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Introduction.

It is pointed out in Kimura [1] that a test-function defined on the set of
variance-covariance matrices is of use only when the result of comparisons by
the function values are independent of the observation-coordinate-system. In [1]
it is claimed that such a function should be a function of the determinant of
the matrix under several strong conditions on the function. The content of
[17 were reported in a conference at Hiroshima University, 1971. Attending
Kimura's talk at this conference, I have given several remarks to clarify the
formulation of the main statement and to strengthen the result as was given
in this note. I wish to record here the content of my short reporting talk in
that conference.

In our formulation, the prohlem is to characterize the equivalence class of
the determinant function 4 defined on the space X, of all positive definite
symmetric matrices of degree 7, in the sense of the following equivalence ~ of
functions f: X, — R, g: X, — R, namely, f~g means that for x,ye X, (i) f(x)
>f(y) if and only if g(x)>g(y) and (i) f(x)=s(») if and only if g(x)=g(y).

Qur main result is that the class of 4 is characterized by the following two
properties: (1) The class is stable under the action of GL(n, R): the action
being naturally induced by that of GL(n, R) on X,,: a—oa's,as X, 6 GL(n, R),
(2) no function f in the class attains its minimum on X, ; but f satisfies

fim (3= inf £(5).
§ 1.

Let X be a Hausdorff space. We denote by R¥ the set of all real-valued
functions defined on X. Let feR*, geR¥. We say that f is equivalent to g
(in notation f~g), if the following conditions (i), (ii) are satisfied:

(i) for any x,veX, f(x)=f(y) if and only if g(x)=g(y)

(ii) for any x,y=X, flx)>f(y) if and only if g(x)>g(¥).

It is then easy to see that ~ is an equivalence relation. We note that f~exp(f).
Thus every equivalence class contains a function g such that g(x)>0 for every
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xeX.

Now let X, be the space of all positive definite real symmetric matrices of
degree n. Let us denote by 4 the determinant function on X: 4(a)=det (a),
asX,. The general linear group G,=GL(n, R) acts on X in the usual manner:
for 6€G,, xe X,, x°="0-x-0, 'o being the transposed of ¢. Thus G acts also
on R*» as follows: for o€G,, feR*, f,(x)=f(x°.

We denote by M,(R) the linear space of all real matrices of degree n.
Then X,CM,(R) and the zero matrix 0 belongs to the closure X, of X, in
M,(R). Hence we can talk about the existence of

lim f(x)

z—0

for fe RX»,

THEOREM. Let f= R*», Suppose that f(x) >0 for every xe X,. Then f~d
if and only if the following conditions 1, Il are satisfied.

I. f~Jf, for any o=GL(n, R).

II. Let m::}é]g f(x). Then f(x)>m for every x= X,. Furthermore lim f(x)

=0

exists and is equal to m.

PROOF. Necessity of 1, 1. Suppose f~4d. Then f(x)> f(») implies 4(x)>
4(v). Hence 4(*oxo)>4(ays) for every o€G,. Then f(Poxo)>f(taye) i e. fi(x)
>fo{y). Similarly f(x)=f(y) implies f,(x)=/,(»). Thus we get f~f,. Suppose

now that there exists a point x=X, such that f(x)=m. Then A(—%—x><d(x)
implies m= f(—é—x)< f(x)=m, which is impossible. Hence we have f(x)>m for
every x< X,. Finally assume that ling J(x)=m does not hold. Then there exists

a positive number ¢, and a sequence xy, x,, --- of points in X, such that limx,
=0 and f{x,)=m-+e, (v=1,2,---). Take a point a= X, which satisfies f(a)<
m+e,. Now lim x,=0 implies lim 4(x,)=0. Hence 4(x,) < 4(a) for sufficiently
large k: therefore f(x,)<f(a)<m-+e, which is impossible.

Sufficiency of 1, II. Suppose now f satisfies I and II. We bsgin with the
following

LEMMA 1. Define a subgroup H of GL(n, R) by
H={ceGL(n, R)|f=1.
Then every element of finite order in GL(n, R) is contained in H.

Proor. Suppose 6 € GL(n, R), o0& H. Then f+f, implies the existence of
a point x,= X such that f(x,)#/s{(x,). Suppose for example that f(x,) < fo(x,) =
fCox,0). Then f~f, implies fo(x,) < follox,0), 1. e. f(lox,0) < f(*ax,0%), which in
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turn implies f,(‘ox,0)<f,('o°x,0%), i.e. f('o*x,0%)< f(*0°x,0°), and so on. Thus we
get an infinite sequence

J(xe) < flox,0) < f(Pa"x,0%) < -+
However this implies that the order of ¢ can not be finite, g.e.d.

Now let us denote by F the subgroup of GL(n, R) generated by all elements
of finite order in GL(n, R). Then F is a normal subgroup of GL(n, R); fur-
thermore FC H by Lemma 1. F\SL(n, R) is a normal subgroup of SL(n, R).
Now let us quote the following well-known classical result:

LEMMA 2. Suppose n=2. Then the normal subgroups of SL(n, R) are
SL{n, R), {1}, {1, —1}.
({1, —1} is the case only when n is even.)
See, e.g. [2] for the proof.

Now the subgroup FNSL(n, R) can not coincide with {1} or with {1, —1}
if n>1, since
01

-1 0

1

is in FASL(n, R). Hence FN\SL(n, R)=SL(n, R), i.e. FDOSL(n, R). This is also
true for n=1.
Now consider the subgroup

SL*(n, R)={oc=GL(n, R)|det (6)==1}

of GL{(n, R). Since SL*(n, R) is generated by SL(n, R) and an element

in F, we have SL*(n, R)CF.
Let now a=GL(n, R) be of finite order. Then 4(a) is real and is a root of
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unity. Hence 4(a)==+1. Hence a=SL*(n, R). Therefore FCSL*(n, R). Thus
we have shown that F=SL*(n, R). Since FCH by Lemma 1, we have proved
the following.

LEMMA 3. SL*(n, R)CH .
We now proceed to show f~4.
LEMMA 4. Let x,&X,, vo=X,. Suppose Ad(xe)=4(y,). Then f(x)=Ff(¥o).

PrROOF. As is well-known, GL(n, R) acts transitively on X,. So there exists
an element ¢, GL(n, R) such that ‘o.x,0,=23,. Taking determinants of both
sides, we see 4(o,)==+1, using 4(x,)=4(y,). Hence o, SL*(n, R)=FCH, i.e.
f=fs Hence flox,00)=Ff(x), i.e. f(x)=S(30), q.e.d

LEMMA 5. Let x,€X,, o= X, Suppose 4(x)>4(y,). Then f(x0)> f(3o).

PrROOF. Take an element ¢, < GL(n, R) such that ‘6,x,0,=y, Then 4(x;)
>A4(y,) implies 4(0,)?<1. Choose p=R such that 0<p<1, 4(g,)*=p" and put
z=p*". Then 0<z<1 and Mex)y=1"d(x)=pd(x)=4(y,). Hence we get f(rx,)
=f(y,) by Lemma 4. Now suppose that f(x,) = f(¥,). Then f(x,)=f(rx,). Put
7,=~/7 . Then tx,="7,%,7o. Now f(x)=f(rx,) and fr~fey imply fry(%0) = fri(0),
e, fllrox,To) < f(troTxoT,), 1.6 f(Tx) = f(z*x,), which in turn implies f(z%x,) = f(v7%,)
and so on. Thus we get an infinite sequence

)= flexg) = (T x) = -

Since lim*x=0, we must have lim f(z’x)=m= ir%c f(x) by the condition IL

oo

Hence we get f(x,)=m. However then we have f(x,)=m, contrary to the vali-

dity of II, q.e.d.
The proof of Theorem is now complete by Lemmas 4 and 5.

Added in proof. The referee has pointed out that the equality SL*(n, R)
=F can be shown without having recourse to [2]. Namely using the elementary
facts that (1) SL(n, R) is generated by the conjugates of the element

1

and (ii) <:% (1)><(1) _(1)):<(1) % , it is easy to show that SL*(n, R)CF. The
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converse inclusion is obvious.

[ agree with the referee’s opinion and I express my gratitude to the referee.
But I would like to keep the present proof, since it seems to me plausible that
there exist analogous facts (as stated in the theorem) for each irreducible sym-
metric Riemannian manifold M=G/K of noncompact type associated with a real
simple Lie group G of normal type (i.e. of Chevalley type) and a maximal
compact subgroup K of G. In establishing analogous facts for this case, prob-
ably one would have recourse to the simplicity of the factor group G/Z, where
7 is the center of G.
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