) and T= igl(Sz‘th%“) (disjoint union). For a
standard decomposition of S2%*2, i.e. S¥*2=D¥¥2y D2 and D%+ Dirti= St
there is a nice embedding f:T—S?*+2 such that

fISHc Dy for all ¢
fiSryc D¥+* for all ©
JT) ﬂSZ"“:iliJlf (the base point of SrAS!™)

and
L/(f1S+Y), f(S¥)=b; for all i<y.
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Let W be the boundary connected sum of connected components of a smooth regular
neighborhood of f(T) in S*+*2. Putting W'=S%+—IntW, the arguments of §3
still work equally well for W and W'.

Let tA=(a};), i.e. al;=a;, then we take a splitting s:H,4,(W)—H,..(0W) of
Gy Hyp (0W)—>H, (W) such that

s(vy) =7+ Zr)laij't‘);" for all i.
p2

By Proposition 1, the following splitting homomorphism s’ of T H,(0W)—>H, (W)
is induced by s,

8 (W) =Tt 3 (85— ala) BF for all 7.

The intersection number s'(u;)-s(v;)=d;;, because of the information of §3. And
now, the associated sphere bundle E of a normal bundle of f(S7Y) in S+ ig
trivial, therefore the homotopy class of a section of E is represented by an element
of 7,.4(8")=Z,. Hence there are two non-homotopic sections &, &, so that
L/(f(S7), &(S7¥%))=0 and L/(f{S?+), £(S?™))=1. But the images of these are
homologous as a cycle on E. By this fact and Whitney’s procedure we can take
a nice embedding f/:T—8W, which is homotopic to f in W and satisfies the follow-
ing properties;

I x(Bi)=5(v,) for all 4

Flala) =s"(u;) for all 4

and

LS, pse=) Ty

Let F be a smooth regular neighborhood of f/(T) in 8W and F, the boundary
connected sum of connected components of F, and put Fr=W—IntF,. {s'(u)}e
{resp. {s(vy)}i-1) is a basis of H,(F,) (resp. H,..(F,)) and inclusion maps induce iso-

morphisms;

I Hy(Fy) —> H(W); Jls’(us)) =u,

Jex:Hyi(Fo) —> H o (W); Jx(8v)) =,

Iy H(Fy) — H,(W'); Jxls" (u:) =X (07— a% )u}
and

I Hyo(F)) —> Hont(W); Gel(siwy))= i ai;v¥.
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Because W, W', F, and F; are simply connected, (W;Fy, Fx) and (W’; F;, Fy) are
relative h-cobordisms, and hence S#*2—aF, admits a fibration x2Sz —p Fyx Int D?
—S1 such that z~'([)=W and z~*(I')=W’. And by Proposition 1, the first Seifert
matrix of K2*=3F, is *a};)=A.

Finally we must study the second Seifert matrix of K, Let (Fy, {hy) be a
fibered knot system associated with K2». Then if i<7, ho(S{™) Nho(S3) =2 and
moreover y(S?™) and h-(S%*) are isotopic in Stz p (S} for a small positive
number e. On the other hand, f7(S#+1) is homotopic to f(S#*) in W and f/(S%)
and F(S¥*Y) are homotopic in W—f(S7*), therefore

0" (Ba®Bst) =L’ (ho(ST*Y), h—e(SFH)
L’(ho(S““) ho(ST)
=L/(f(St+), f(S7H)
=L/(f(S*), f(IST)
=b;;.
If 3=7, since h(St+Y) and f(S¥*!) are homotopic in Int W,

(@@m L/ (ho(S3H), h—e(ST*)
L' (he(SE), holST™)
fSn+1 fl Sn+1

=bii .

Thus for the given matrices A and B, we have a simple fibered knot K2 S+
with L. P. matrix (4, B). This completes the proof.

8§6. Proof of Theorem 3

THEOREM 3: Let n=>4 and K2, K¥ simple 2n-fibered knots with equivalent
L. P. matrices. Then K2 is isotopic to K&~

PROOF: Let F, be the fiber of K%, then according to §2, Fj admits a handle
decomposition

Fo=D"v U (R U RTH))U .- U () U (hFH)

as follows; let C* (resp. C7*?) be the core of an n-handle k7 (resp. an (n+1)-handle
B2y, then Cr* is extended to Si*' which intersect with C? at exactly the base
point of S7. And the set of embedded spheres {S?i; represents a basis {a}ix of
2o (Fy) =H,(F,) and {Sr*4}7_, represents a nice basis {8u}i-1 of the torsion free part
of z,..(Fy). Now let (4, B) be the L. P. matrix of K with respect to the basis
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D2n+l

corresponding to this handle decomposition. By Lemma 3, we can choose a handle
decomposition of F}, the fiber of KZn,

Fy= D U (1)U ) U -+ U (33 U (B

such that the L. P. matrix of K% corresponding to this decomposition is (4, B).
Therefore from the first, we may assume that the L. P. matrix of K?* is the same
as that of Kz=.

First of all, D*** is clearly isotopic to DV in S2»*2, and {C¥} is isotopic to
{C¥'} in S*** hecause there is no obstruction to this. Now let g (resp. #)) be the
positive unit normal vector field to h? (resp. k¥) on C¥. By the tubular neighbor-
hood theorem, h} (resp. k') can be considered as the orthogonal complement of U
{resp. ¢} in a normal disc bundle neighborhood N of Cr=C¥ in S22, Therefore
if p; can be homotopically deformed to 4, relative to 9C?, then A7 is isotopie to
kY within N. But since g,=p] on 9C?, p; differs from g by an element of 7, (5™
=0, and hence doing this for all ¢, an isotopy of (A"} to (&%} can be obtained.
Moreover, by the uniqueness of the tubular neighborhood {8C+1 is isotopic to {HC 1}
in (D1 URLU -+ - UhD).

We next show how to deform {C7*!} isotopically onto {C7*'} keeping 8C*+
fixed and avoiding any intersections with D®"*1UhzU -+ - Uh® except aCH1. Assume
induectively that Cy*! is isotopie to C** for i<k. Then we would like to deform
Cy*t isotopically to C3*Y relative to 9C3*, avoiding any intersections with D+t
UhtU - URIUCTU .- UCi. By the Haefliger’s theorem [3], the obstruction
to this is represented by 6(a;Q8;) —0(«i®8;) for all ¢, 4, and ¢’ (B Brs) — 0" (B Bh)
for =1, 2, -+, k—1, where «f, p; and g} are generators of H,(F%), H,.,(F} and
7u41(FG) respectively corresponding to a handle decomposition of Fj. But all of
these elements vanish from the assumption, therefore the required deformation can
be obtained. And then, by the isotopy extension theorem, it can be extended to
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an isotopy of Crtiy...UCr+ in S#H—(DFH1ypry--- UhruCrtty---UCH).
Yinally let us study an isotopy of F, to Fj. Let y; (resp. »i) be the positive
unit normal vector field to hf+! (resp. h}t). By the same arguments as before,
if we can homotopically deform v; to v/, relative to aC?+, then we obtain an isotopy
of h#t to BtV relative to AN A%, within a normal dise bundle neighborhood N’
of Cy+lin S?+2. Since y,=y} along 5Cr*, v; differs from v} by an element of z,.,(S"
=2, and this can be identified with 6’(8::®8:4)—6'(83Qp4)=0. Thus doing this
for all 7, we finally obtain an isotopy_of F, to F} in S?**2, completing the proof.
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