On a characterization of a class of functions defined on the space of positive definite matrices

Dedicated to Professor Shigeru Furuya on his 60th birthday

By Nagayoshi Iwahori

Introduction.

It is pointed out in Kimura [1] that a test-function defined on the set of variance-covariance matrices is of use only when the result of comparisons by the function values are independent of the observation-coordinate-system. In [1] it is claimed that such a function should be a function of the determinant of the matrix under several strong conditions on the function. The content of [1] were reported in a conference at Hiroshima University, 1971. Attending Kimura's talk at this conference, I have given several remarks to clarify the formulation of the main statement and to strengthen the result as was given in this note. I wish to record here the content of my short reporting talk in that conference.

In our formulation, the problem is to characterize the equivalence class of the determinant function Δ defined on the space X_n of all positive definite symmetric matrices of degree n, in the sense of the following equivalence \sim of functions $f: X_n \to R$, $g: X_n \to R$, namely, $f \sim g$ means that for $x, y \in X$, (i) f(x) > f(y) if and only if g(x) > g(y) and (ii) f(x) = f(y) if and only if g(x) = g(y).

Our main result is that the class of Δ is characterized by the following two properties: (1) The class is stable under the action of $GL(n, \mathbf{R})$: the action being naturally induced by that of $GL(n, \mathbf{R})$ on $X_n: a \rightarrow \sigma a^t \sigma$, $a \in X_n$, $\sigma \in GL(n, \mathbf{R})$, (2) no function f in the class attains its minimum on X_n ; but f satisfies

$$\lim_{x\to 0} f(x) = \inf_{x\in X_n} f(x) .$$

§ 1.

Let X be a Hausdorff space. We denote by \mathbb{R}^{X} the set of all real-valued functions defined on X. Let $f \in \mathbb{R}^{X}$, $g \in \mathbb{R}^{X}$. We say that f is equivalent to g (in notation $f \sim g$), if the following conditions (i), (ii) are satisfied:

- (i) for any $x, y \in X$, f(x) = f(y) if and only if g(x) = g(y)
- (ii) for any $x, y \in X$, f(x) > f(y) if and only if g(x) > g(y).

It is then easy to see that \sim is an equivalence relation. We note that $f \sim \exp(f)$. Thus every equivalence class contains a function g such that g(x) > 0 for every

 $x \in X$.

Now let X_n be the space of all positive definite real symmetric matrices of degree n. Let us denote by Δ the determinant function on $X: \Delta(a) = \det(a)$, $a \in X_n$. The general linear group $G_n = GL(n, \mathbf{R})$ acts on X in the usual manner: for $\sigma \in G_n$, $x \in X_n$, $x^{\sigma} = {}^t \sigma \cdot x \cdot \sigma$, ${}^t \sigma$ being the transposed of σ . Thus G acts also on \mathbf{R}^{X_n} as follows: for $\sigma \in G_n$, $f \in \mathbf{R}^{X_n}$, $f_{\sigma}(x) = f(x^{\sigma})$.

We denote by $M_n(\mathbf{R})$ the linear space of all real matrices of degree n. Then $X_n \subset M_n(\mathbf{R})$ and the zero matrix 0 belongs to the closure \overline{X}_n of X_n in $M_n(\mathbf{R})$. Hence we can talk about the existence of

$$\lim_{x\to 0} f(x)$$

for $f \in \mathbb{R}^{X_n}$.

THEOREM. Let $f \in \mathbb{R}^{X_n}$. Suppose that f(x) > 0 for every $x \in X_n$. Then $f \sim \Delta$ if and only if the following conditions I, II are satisfied.

- I. $f \sim f_{\sigma}$ for any $\sigma \in GL(n, \mathbb{R})$.
- II. Let $m = \inf_{x \in X_n} f(x)$. Then f(x) > m for every $x \in X_n$. Furthermore $\lim_{x \to 0} f(x)$ exists and is equal to m.

PROOF. Necessity of I, II. Suppose $f \sim \Delta$. Then f(x) > f(y) implies $\Delta(x) > \Delta(y)$. Hence $\Delta(f \circ x \circ x) > \Delta(f \circ y \circ x)$ for every $\sigma \in G_n$. Then $f(f \circ x \circ x) > f(f \circ y \circ x)$ i. e. $f_{\sigma}(x) > f_{\sigma}(y)$. Similarly f(x) = f(y) implies $f_{\sigma}(x) = f_{\sigma}(y)$. Thus we get $f \sim f_{\sigma}$. Suppose now that there exists a point $x \in X_n$ such that f(x) = m. Then $\Delta(f = x) < \Delta(x)$ implies f(f = x) < f(x) = m, which is impossible. Hence we have f(x) > m for every f(x) = m does not hold. Then there exists a positive number f(x) = m does not hold.

Sufficiency of I, II. Suppose now f satisfies I and II. We begin with the following

LEMMA 1. Define a subgroup H of $GL(n, \mathbf{R})$ by

$$H = \{ \sigma \in GL(n, \mathbf{R}) \mid f = f_{\sigma} \}$$
.

Then every element of finite order in $GL(n, \mathbf{R})$ is contained in H.

PROOF. Suppose $\sigma \in GL(n, \mathbf{R})$, $\sigma \in H$. Then $f \neq f_{\sigma}$ implies the existence of a point $x_0 \in X$ such that $f(x_0) \neq f_{\sigma}(x_0)$. Suppose for example that $f(x_0) < f_{\sigma}(x_0) = f({}^t \sigma x_0 \sigma)$. Then $f \sim f_{\sigma}$ implies $f_{\sigma}(x_0) < f_{\sigma}({}^t \sigma x_0 \sigma)$, i.e. $f({}^t \sigma x_0 \sigma) < f({}^t \sigma^2 x_0 \sigma^2)$, which in

turn implies $f_{\sigma}({}^t\sigma x_0\sigma) < f_{\sigma}({}^t\sigma^2 x_0\sigma^2)$, i.e. $f({}^t\sigma^2 x_0\sigma^2) < f({}^t\sigma^3 x_0\sigma^3)$, and so on. Thus we get an infinite sequence

$$f(x_0) < f({}^t\sigma x_0\sigma) < f({}^t\sigma^2 x_0\sigma^2) < \cdots$$

However this implies that the order of σ can not be finite, q.e.d.

Now let us denote by F the subgroup of $GL(n, \mathbf{R})$ generated by all elements of finite order in $GL(n, \mathbf{R})$. Then F is a normal subgroup of $GL(n, \mathbf{R})$; furthermore $F \subset H$ by Lemma 1. $F \cap SL(n, \mathbf{R})$ is a normal subgroup of $SL(n, \mathbf{R})$. Now let us quote the following well-known classical result:

LEMMA 2. Suppose $n \ge 2$. Then the normal subgroups of $SL(n, \mathbf{R})$ are

$$SL(n, \mathbf{R})$$
, $\{1\}$, $\{1, -1\}$.

 $(\{1, -1\})$ is the case only when n is even.)

See, e.g. [2] for the proof.

Now the subgroup $F \cap SL(n, \mathbb{R})$ can not coincide with $\{1\}$ or with $\{1, -1\}$ if n > 1, since

is in $F \cap SL(n, \mathbf{R})$. Hence $F \cap SL(n, \mathbf{R}) = SL(n, \mathbf{R})$, i.e. $F \supset SL(n, \mathbf{R})$. This is also true for n=1.

Now consider the subgroup

$$SL^{\pm}(n, \mathbf{R}) = \{ \sigma \in GL(n, \mathbf{R}) \mid \det(\sigma) = \pm 1 \}$$

of $GL(n, \mathbf{R})$. Since $SL^{\pm}(n, \mathbf{R})$ is generated by $SL(n, \mathbf{R})$ and an element

$$\begin{bmatrix}
1 & & & & \\
& \ddots & & & \\
& & 1 & & \\
\hline
& 0 & & -1
\end{bmatrix}$$

in F, we have $SL^{\pm}(n, \mathbf{R}) \subset F$.

Let now $a \in GL(n, \mathbb{R})$ be of finite order. Then $\Delta(a)$ is real and is a root of

unity. Hence $\Delta(a) = \pm 1$. Hence $a \in SL^{\pm}(n, \mathbf{R})$. Therefore $F \subset SL^{\pm}(n, \mathbf{R})$. Thus we have shown that $F = SL^{\pm}(n, \mathbf{R})$. Since $F \subset H$ by Lemma 1, we have proved the following.

LEMMA 3.
$$SL^{\pm}(n, \mathbf{R}) \subset H$$
.

We now proceed to show $f \sim \Delta$.

LEMMA 4. Let
$$x_0 \in X_n$$
, $y_0 \in X_n$. Suppose $\Delta(x_0) = \Delta(y_0)$. Then $f(x_0) = f(y_0)$.

PROOF. As is well-known, $GL(n, \mathbf{R})$ acts transitively on X_n . So there exists an element $\sigma_0 \in GL(n, \mathbf{R})$ such that ${}^t\sigma_0x_0\sigma_0 = y_0$. Taking determinants of both sides, we see $\Delta(\sigma_0) = \pm 1$, using $\Delta(x_0) = \Delta(y_0)$. Hence $\sigma_0 \in SL^{\pm}(n, \mathbf{R}) = F \subset H$, i. e. $f = f_{\sigma_0}$. Hence $f({}^t\sigma_0x_0\sigma_0) = f(x_0)$, i. e. $f(x_0) = f(y_0)$, q. e. d.

LEMMA 5. Let
$$x_0 \in X_n$$
, $y_0 \in X_n$. Suppose $\Delta(x_0) > \Delta(y_0)$. Then $f(x_0) > f(y_0)$.

PROOF. Take an element $\sigma_0 \in GL(n, \mathbf{R})$ such that ${}^t\sigma_0 x_0 \sigma_0 = y_0$. Then $\Delta(x_0) > \Delta(y_0)$ implies $\Delta(\sigma_0)^2 < 1$. Choose $\rho \in \mathbf{R}$ such that $0 < \rho < 1$, $\Delta(\sigma_0)^2 = \rho^2$ and put $\tau = \rho^{2/n}$. Then $0 < \tau < 1$ and $\Delta(\tau x_0) = \tau^n \Delta(x_0) = \rho^2 \Delta(x_0) = \Delta(y_0)$. Hence we get $f(\tau x_0) = f(y_0)$ by Lemma 4. Now suppose that $f(x_0) \le f(y_0)$. Then $f(x_0) \le f(\tau x_0)$. Put $\tau_0 = \sqrt{\tau}$ I. Then $\tau x_0 = {}^t\tau_0 x_0 \tau_0$. Now $f(x_0) \le f(\tau x_0)$ and $f \sim f_{\tau_0}$ imply $f_{\tau_0}(x_0) \le f_{\tau_0}(\tau x_0)$, i.e. $f({}^t\tau_0 x_0 \tau_0) \le f({}^t\tau_0 x_0 \tau_0)$, i.e. $f(\tau x_0) \le f(\tau^2 x_0)$, which in turn implies $f(\tau^2 x_0) \le f(\tau^3 x_0)$ and so on. Thus we get an infinite sequence

$$f(x_0) \leq f(\tau x_0) \leq f(\tau^2 x_0) \leq \cdots$$

Since $\lim \tau^{\nu} x = 0$, we must have $\lim_{\nu \to \infty} f(\tau^{\nu} x) = m = \inf_{x \in X_n} f(x)$ by the condition II. Hence we get $f(x_0) \leq m$. However then we have $f(x_0) = m$, contrary to the validity of II, q.e.d.

The proof of Theorem is now complete by Lemmas 4 and 5.

Added in proof. The referee has pointed out that the equality $SL^{\pm}(n, \mathbf{R})$ = F can be shown without having recourse to [2]. Namely using the elementary facts that (i) $SL(n, \mathbf{R})$ is generated by the conjugates of the element

and (ii) $\begin{pmatrix} -1 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$, it is easy to show that $SL^{\pm}(n,\mathbf{R}) \subset F$. The

converse inclusion is obvious.

I agree with the referee's opinion and I express my gratitude to the referee. But I would like to keep the present proof, since it seems to me plausible that there exist analogous facts (as stated in the theorem) for each irreducible symmetric Riemannian manifold M=G/K of noncompact type associated with a real simple Lie group G of normal type (i. e. of Chevalley type) and a maximal compact subgroup K of G. In establishing analogous facts for this case, probably one would have recourse to the simplicity of the factor group G/Z, where Z is the center of G.

References

- [1] Kimura, Takeo, On the best observation-coordinate-system, J. Japan Statist. Soc., 2 (1971), 19-26 (in Japanese).
- [2] Chevalley, C., Sur certain groupes simples, Tôhoku Math. J., 7 (1955), 14-66.

(Received December 13, 1976)

Department of Mathematics Faculty of Science University of Tokyo Hongo, Tokyo 113 Japan