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In our former paper [ 1], we studied about two of the typical methods for
dealing with logics, that is, the axiomatic method and the algebraic method. In
this paper, we coatinue the study of those methods.

Ag before, our main interest is in the intermediate propositional logics be-
tween the classical and the intuitionistic.

Since the time of the publication of [1], the study of intermediate logics
has seen a rapid progress in many respects. Many particular logics have been
examined in detail and many particularities concerning the whole system of the
intermediate logics have been disclosed by degrees. (Cf. e.g., Hosoi and Ono
[4].) During these studies, many logics have been defined axiomatically or alge-
braically. But, to our regret, not €0 many results concerning the relationship
between those two methods have been obtained vyet.

In the study of intermediate logics, it often comes out to be desirable to
have at hand a simple characteristic model for an axiomatically defined logic
or conversely an axiomatic system for an algebraically defined logic. In 17,
we succeeded to show constructively that a logic is finitely axiomatizable if it
is defined by a finite model. But then we did not obtain a practical way of
axiomatizing a logic defined by an infinite model.

In the meantime, Jankov [6] proved that there really exist logics that
cannot be finitely axiomatized. This suggested a hard situation of axiomatizing
a presumably finitely axiomatizable logic with an infinite model.

On the other hand, Hosoi and Ono [3] tried to axiomatize some examples
of infinite models and obtained some results. It should be noticed here that,
though those axiomatizations did not have an immediate application that time,
they proved to be useful as tools when a finer classification of intermediate
logics was carried out by Hosoi and Shundo [5].

In this paper, we try again to axiomatize some of intermediate logics defined
by infinite models. In this respect, this paper can be regarded as a continua-
tion of Hosoi and Ono [3].

Further, we also try to give a characteristic model for an axiomatically
defined logic given in Nishimura [9].
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Again, our results might not have an immediate application. But these
results were obtained as byproducts when we worked for [5]. So, they will
have some applications in future as those of [3].

§1. Preliminaries.

Though this paper is a continuation of [1], we do not suppose familiarity
with it. Rather, we refer to our Survey [4] for those notations and definitions
not mentioned explicitly here.

We use lower case Latin letters q, b, ¢ (possibly with suffixes) for proposi-
tional variables. We use four logical connectives D (implication), A (conjunction),
V (disjunction) and 7 (regation).

Well-formed formulas (wffs) are constructed as usual and they will be ex-
pressed by upper case Latin letters (possibly with suffixes), sometimes with
argument places which show the propositional variables used in them.

Parentheses are often omitted by assuming the convention that 7 binds
stronger than the other connectives and that A and Vv bind stronger than D.

Conjunction and disjunction are also used in the forms /> and \{

As for models, we treat only pseudo-Boolean models, that is, relatively
pseudo-complemented lattices with the maximum and the minimum elements.
The minimum element, which we denote as 1, will be regarded as the (sole)
designated element of the model. The maximum element will be often ex-
pressed by w.

Elements of a model will be called as values. We use the letters u,v, w, x
(possibly with suffixes) for variables whose range is the set of values of the
relevant model.

The order relation in a mode! is expressed by = or =.

The four operations in a model, which correspond with the four logical
connectives, will be expressed by the same symbols, that is, the operation cor-
responding with the implication will be expressed by 2, and so on.

By a logic, we mean an intermediate propositional logic which is a set of
wifs closed with respect to Modus Ponens and substitution for propositional
variables, containing all the intuitionistically provable formulas and included in
the set of the classically provable formulas. By L, we mean the intuitionistic
propositional logic.

Let A, -+, A, be wifs. By L+ A,+ -+ +4,;, we mean the logic obtained
from L by adding A, -, 4, as axiom schemata.

A model M determines a set of wifs valid in M. That set is known to be
a logic in our sense, and that logic will be again expressed by Al since there
might occur no confusions.
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Let # be a value of some model and M be a model. Then u& M means
that u is a value belonging to the model M. Let A be a wif. Then AeM
means that A belongs to the logic M, that is, A is valid in the model M.

Let M and N be two logics. By M2 N, we mean, as usual, that the ele-
ments of N all belong to M. MANN is the intersection of M and N, which is
again a logic. Expressions as [i\Mi will be also used.

The Cartesian products of models are constructed as usual and the expres-
sions as M, X - XM, or M* will be used where M,, -+, M, and M are models.
M® means the Cartesian product of a countably infinite number of BM’s.

It is well known that the logic determined by MXN coincides with MNN.

Tor models M and N, M1 N means a model obtained by identifying the
maximum element of M and the minimum element of N. To be precise, let us
take the sets of values of M and N to be disjoint and identify the above-men-
tioned two values and define the order relation = in M1 N as follows:

uzv if and only if (1) ueM and veM and u=v in M,
or (2) ue N and ve N and u=v in N,
or (8) ueN and veM.

DEFINITION L1, Let x be a value of a model. If, for any value u of the
model, we have ¥*=u or x=u, x is called as a neck of the model.

The values 1, o, and the identified value when constructing M1 N are ex-
amples of necks.

DEFINITION 1.2. The model 8, is the usual 2-valued model. For nz1, the
model S,.; is defined to be S;TS,, which is a linear model with n+2 values.
The model S, is an extension of S, by taking the values to be all the positive
integers and w.

The following lemma is a slight modification of the Lemma 1.8 in [3].
LEMMA 1.3. Let the model M be of the form M1 S M, 1=k=w) and x
be the value in M corresponding to the neck connecting My and S%. Let u and

v be values in the Sk-part. Then (i) the value (uDv)Dw) Du is either 1 or x,
and 1) (uDv)DwyDu=x if and only 1f u=x and v>u.

DEFINITION 14. Z{a, b)=(aDb)Vv(tDa),
Zn: \/_< (aijaj) >

0=1,j
i=j

P(a,) =(7a,Da)Da,,
Pri(ay, -, Ansr) :(<an+1jpn(ab e, () Dlpa ) Dlnyy (nzl).

DEFINITION 1.5. An ICN formula is a formula which does not contain dis-
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junction. An ICN axiom is an axiom which is an ICN formula.

DEFINITION 1.6. A logic M has the finile model property if there exists a
set of finite models {M;|i=/} such that M= O{JWIi as logics.

The following lemma is seen in McKay [8].

LEMMA 1.7. A logic has the finite model property if it is obtained from
L by adding some ICN axioms.

LEMMA 18. AV B and (ADc)D((BDe)Dc) are interdeducible in L if AvB
does not contain the propositional variable c.

PrROOF. First, AVBD({(ADc)D({(BDe)De)) is provable in L. Hence (ADo)
DUBD)Dc) is deducible from AV B. Secondly, let ¢ be substituted by AVB.
Then, from (AD0)D((BDc)De), we obtain (ADAVB)D(BDAVB)D AV B), which
is equivalent with AV B in L.

DErFINITION 1.9. A model of the form S, 1M is called as irreducible.
The next important lemma is seen in McKay [7].

LemMa 110, For any logic M, theve exists a set of models {M;|ie 1} such
that M=MN(S, T M,) as logics.

§2. Axijomatization of some infinite models.

Our objective is the axiomatization of the infinite models of the form
S, 18¢1 8¢ (1=Zk<w).

DEFINITION 2.1, A(g, b, 0)=Z(a, b)) {7 7aDa)V (7 7aAPylc, a)).
LA=L+A(a,b,c).

COROLLARY 2.2. The logic LA has the jinite model property.

Proor. By 1.8, A(qg, b, c) can be transformed into an L-interdeducible ICN
formula. And by 1.7, it has the finite model property.

DEFINITION 2.3. M:k [[\ (8,187 8SPH.
Jmzl
LEMMA 24. LACM, that is, Ac M.

PrOOF. Let N be a model of the form S, 7 S!1 ST (&, [, m=1), and u, v and
w be values of N. We check if Ay, v, w)=1. If Z(u,v)=1, then A=1. Suppose
that Z(u,v)# 1. Let x be the value of the neck connecting the parts S! and
S7. By Z(u,v)+1, we have that usx and that z does not belong to the S,-
part. If u>x, then 77uDu=1. Hence A=1. Suppose that u<x. Then 7 7u
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=1. Suppose that w=x. Then, since 7w=w,
P,(w, w)={(uD{(7wDw)Dw)) Du)Du
=({(uD{(@Dw)Dw))Du)Du
={(uDw)DuyDu.

If w=u, then (uDw)Duw)Du=12DwDu=uDu=1. If not w=u, then, by 1.3,
((uDw)Du)Du=1. Next, suppose that w>x. Then (7wDw)Dw gets to be 1.
Hence P,(w,#)=1. Thus we obtain the validity of A(g, b,¢) in N. This means
that AeM.

LEmMmA 25. LADM,

Proor. Since LA has the finite model property, it will be sufficient if we
prove for an irreducible finite model N satisfying A that NV is of the form
S, 1St 8™ (B, I, m=1) or of the degenerated forms Sy, S, or S, 1 S Since it
is almost trivial, we do not treat the degenerated cases. Now, let N be an
irreducible finite model satisfying A. Suppose that NV is not of the degenerated
forms. Let x be a neck in N such that x#® and that the neck greater than
x is only w, that is, x is the second greatest neck. By the finiteness of N, it
is sure that such an x exists. We define sets of values:

W, ={ueNjx=usw},

Wi={ueN|x<u<w}.

If W; is void, then N is obviously of the form S; 7 NV 1 S, with some finite
model N’. Suppose that W, is not void and that the maximal elements of Wy
are Uy, Uy, -+, Uy (M=2). Let u, be u;Vu,V -+ Vu,. If u,#x, then there exists
uys W5 such that Z(u,, ug)=1. Let u be u,A%;. Then there exists v such that
Z(u, v)#1. Since 7 7uZui<u, 7 7uDu+1. Further, 7 7u+#1. Hence A(u,v,w)
#1 for any w. This is a contradiction. Hence u,=x. Let u be any element
of W;. Then there exists v such that Z(u,v)=1. Since 7 7u+1 and A(u, v, w)
=1 for any w, 7 7uDu must be 1. Hence the set W, must behave as if it
were Boolean. So, N is of the form S, 1 N T ST with some finite model NV and
an integer m=2. Next, let ¥’ be the third greatest neck, that is, ¥’ is a neck
and the necks greater than x’ are only x and . Surely there exists such an
x" if N is not of the degenerated form S,. Let be that

Wy={ueN|x'Zusx},
Wo={ueN|xr<ulx}.

If W5 is void, then NN is of the form S, 1 N 1 8,1 87 (m=1). Suppose that W is
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not void. Let u be an arbitrary element of W;. Then there exists a value v
such that Z(u,v)#1. Since 7 7u=1, 7 7uDu=u+#1. Since A(u,v,w)=1 for
any w, Py(w, u) must be 1. Let be that weW,. Then (7wDw)Dw={(eDw)Dw
=1Dw=w. Hence P,(w, u)={(uDw)Du)Du==1. This means that the set W,
behaves as if it were Boolean. So, N is of the form S;1 N’ | S8!1 S with
some finite model V7 and integers [, m=1. If N” is void or linear, our lemma
is proved. Suppose that N” is not linear and there exist u,v & N” such that
Z(u,v)#1. Then 77u=1 and 77uDu=u+1. Now,

Pylx, 0)={(uD{(7x2x)Dx))Du)Du
=((uD((0Dx)Dx))Du)Du
=((uDx)Du)Du
=(xDu)Du
=u+l.

This is contradictory. Hence, N” is void or linear.
Now we have the

THEOREM 2.6. M=LA.
COROLLARY 2.7. LA=S,18¢1S8¢.
COROLLARY 2.8 S, 1801 8¢p=L+A+P;.,.

PrROOF. This is immediate from the theory of slice in [2].

Let f(n) be the number ,Crns where [n/2] is n/2 if n is even and (n—1)/2
if n is odd. Then we have the

THEOREM 2.9. S, 18 SI=L+A+Zs,
N St ! Sf:L+A+Pk+2+ZﬂL> .

PrOOF. Generally, the axiom Z, restricts the size of the set of values
whose elements are pairwise incomparable to be n at the most. In S}, the
maximum size of such a set is ;Cys. Further, the models of the forms
S, 1 ST 1S}t (m, n=1), which satisfy Zyq,, are sub-models of S, 1 S!T S, Hence
we have the theorem.

§3. Model for Nishimura’s LN,.

In [9], Nishimura classified the one variable axioms. We denote those
axioms as N,, \y, -+ and the logic L+ N, as LNV,.
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LN, LN,,LN, and LN, are not logics in our sense and they coincide, as
sets of wifs, with the set of all the wiffs. LN, and LN, are the classical logic
and their model is S, as is well known. The logics LN; and LN, are the logic
often called as L@ and their model is

NS TNTSY
NEg

where ¥ is the set of all the finite models.
In this §, we determine the model for LN,

DEFINITION 3.1. NAa)=77av (7 7a2a),
LN,=L+N/(a).
COROLLARY 3.2. The logic LN, has the finite model property.

PrOOF. By 1.8, V(@) can be transformed into an L-interdeducible ICN for-
mula. And by 1.7, it has the finite model property.

DEFINITION 3.3. M= ﬂ%(Sl TNTSD.
NS

nz1

LEMMA 34. LN,CM, that is, N,(a)e M.

ProOF. We prove that, for any Ne§ and n=1, N, ()8, T N1 SE Let x
be the value of the neck connecting the parts NV and ST. Let u be a value =x.
Then 7 7u=1. Hence N;(u)=1. Let u be a value >x. Then, by the Boolean
property of Sf-part, 7 7u=u. Hence N u)=1. Thus, N(a) always gets the
value 1.

LemMma 35, LN,DM.

ProOF. Since LN, has the finite model property, it will be sufficient if we
prove for an irreducible finite model N satisfying N.,(¢) that N is of the form
S, 1N 18T (N e, n=1) or of the degenerated forms S, or S; 7 S7. Suppose that
N ig an irreducible finite model satisfying N;(a¢). Let x be a neck in N such
that x#w and that the neck greater than x is only o, that ig, x is the second
greatest neck. By the finiteness of N, it is sure that such an x exists. For
any u=x, we have that 7 7#=1. Hence N might be of the form S, (#=1) or
S TN 1S (NeF). Now suppose that I¥ is not of such forms. Let uy, 4y, -+, Uz
(k=2) be the values mutually distinct and just beneath the greatest value w.
Let u, be the value u;Vu,Vv -+ Vu,. Now we prove that, for any u such that
U, <u=w, 77u=u. Let u be such a value. Since the case where u—=w is
trivial, we suppose that u#w. If 7u=w, then usu, for i1=1,2,--+, % This
contradicts with the condition #>u,. Hence 7u=w, that is, 7 7u#1. Since
N,(wy=1, 77uDu must be 1, that is, 7 7u=u. Next we prove that x=u,.
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Since 7x=wo, x=u, Suppose that x<u, Then there exists a value v such
that neither v<u, nor u,<v. Let v’ be vAu, Then, TV =WAuD0) o=
(DD w)Deo=@wDe)De="77v=v<v’. On the other hand, 7 7v' must be v’
since v'>u, This is contradictory. Hence N must be of the form ST N'1 St
(N'eF, n=2) or of the form S, 1 ST (n=2). Hence LN,2M.

THEOREM 3.6. M=LN,.
Similarly, we can prove the following

COROLLARY 3.7. For nz2,
N (ST N1t SH=L+B,
NEG

where

and

(1]
L2]
[3]

z'/g\g(n>(77aijai>>/\(1 B )Z(ai, aj)))

=i4j

1A

= g(n

B=(_V 778V,
g(n>:nC[n/2]+1 .
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