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Introduction

Let F be a totally real algebraic number field of degree n. Let z—z@ (5=1,
---, n) be the distinet embeddings of F into the real number field R. We embed
F into the n-dimensional real vector space R" via the mapping

Faop—sx=@2®, .-, g™ c R".

The group E. of totally positive units of F acts on R* as a group of linear trans-
formations via

ux:(u(l)xb "t u(n)xn); u€E+, x__‘(wl’ ety xn)eRn-

Then the set R?, which consists of all vectors of R* with positive components, is
stable under the action of E,. Recently, T. Shintani has shown in [5] that a
fundamental domain for E,\R% is realized as a disjoint union of a finite number of
open simplicial cones? with generators in FNR*. It was fundamental in his evalua-
tion of zeta functions of F at non-positive rational integers. So far, an explicit
form of such a fundamental domain has been known only when n=1 or 2. In the
present paper, we shall construct such a fundamental domain when F is a cyelic
cubic number field.

Let F be a cyclic cubic algebraic number field, and s be a generator of its
galois group. Then, as in H. Hasse [3], there is a totally positive unit u, which
together with its conjugates generates the group E,.

THEOREM 1. The notation being as above, the following convexr quadrangular
cone Q gives a complete set of representatives for R% modulo E.:

Q:{t11+t2u0“3+t3u0"32+t4u0 ‘ >0, 1,20, 1,20, £,>0}.

Combining this with Theorem 2 of [5], we get a formula for the relative class

1 See [5] or §2 for the definition.
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number of a totally imaginary quadratic extension K/F.
In §1 and §2, we show that a fundamental domain for E,\R% is realized as
a hexagonal cone. In §3, we prove Theorem 1. In §4, we give an application.
We denote respectively by Z, Q, R and R. the ring of rational integers, the
rational number field, the real number field and the set of positive real numbers.

§1. Preliminary lemmas

Let F be a cyclic cubic extension over 8. We assume F is a subfield of R.
Let s be a generator of the galois group of F/Q. Then the group ring Z[s] acts
on the multiplicative group of F in a canonical manner. Let tr( ) denote the
trace of F. First, we prove an easy lemma.

LEMMA 1. Let w be an element of F which does not belong to Q. Then the
Jollowing holds:

w w* w*
w?  w w*  |=tr{w){tr(w)?—3tr (w't)
w* w?  w

tr{w)2—-3tr{w***) >0.

PROOF. The former is easily checked. To prove the latter, let f(X) be the
minimal polynomial of w over Q. Since f{X)=0 has three distinct real roots, the
diseriminant of f/(X)=3X?—2tr{w) X+ tr{w'*) is strictly positive, hence tr(w)?—
Striwtt)>0.

Let E. be the group of totally positive units of F. Hasse has shown that a
totally positive unit which has the minimum trace generates E. together with its
conjugates.?? We need a slightly more precise result as in the next lemma.

LEMMA 2 (Hasse). (i) There is a totally positive unit w, of F which together
with its congugates generates E.. The set {u,, w3, uif, usl, us®, uz*? is independent
of the chotce of uy.

(i) Let u, be as in (i), and assume triuy) >triugl). Then every u (#1)c E.
satisfies

tr (u) >tr (1) >tr () >3
unless u is a conjugate of uy or ugl.

ProOF. The proof of (i} is given in §4.8 of [8]. To prove (i), let f(X)=
2 Sitze 10, 11 and 12 of [3].
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X®—aX?-+bX~1 be the minimal polynomial of %, over @, where a=tr(u,) and b=
tr{uzl). We may assume here u,>ui>ui’(>0). Then f(1}=b—a<0 and ults+si=1
imply that u,>1>us>wus?. Moreover, we have f(b)=b*(b—a+1)—~1<—1<0, so that
the largest root u, of f{(X)=0 is larger than b. Hence we have

(1) 4> >b>uy > ups> 1> us>us > ut>0.
By (i), every u{#1)¢ E, is represented in the form
U=ug=?

with p, g€ Z, (p, )+(0, 0). By virtue of the egualities us=uf" 92, Ut =gy (O -s
and tr(u) =tr{u)=tr{u?), it is enough to prove tr(w)>a for p>0, p-+¢>0. Note
here that

wy > bt = (i H o ot %)t > (s Ul )i =a

follows from (1). Therefore tr(u)>a if u>wu,~. Let us enumerate the pairs (p, ¢
(p>0, p+qg>0) of integers which satisfy y=ul-r=yFrotei >yl making use of
the inequality (1). If p>1 and ¢>1, then u>wui—. If p+g¢=>1 and g<-—1, then
w>ubt>ui-. If p>2 and ¢=0, then u>ui>ul~. If p+¢=0 and ¢g< -3, then
w>uys =yl ute=H >, Accordingly, tr(u)>a unless u=1u,, u3*, uit*. Further,
te{udt®) =b2—20>a follows from Lemma 1. This completes the proof of (ii).

REMARK 1. Let u, be the same as in Lemma 2.(ii). Hasse has proved tr(u}
Striugl) (£l ugl, %, us™) by a different method.®

REMARK 2. When F is a cyclic extension of odd prime degree (<19) over @,
a result similar to Lemma 2.(1) has been proved by A. Brumer [1]. There are,
however, infinitely many choices of such u, if the degree of the extension F/Q is
higher than 3.

REMARK 3. When F is a real cyclic biguadratic extension over @, Hasse has
discussed a property of the trace of the Relativegrundeinheii of F.0
We now embed F into the 8-dimensional real vector space R® via the mapping

Foz— x=(z, z°, x°°) € R®.
Define the action of E. on R® by

Ux=(UTy, Wy, UTs); UE By, x= (T, Ty, T3) € R

3 See Satz 12 (and its proof) of [31.
4 Satz 23 of [3]. See also Satz 22 of [3].
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For x=(x1, x5, x5) € R, set trix)=2;+x,+x,. For u(#1)e E,, put
(2) Sw)={xc R*| tru’x—x)>0 for ;=0,1,2.

In the remaining part of this section, we investigate the shape of S(u). Let x be
2 non-zero vector of S(u). Lemma 1 and tr(u—1)>0 imply that the system of
equations tr{ux—x)=tr(wx—x)=tr(w’x—x)=0 has only the trivial solution x=0.
Therefore tr(u—1)tr{x)=tr(ux+wx+u’x—3x)>0, so that tr(x)>0. Accordingly,
if we put

(3) P={xe R?*|tr(x)=1},
we have
Stuw)={tx | xe€ Su) NP, t=>0}.

LEMMA 3. The notation being as above, the set S(u) NP (1#uc Ey) is a triangle
(2-dimensional simplex) on P. If we put

w=(tr{u)®—8tr{uw 1) ((tr{w) —tr{u=1) + (tr{uw) —3)u) ,
the vertices of S(u)NP are given by w, w*, w (€ FN RY).
PROOF. Let us consider the system of equations

trix) =tr{ux)=tr(ux)=1.

Since
1 1 1 u us u
u® % W |=trw)=t u?  w w |=tr(u)?—38triuY) =0
us y? u ut u® u

by Lemma 1, this system has the unique solution. It is easy to see that the solu-
tion is given by x=w. The vectors w, w*, w are linearly independent on account
of Lemma 1 and tr(w)=1%0, hence they are in general position on P. It is enough
to show that S(u) NP coincides with the convex hull of these three vectors. Every
x€ P is represented as
x=tow+t1w’+t2w“2, t0+t1+t2=1
with ¢;€ R (§=0, 1, 2). Note here that tr(uw)=tr({tr(u)w—uw—u’w)=tr(u)—2. Thus
trlu'x) =14 (trlw)—3)t;, (j=0, 1, 2).

Since tr(u)>3, it is now clear that x belongs to S(u) if and only if £,>0 for all
7=0,1, 2. This proves the lemma.
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REMARK 4. Lemma 3 can be generalized to the case when F is a cyclic ex-
tension of odd prime degree over Q. We can discuss in a similar manner the
shape of S(u)N P when F is a real cyclic biquadratic extension over Q.

§2. A hexagonal cone

We keep the notation in §1. The set R%, which is the set of all vectors of
R?® with positive components, is mapped onto itself under the action of every uc E,.
In this section, we construct a fundamental domain for E,.\R% as a hexagonal cone.
For any subset S of R?, we denote by S* the set of all non-zero vectors of S. Put

D={xe R*|tr(ux—x)>0 for wucE,},
then, by Lemma 3.(i) of [56], we have

(4) R:= LL uD* (not necessarily a disjoint union) .
%E EN

Moreover, the set D is a closed polyhedral cone in R?, i.e., there is a finite subset
M of E. such that D={x¢ R®| tr{ux—x)>0 for u¢ M}. We are going to find such
a subset M of E;. On account of Lemma 2.(i), we take and fix a totally positive
unit u, of F which together with its conjugates generates E.. Put

(5) a=tr{u,), b=tr(u?

and
U=1{1, wq, us, us’, us*, us*, ug*}.9
LEMMA 4. Let x be a non-zero vector of S(ue) NS(uzt) (¢f. 2)). Then
triux—x)>0
f u is a totally positive unit of F which does not belong to U.

PrOOF. We may assume a>b. Let P be the plane given by (8), and put
w=(a*—3b)"({a—b)+ (@—B8)u,). Then, by Lemma 3, w, w*, w give the vertices of
the triangle S(u,) NP. Let we E, and u¢ U. Then, for each j=0, 1, 2, it follows
from Lemma 2.(ii) that

tr(uw) > (a2—38b)~{{@a—bla+ (a—3)b) =1=tr(w*)

since # does not belong to U. Recall that S(u,) NP is convex and that S(uy)*=
R,-(S(ue) N P). Hence tr(ux)>tr(x) if xeS{uy)*, and the assertion is proved.

5 The set U does not depend on the choice of uy by Lemma 2.(i).
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Evidently, the set D is contained in S{u,) NS(us?). So Lemma 4 implies that
(6) D=8(u) N Sus)={x<c R | trlux—x)>0 for uecU}.

We now study the shape of D. For j (>1) non-zero vectors v, ---, v; of R®, we

put
Clyy, ooy w)=ltimt+ -+t 1 650, - -+, 150
and

C(vl, ey, v,-)={t1v1+ e +thj ‘ t120, ey, tJZO} “

X3

(0,0,1)

A"(l, 0,0) (4Nj ©0,1,0°\2

(1) triugx)=tr{x)=1 (4} trlugx)=tr{x)=1
(2) tr(ugx):tr(x):l (5) tr(uo—i*x)ztr(x):l
(8) tr(ug'x)=tr(x)=1 (6) tr(uy<x)=tr(x)=1
a ¢

=tr{uo) b=tr{u;?)
w=(a?—8b)~({a—b)+(a—3)uo)
z1={a+b+38)"YHuot+uy*+1) 22=(a+b+8)"ug+uys +1)

Figure 1. This is drawn on the plane tr{x)=1 under the assumption a>b.
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The set Clyy, - -+, v;) is called an open simplicial cone of dimension j with generators
1, +-+, v; if vy, ---, v; are linearly independent over R. Then we can deseribe the
shape of D as follows (see Figure 1).

PROPOSITION 1. Let P be given by (3), and put
(7) 2= (@+b+8)" 1+ U+ 45

for k=1,2. Then DN P is a convex hexagon on P with the vertices zi, 2., 21, 25,
222, 23, and the vertices are placed on P im this order as in Figure 1. Hence D
=Clzy, 20 75 75 235 25) and D is a convex hexagonal cone in R°.

ProoF. It is sufficient to show the former part of the proposition. By (6),
the set DNP=(Su) NP N(Sust)NP). By virtue of Lemma 3, S(u)NP and
Stuz) NP are regular triangles which have the same centre at ¢=(1/3, 1/3, 1/3).
So we observe that DN P should be a convex hexagon on P if neither S{uy) NPC
Szt NP nor Slug?) NP S{u,) NP holds (see Figure 2 which shows some cases of
the position of two regular triangles having the same centre). Put w= (@2—8b)~x
(le—b)+{a—3)uy), then w is a vertex of S(u,) NP such that

(8) tr(usw) =tr(ulw) =triw)=1.

(1) (2) (3) (4)

Figure 2. Two regular triangles having the same centre.

Since a*—38b>0 by Lemma 1, it follows that
(9) tr{ugw)=1—(a?—38b)"{a®+b*+3*—ab—3a—3b)<1=tr(w) .

Hence the vertex w of S(u,) NP does not belong to S{uz)NP. In the same way,
we see that S{uz?) NP is not contained in S(u,) NP. Accordingly, DNP is a convex
hexagon on P. It is easy to see that, for k=1, 2, x=z, gives the unique solution

of
tr(x) =triug'x) =tr(ut'x)=1.

Thus (8) and (9) imply that z; and z, are the two vertices of DNP which lie on
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{xe DNP|trius'x)=1}. Note that the mapping x—z° induces a permutation of
order 3 on DNP. Therefore other vertices are given by zf, z5, z:% z5°. This com-
pletes the proof.

By Prop. 1, we can give a fundamental domain for E.\R% as a convex hex-
agonal cone.

PROROSITION 2. Let 2, and 2; be given by (7). Then a complete set of repre-
sentatives for R modulo K. is given by the disjoint union of the following open
simplicial cones with generators in FN R®:

Cu, ) 2, C, =g, 2™ (7=0,1, 2);
ca, zg) (=1, 2; j=0, 1, 2);
C<z1’ Z2), C(Z1, zgz)s C<z§y z2)’ C(1)9 C(z1)$ C(ZZ)'
ProoOF. By {4), every point of R% is mapped to a certain point of D* by the

action of E,. Suppose that two points y; and y, belong to D*, and that y,=uy,
(1#u¢ E.). Then

0<tr(uy, —y1) =—tr(u 7y, —y2) <0
follows from the definition of D, hence tr{uy,—y.) =tr(utp,~y,) =0, and u should
be an element of U by Lemma 4. Therefore y; (resp. y,) lies on the boundary
plane tr(ux—x)=0 (resp. tr{u—'x—x)=0) of D by Prop. 1. Accordingly, if we care-
fully investigate all eguivalent points of D* under E. by using Figure 1 and on
account of uglz =z, Uy 'z, =z3, we see that the disjoint union
Clzs, 22, 73 23 255> 25) U Clzs, 240 U Clas, 25) U Cl2S, 25) U Clzy) UClz,)
gives a complete set of representatives for R: modulo E,. Further,
Clzy, 22 28, 28 73 75)
2 o, N . . 2 2 .
=LUfC, =, 23)UCH, =, & HUL Y UCH, z)1UCH)  (disjoint).
i= =14=
Clearly, all the cones in the proposition are open simplicial cones. Thus the prop-
osition follows.

§3. A quadrangular cone

We keep the notation in §1 and §2. We have already given a fundamental
domain for E,\R} in Prop. 2. In this section, we are going to give another funda-
mental domain for E,\R% which is a convex quadrangular cone spanned by the
vectors in By N R, When F=Q(2 cos(2z/7)), Shintani has given a fundamental domain
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for E,\R% in such a form in §2.8 of [5].

THEOREM 1 {see Figure 1). Let u, be a totally positive unit of F which together
with its conjugates generates E..9 Then the convex quadrangular cone

Q={td+tam5*+taur "+ L, | £,>0, 1,20, £,>0, £,>0}

gives a fundamental domain for E\RY, ie., RE= U u@Q (disjoint). The cone @
u€ E 4
is the disjoint union of the following open simplicial cones with generators in

E.NR®:
C(l, HO_S’ ”0), C(ly uO‘sz, aﬂ)’ C(I, llg),LC(l, u()—x)’ C<11 uf)—sz), C<1)-
ProoF. Let a,b and z, (k=1, 2) be as in (5) and (7). Then a fundamental

domain of R%: for E, is given as in Prop. 2. We are going to show that it is
equivalent to the quadrangular cone @ under E,, by using

Uiz =z U5 ize=123.
First, put
S, =C(1, z3, z3) UClzs, 28) UCH, 21, 23)UCH, 23),
then
Sy=uClus*, z1, 235) UClzs, 28 UCH, 21, 2 UC(, 28) .

Consider Clug®, z1, z)UClzy, 28)UCA, z4, z5). Then it is an open conver quad-
rangular cone, since z; and zg* are in opposite sides of the plane tr{uzix—uysix)=0
on which 0, 1 and #;° lie. Henee it is equal to C(1, #7°, z,) UCH, w7 UCA, w5, z57).
Further, C{1, u7*, z5) UCH, z8) =us{Cus®", w,, 2, UC7™", z2)}. Accordingly, the set
S| is equivalent to

(10) C(1, u5*, 2) UC(, u5°) UC(s™, uq, 25) U Clig™, 22)
under the action of E.. Secondly, put

8,=C(1, 2§, 2) UClzz, ) UCQ, 25, 20 UCH, z1)
Similarly as above, we see that S; is equivalent to
(11 Cl, 55", 2 UC(, u7*") U Clai?, o, 2 U Clus™, 2)
under the action of E.. Thirdly, put

Sy=C(1, z5*, 2 UC(L, z) UC(, z)
U C(l) F4T) 52) U C(la ZI) U C(17 Zz) U C(Zn Zz) U C(Z1) U C(ZZ) U C(l) .

6 Such a unit exists by Lemma 2.(i).
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Then we have

S;=us{Cluy, 21, 22) U Clag, 71) U Clag, z2)}
U C(l, 71, 22 UC{, 2) UCQ, ) U C(Zl, z) U C(Z1) UCzz) U C(l)~

By the same reason as before, we see Cluy, 23, 7o) U Clzy, 25) U C(1, z4, 22) =C, g, 1)
UCH, a) UC(, uy, 72). So S; is equivalent to

(12) CQ, uy, ) U C(l, uo) UC(, uy, ) U Cluy, z:) U C(um Z2)
uC, z,) UCH, z2) UClz) UC(z,) UCH)

under the action of E,. Note that z; belongs to C(1, u,, uy®), and that z, belongs
to C(1, uo, w;*). Therefore

(1) C(1, u™, 2) U Clws™, mo, 2:) UCG™", 2) UC(L, o, z3)
U Clao, 2:) UC(L, ) UC(ze) =C(1, uy, 5*)

for k=1, 2. Since S;US,US; gives a fundamental domain for E,\R% by Prop. 2,
it follows from (10), (11), (12) and (18) that

C(1, wo, #5°) UCH, o, a5 UC(, uy) UC(, uz*) UC(, 2*) UC(1)

gives another fundamental domain for E.\R%. This union is clearly disjoint and it
coincides with the convex guadrangular cone @ given in the theorem. It is also
easy to see that 1, w,, uy * are linearly independent over R for each k=1, 2. This
completes the proof.

REMARK 5. Theorem 1 shows that the generators of the open simplicial cones,
whose union is a fundamental domain of R for E., can be chosen in E,N R®. This
is also true when F is of degree n<2.

REMARK 6. Hasse has shown in [3] how to calculate the fundamental units and
the class number of a given ecyclic cubic number field . M. -N. Gras has given in
[2] the table of them for a cyeclic cubic number field with the conductor m<<4000.
We easily get from the table the minimal polynomial of %, in Theorem 1.

§ 4. Relative class number

We keep the notation in the previous sections. Take and fixz a unit %, of F
which satisfies the condition of Theorem 1. Put ¢ and b as in (5). By Theorem 1,
we have

8
{14) Ri=U U uC; (disjoint),
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where
CIZC(ly Uy, uo—s), C2=C(1y Uo, uo—az),
CS-_"C(1’ uo), C4=C(1’ uf))y 05:0(1) ugz), CBZC(I)'7)

Let K be a totally imaginary quadratic extension over F. Let h and H be
the class numbers of F and K, respectively. We obtain a formula for the relative
class number H/h of the extension K/F by virtue of (14) and Theorem 2 of [B].
For the sake of simplicity, we assume here

(i) h=1, (i) (E:E,)=2% where E is the group of units of F.

Let o be the ring of integers of F, and b be the relative diseriminant of K/F.
Then, under our assumption, we can take a totally positive element ¢ of o such that
p=(9). Let y be the quadratic character of the group of the narrow ideal classes
of F with the conductor b which is associated to the quadratic extension K/F in
class field theory. Let o be the number of the roots of unity in K. We denote
by B,(X) the k-th Bernoulli polynomial. Put

b

EBz(X)+3Bl(X)B1(Y)+£Bz(Y) ,

FX, Y)= 5

and, for j=1, 2, put
GiX, Y, Z)=—2—{31(X)32(Y)+B1(Y)Bz(Z)+Bl(Z>Bz(X)}

+%{BZ(X)B1(Y) +By(Y) B\ Z)+ B{Z) B(X)}

+SBl(X)Bl(Y)B1(Z)+%tr(ugj_1>{B3(X)+B3(Y)+B3(Z)} .

Define the sets B; (j=1,2, ---, 6) by
Bi={(z, ¥, 2 € @*| 0<wm, y, 2<1, (wtyuptaug®)fco} (=L, 2),
Ris={x, y) € 0*| 0<z, y<1, (w+yui)0co} (j=0,1,2),
Ri=lzcQ|0<x<]1, zf€0}.

Then we have the following formula.
THEOREM 2. The assumption and the motation being as above, the {(relative)
class number of K (over F) is given by

Hzi{i Y yl@+yud)o) Fla, v)

24 |5=0=vi€R; 4

Y T glletyuetzus)o)Gsi, v, 2)—E3x(x0)Bl(x)}.

=1 (z,9,2)€R; z€Rg

7 We may replace C(1, u;sj) by C(1, ugj).
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Ezample. We give a numerical example, using the same notation as above.
Let F=Q(a), where a®~3a+1=0. Then 0=2[«], and the assumption of Theorem
2 is satisfied. Let s be the automorphism of F such that a*=—a’—a+2 and «*
=a’~2. The totally positive unit #,=2a%+3«—1 generates E, together with its
conjugates. It is easy to see that u;'=—a?—a-+4 and that

a=9, b=6, tru;~1)=30, tr(us™Y=21.

Let K=Q(), where ¢ is a primitive 9-th root of unity. Then K is a totally
imaginary quadratic extension over F, and the relative discriminant is given by
v=(6), where

6=2—a.
It is easy to see that
w=18
and
1+3+8
)= sgn'vl““ <'v , V€O,

where <§> is the Legendre Symbol. Evidently,
R;={1,1)} (j=3,4,5), Re={1}.
Since

(@+yuo+2us)0=y+22)a?+ (—x+y—82)a+ (2z+2),
(x+yuo+zuo‘“2)6=(y—z)a2+(y—z)a+(2x+4z) s

we see

me (£ (5 ) mm(( 82 8ot

where {(w) is the smallest positive number such that <wd>—we Z. Further,’ we obtain
that

(5 (oot ()0 )=-(5) ((Grgmrea)o)=(3)

Hence it follows from Theorem 2 that

w=H{EGE () (B0 1 )
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We note here that
G;i(X, Y, Z)=G,(Y, Z, X)=G;(Z, X, ), G;1-X,1-Y,1-Z)=—G;X, Y, Z),

for j=1, 2. Thus we have

3 1 4 7 1 1 1 1 1 1
H==. 4 =2 Ly R = = =
4{6Gl<9’ 9’ 9) 2G2<6’ 6’ 6>+2G2<3’ 3’ 3)}

Ble 1l 51,5 T
“4{6 2 25t 12}
-1

References

{1] Brumer, A., On the group of units of an absolutely cyclic number field of prime degree,
J. Math. Soe. Japan 21 (1969), 357-358.

[2] Gras, M.-N., Méthodes et algorithmes pour le calcul numériques du nombre de classes
et des unités des extensions cubiques eycliques de @, J. reine angew. Math. 277 (1975),
89-116.

{81 Hasse, H., Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen
kubischen und biquadratischen Zahlkd8rpern, Abh. Deutsch. Akad. Wiss. Berlin, Math.
-Nat. K1. Nr. 2 (1950), 3-95 (Mathematische Abhandlungen Bd. 3, 289-379).

[4] Hecke, E., Bestimmung der Klassenzahl einer neuen Reihe von algebraischen Zahl-
korpern, Nachr. K. Gesellschaft Wiss. Gottingen, Math.-Phys. KI. (1921), 1-23 (Mathe-
matische Werke, 290-312).

{5] Shintani, T., On evaluation of zeta functions of totally real algebraic number fields
at non-positive integers, J. Fae. Sci. Univ. Tokyo Sec. IA 23 (1976), 393-417.

(Received February 12, 1977)

Department of Mathematics
Faculty of Science

Tokyo Metropolitan University
2-1-1 Fukazawa, Setagaya-ku
Tokyo

158 Japan



