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Introduction

Let £ be a finite set consisting of more than one element. We denote by
T(£2) the semigroup of all mappings f: 2—8 such that f(Q)E 2. As it is well-
known (and also as we shall see in Theorem 1 below), the semigroup T(2) is
generated by the elements 7j, where y7 maps x to ¥ and all other elements z
of 2 to z. The purpose of this note is to determine the smallest length I{(f)
of the expressions of f=T(£2) as a product of the 7. Our main result is Theo-
rem 2 given in § 2 which says that

(N=121+1€:1—1F]

where |X| means the cardinality of a set X, F={xe2|/(x)=x} and €; is
the family of all minimal f-invariant subset Y such that f(¥Y)=Y (to be defined
in §1).

We would like to acknowledge that the original version of the present note
was greatly simplified by suggestions of the referee. We express our gratitude
to the referee for these simplifications.

§1. The semigroup T ()

Let £ be a finite set consisting of more than one element. We denote by
T(£) the semigroup consisting of all mappings f: 2 — £ such that f() & 2.
Let x€82, y=&, x+y. Then we define a mapping 77: 2 — 2 as follows:

¥, it z=x,
ﬁ(z):{ _

z, if z#x.
Then y3€T(8), since [r3(8)[=182]—1. It is well-known that the elements 7J
generate the semigroup T(£2). (This will be also seen in the proof of Theorem
1 below.)

Now let us introduce several notations. Let f=T(2). A non-empty subset

X of £ is called to be f-invariant if f{X)=X. An f-invariant subset X is called
to be minimal if X contains no f-invariant subset other than X. We denote by
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M, the family of all minimal f-invariant subsets of £2.
Let XeW,. We associate subsets A;=A4;(X) of £ to X as follows:

A={ye@-X)f(y) e X}
Ai={ye 21N A}, 1=23, .

Then fIANC X, f(A)YCT A, . Let 2(X) be the union X\VA,UA,U -, ltis
obvious that f{2(X)C 2(X). We note that £ is partitioned into subsets 2(X),
XeM,:
Q= U 2(X).
XE‘}Rf

In fact, it is easy to see that 2(X)N\2Y )= for X, YW, X+Y. Now
let x= 2. Then the sequence x, f(x), f3(x), -~ must contain two terms of the
form f*(x), f'(x) such that k<, f¥(x)=r4x). Then Y={f¥x), f¥*(x), ---, 71 (x)}
satisfles /(Y )=Y. Thus Y should contain a minimal f-invariant subset X. Then
we get x€2(X). Hence £ is a union of the subsets 2(X), XeW,.

We now define a subfamily €; of M;. A minimal f-invariant subset X is
called to be pure if | X|>2 and 2X)=X (ie. |X|>2, A(X)=0, i=1,2, ).
We denote by €, the family consisting of all pure minimal f-invariant subsets.

Finally we denote by %, the subset of £ consisting of all f-fixed points:

Fr={xe L f()=x}.
We are ready to give the following:

THEOREM 1. Let feT(Q). Then f can be expressed as a product of the
elements y% of length |21 —(Fr1+16,].

ProoF. We divide the proof into several cases. We put u(f)=82]—|%,]|
+16,| for the sake of convenience.

Case 1. The case €, @ .

Note that Wi;#€; (Otherwise f becomes bijective on £.) Take Xe
M, —~C;, Ye€;. Then AX)—A2)#@. Choose x=2(X)—f(2) and y=V arbi-
trarily. Put f{y)=z. Then z=Y, z+y since Y€, Now construct an element
g=T(2) as follows:

glu)=

{ flw), if uzy,

x, it u=y.
Then g(2)®z Hence g=T(2). Furthermore
f=rrg.

In fact, if u=y, 7I-guwy=y7 Aw)=Fw), since x=f(2). Also yig(nN=ri(x)=z
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=f().

It is easily verified that §,=%F, and that €,=€—{Y}. Thus [€,]|=|6,]
—1 and we have f=yf-g and u(g)=p(f)—1. Therefore the proof will be com-
plete if we can show Theorem 1 for the element g=T(£). Repeating in this
manner, the proof of Theorem 1 is reduced to the case €,=@.

Case 2. The case €,=@.

Let f€eT(2), C;=@. Then for every XeWi;, we have either A, (X)+ @ or
[ X|=[2(X){=1. Let W be the union of X9t such that | X|=[2(X)| =1
Assume that Theorem 1 is true for the restriction flg,, where 2,=8—W. Then
Jlg, can be expressed as a product of the 72 of length |2,] —|®| where &=
{z= 2,1 f(z)=%2}. Theorem 1 is then true for f since the expression Jlg, above
also can be used as an expression of f and |2,|— |Fo|=[2]|—|W|—|F|=]|2]
—IFsl. Now g=flg, satisfies €,=@ and A,(Y)#@ for every Y,

Thus in order to prove Theorem 1, for feT(£2) we may and shall assume
that €;,=¢ and that A,(X)# @ for every XM, Hence fIA(X)EAX). So
the restriction f|gcx, belongs to T(2(X)) for every X<, Now assume that
Theorem 1 is true for each flgy,. Then flgwr, can be expressed as a product
of the 7§ of length |£2(X)] or [£2(X)]|—1 respectively, according to |X|>1 or
[X|=1. Putting these expressions together, one obtains an expression of f as
a product of the 77 of length |2|—|F;].

Thus the proof of Theorem 1 is reduced to the following.

Case 3. The case 2=02(X) for some XN,

Let us prove this case by induction on [£2]=|2(X)|. We first consider
the case where [2(X)|>[X|+1. Take an element xeQ2(X)—f(£2(X)) and put
f(x)=y. Define g as follows:

Jluy, if ustx,
g =

X, if u=x.
Then £2,=8—{x} is stable under g. Furthermore using [2(X)] > |X|+1, it is
easy to verify that gIQOET(.QO), f=rig. Also one can check that h=g|g, sat-
isfies |Fnl=1%sl, €,=@. Since |2,]=[£2[—1, Theorem 1 is true for & by our
induction-assumption. Then, Theorem 1 is also true for f=y3-g.

Thus we have to consider the case where |2(X)|=|X|+1. Then we may
assume that

X=1{1,2,-,n—1}
and that

f@=i+1, (=12 ,n—2)
fni—1)=1, fnm)=n—1.
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If |X|=1, then n=2 and f=y}. So Theorem 1 is true in this case. Now sup-
pose |X|>1. Then we have

F=raari™rh e

So Theorem 1 is true also in this case. This completes the proof of Theorem 1.

§2. The length formula

Let feT(2). We denote by I(f) the smallest length of the expressions of
f as a product of the yI. Then by Theorem 1 we have

(N<1L1—1FA+16,].

We shall prove now the reverse inequality to get Theorem 2 below.

Let ‘7:(7’;’;, 7]’.'::1, <o, 1) be a sequence of length % consisting of the 7f.
We call such a sequence a y-sequence of length %, and write 2=[(¢s). We denote
by I', the set of integers 1,2, ---, (o).

Now for a y-sequence Oz(r;i’; "‘;T;;) and a point x< £, we associate a
sequence X, xy, ---, X, (k=Il{¢)) of length k--1 of points x,€2 as follows:

xO:‘xr xp:T;.g(xp—l)y p:1; 2"“:}2-

We denote by (x; o) the sequence x,, x;, ---, x;,. Furthermore we define a subset
I'J(x) of I'; as follows:

I/ =pelx,+x,.}.

Thus, by definition of the x,, v belongs to I,(x) if and only if 7i(x,.)#x,_,,
i.e. if and only if i,=x,_,, j,=x,.

LEMMA 1. Let xe, ye, x+y, f€T(Q). I there exists a minimal f-
invariant subset X such that xe X, Q(X)=X, then for every y-sequence o=
(738, -, 77 satisfying f:yj’;--- 7H we have

F)nT'd»)=0.
Proor. Suppose I'(x) I ',(¥) contains an element v. Put
(x; 0)={(xq, Xy, -+, Xp)
(35 0)= (30, ¥1, =, V&) -
Then since x,.;#x, and y,.,%#Y,, we have x,_,=i,=y,_,. Then
JE =i ri0=rl o rix-)

=7 7RG =1 7RO = F(9).
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Hence f(y)e X. However, 2(X)=X implies y= X. Then, since f induces a
bijection on X, f(x)=f(y) implies x=y, which is impossible, q.e.d.

LEMMA 2. Let x€Q, feT(2) and let o=(yit, -, 11) be a y-sequence satisfy-
ing f=yje- . Then,

() if fx)+x, then Ty(x) =@

(i) for every XMy, with X X)=X, | X|>2 there exists a point ye X such
that | )(%)]>2.

ProoF. (i) If ['s(x)=0), then (x; 0)=(x,, Xy, -+, x,) satisfies x,=x,= -+ =x,.
Hence x=/(x) which is impossible.

(i) If yeX, [I'W(3)]#0 by (i). Suppose [I,(y)|=1 for every ye X. Put
X=Azy, -, 25}, f@)=24, (=1, -, D)y Zpai=z. Let I (z)={v;}, i=1,-,p.
Then the sequence (2;; 0)=(2,,, 25,1, "+ , 25,) satisfles z;=2z;,= - =24y F B
= =2,=f(z;). Hence i,;=2;, j,,=f(2;) =211 2y, -, it —1{i,;}. We see
that v, >v,. In fact, suppose v; <v,, then (z;, o) should have the form (z,, --- s
Zy, 23, vty 2, 25, 7, Z) Which contradicts [[7,(z;)[=1. Similarly one has v,>v,>
=+ >v,. Hence v, >y, If vy=v,, f(20)=f(z,) (:j,lzj,,p) which implies z, =z,
p=1 a contradiction. Hence v;>v,. Then (z,; o) should have the form
(Zps s Zpy 21, **+ 5 21, %y, **+, Z5) which contradicts |I7,(z,){=1, g.e.d.

LEMMA 3. Let feT(Q), f=7% 7% Then b>{2]4 6,1 —|F,] .
PrROOF. Let o=(yj, -+, r%). Let us consider the set [’ :XUQFa(x) of I',=
S

{1,2,---,k}. Let €={X, -, Xys}. Then by Lemma 1, I" is a disjoint union of

I'= \dJ U I'y(x) and I',= Kgff,,(z)u Uﬂf’o(y)
z2E yeL!

i=1 TEX;
d
where Q’:Q—gXi~%f. Hence k= |I,| > |I'|=|I"\|+|I;]. Furthermore,
(L= é( gy_[’g(x)[ by Lemma 1. Also by Lemma 2.
ng,_]_’cr(x)l > 141X,

Hence |F12>élXi[+d.

On the other hand,
1Te>1 Y Lol -

Now there is an injective map ¢: 2/ — Ug I';(3). 1In fact, for y= £’, one has
ye g’

J(3)#y. Hence [ ,(¥)= @. Let e be the smallest element in (3. Then, i,=
y. Define ¢: 2/ — K{Qra(y) by
yeR
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d(»)=e=min. in (3.

Then, i.=y shows that ¢ is injective. Thus | Ug TA»|>12]. Hence
yeg

1> 121=121— 18— 21X

Therefore we get 2> ||+, > 1 2{+d— %], q.ed
We have thus proved the following:
THEOREM 2. Let feT(2). Then I(f) is given by {f)=12|+ €] — I/
where §,={XeM,||X|>2, AX)=X}, F,={x€l|f(x)=x}.
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