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Introduction

In this note, we consider a linear system of completely integrable Pfaffian
equations of the form

() dy=(3; ;7 AR ),

where o, 1=<i<n, is a positive integer, y is a complex m dimensional vector
and A,(x), 1<i<n, is an mXm matrix function in complex n variables x=
(x,, -+, %) holomorphic in a polysector S(@, 6, )=S,(0;, O,,7)% XSO, 6,7

where

S:(6;, @i, r={xeC|0;<arg Xi<@i, [x;| <7} .
As is well known, system (E) is completely integrable if and only if

d0=0A2,

where .Q:an x7% A, (x)dx;. Moreover we assume that A;(x), 1=i=n, is asympto-
tically de\;;,llopable tomzz)o A;x* in every closed subpolysector of S(@, 6,7).
Here k=(k;, -+, ky) is a multi-index whose components are nonnegative integers,
[k| is the length of k, ie. |k|=k+Ey+-+k, and x*=x,"1x,"m

The purpose of this paper is to construct asymptotic solutions of system
(E) under the assumption
(A) each A, 1=<i=n, has distinct eigenvalues.

This note consists of two parts, the former is devoted to find out formal
solutions and the latter to get asymptotic solutions corresponding to the formal

ones.
In Chapter I, we first show

THEOREM 1 (Formal Transformation). Under assumption (A), we can find
a formal transformation of the form



382 Kyoichi TAKANO

y=(2 PuxHz,  det Py%0,
290

{kgo Pyx* being a formal power series of x, which changes system (E) into a

system of the form

dz=(33 (Ai(x)+ 57 R)dx,)z

where
1) /‘ll(xz):diag (’EZ(X‘IZ): ot Z‘Zm.(xl)) y lélén 3
gi—-1
A(x)= T Apx ", 1<izn,  1=azm,
2) R,=diag (g}, -, 1), 1<iZn.

Here 2, -+, A%, 1Zi<n, are eigenvalues of A, 1<i<n.
Let

BHx)={"A(x)dx, 1Zisa, 1Zazm,

and let Xpix® be the 7»-th column vector of 3 P,x%. Then the following
theorem is an immediate consequence of Theorem 1.

THEOREM 2 (Existence of Formal Solutions). Under assumption (A), system
(E) has m formal solutions of the form.

(3 PRI D exp B ), 7=1, -, m.

Tklz0 =1

In Chapter II, we prove a theorem concerning the existence of asymptotic
solutions. Before stating the theorem, we explain the notion of proper domain
which was introduced by M. Hukuhara in the study of ordinary differential
equations ([2]).

Setting

Au?(xi):Re 2%*(-271')) 1§l§n,‘ léagm:
we have
() — pl(x) =071 25— A% [ cos (0.0, — wf) | x| 771 4+0(] x| ~o1+Y)

for 1=<i=n and a=% where ¢,=argx; and wf’=arg (—2%+4%). An open sector
S8, 8;, 0)={x,€C|8;<arg x;<F,}, 1=<i<n, is called a positive domain of A7*(x,)
with respect to 2¥*(x;) if

cos (o,0—wf) >0 for #,<¢<d;

and
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cos(o;0;,—w)=cos (6,0;— 0?)=0 .

We say that S;(8,, 6;,0) is a proper domain of 27*(x;) when it does not in-
tersect any two positive domains of AP*(x;) with respect to A¢*(x;) for any
ax7n. As is easily verified, if §,—8,;<o7'zm then S;{4;, §;, o) is a proper domain
of any AP*{x,).

Then our theorem is stated as

THEOREM 3 (Existence of Asymptotic Solutions). Suppose S;(8;, G;,0) is a
proper domain of AM*(x) for any 1<i<n, where 0,<0<8,;<0,,1=i=n. Then
there exists a vector function ¢7(x) holomorphic in S(8,4,v"), vr'>0 being small,
with the following properties:

1) gD’f(x)(f[xip?) exp(i‘ AP (%)) 1s an actual solution of (E),

2) (%) zisl asympz‘oz‘;c:zlly developable to X plx* as x tends to the origin in
every closed subpolysector of S(8,8,r").

The degree of freedom of such @7 is equal to the cardinal number of | which
is the set of indices o, with a=cy, such that, for any 1=i=<n, S,(0;, 0, o0) does not
intersect any positive domain of AT*(x;) with vespect to A3*(x,).

When preparing this note, I was communicated from Professor Y. Sibuya
that he and R. Gérard had obtained a theorem that if each A;(x), 1=i=<n, is ho-
lomorphic in a full neighborhood of the origin then the formal transformation
matrix 2 P,x* in the above Theorem I converges in the case n=2 under the
same assumption as (A).

Chapter I. Formal Theory
§1. Formal system.

Consider a system of the form
(LD dy=(3 271 A0 dx)y,
i=1

where y is a complex m-dim. vector and A;(x), 1=<i<#n, is an mXm matrix.
We say that system (1.1) is a formal system when A;(x) is a formal power
series of x

Ai(x)zlkIZZOAikxk.

Formal system (1.1) is said to be formally integrable when the following rela-
tion holds formally

dQ=02N82,
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where in} %% 1A,(x)dx;. That is, (1.1) is formally integrable iff, for any ¢
i=1
and j, the identity

(1.2) X?ikg) kiAjkxk_x?jkgo ijikxk: > ( CAy, Ajk—l])xk

k20 0Z(k

holds as forma!l power series of x. Here [A, BJ=AB~BA and, for k=(k,, -,
B, and [=(, -, [,), “k=[" means “k,=[; for any i’. We shall also use the
notation “£>!” which means “k=! and k;>I; for some ¢".

Let P(x):kgokak be an mXm matrix whose components are formal power

series of x. If det P,~0, we can change formal system (1.1) by a formal
transformation

(1.3 y=P(x)z.

The transformed system in z is also written as
(1.4) dz= (3 777 Bu(0)dx)z

where B;(x) is a formal power series of x given by
(1.5) By(x)=P(x) ' A(0) P(x) —x{** P(x)"0P(x) fox;,  1=i=mn.

We note the following well known proposition: [If (1.1) is formally in-
tegrable then the formally transformed system is also formally integrable.

The object of this chapter is to find out, under assumption (A), a suitable
formal change of variables of the form (1.3) which takes formal system (1.1)
to a system whose general solutions are explicitly expressible. [For this pur-
pose, we make use of the fact: Consider a sequence of formal transforma-
tions of the form

1.6) by y=PDz,  det Px0,
oy y={U+ |kENP}J”xk)z, Nz=1.
=2

Then ¢yo - @, converges to a formal transformation
61 y=(3 Pz
as N—co in the usual topology of formal power series. Let
dz:é OB (dr)z, N=1
and

dz=(3) %77 B(x)dx,)z
=1
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be the systems changed from (1.1) by ¢yo -+ o¢, and ¢ respectively. Then
B®(x) converges to B;(x) as N—co in the same topology.

§2. Formal diagonalization.

The purpose of this section is to find out a suitable formal change of
variables which takes a system of the form (1.1) into a system of diagonal
form.

By a change of variables

y=P,z, detP,*0,
a system of the form (1.1) is transformed to a system of the form (1.4) where
2.1) B;,=P3;'A; P, 1<i<n.

The integrability condition (1.2) shows that A;, and A; are commutative for
any 1=¢,j=n. Therefore, since A;, 1=i=n, has distinct eigenvalues by as-
sumption (A), we can choose a suitable invertible matrix P, so that By, 1=51<n,
becomes of diagonal form.

In order to show that we can diagonalize all 4;,’s, it is sufficient to prove

ProrositioN 1 (Induction Process 1). Consider a formally integrable system

22 dy=(Dr T ADdx)y,  AdD= 3 Aurt.

Assume that the eigenvalues of Ay, are distinct and that A;, is diagonal for any
1=i=n and k| <N. Then there exists a change of variables of the form

y=Px)z,  Pa=I+ X P,

k=N

which takes system (2.2) to a system
dz=(3 By dx)z,  Bi(®)= 3 Bu,

where By, is diagonal for any 1=i<mn, |[B{|<N.
PrROOF. Since
P(x)“zl—IkIZZZVPkX’HL[XJM ,
we have

Biy=A, 1=i<n, [RI<N,

and
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2.3) Bi=Au—PrAipt AlPr, 1=i=n, |[R|=N.

Here [x]y. denotes a formal power series of x beginning from terms of total
degree N-+1. Equating the (a, 8) components of both sides of (2.3), we get

(2.4) bif=agf— (25, —A0)ps*

where Ap=diag Xy, -+, A8, Au=(a), B;,=(bif) and P,=(p§f). Since 25, —25=0
(a=p) by the assumption of the proposition, in order that we can choose pgf
g0 that 6%=0 for any 1=i=n, it is sufficient that

@5) (Ao 22) a8 = (y— 23 %

holds for any 7 and J.

The condition (2.5) is easily obtained by comparing the coefficients of x*
in the formal integrability condition (1.2), which completes the proof of the
proposition.

Noting that a formally integrable system (1.4) of diagonal form is neces-
sarily of a special form, we have

PrOPOSITION 2 (Formal Diagonalization). Under assumption (A), formally
integrable system (1.1) can be changed by a suitable formal transformation of the
Sform

y=(k§) Pxhz, det Pox0,
into a fomal system of the form
(2.6) dz=(3, diagh-[2(x)+ a7 pf +b7 ()] dx)z.
Here
7»?(&):1212?%?”'1%, 1<i<n, 1Zasm
and

b‘}(x):kg bgake, 1<is=n, 1Zasm
i

ftv

i

with ¢;=(0, -+, 0,1, 0, -, 0).

¢ 3. Separation of variables.

In this section, it will be shown that there exists a formal transformation
which changes a system (2.6) into a system of the form stated in Theorem 1.
Since (2.6) is of diagonal form, we have only to consider a scalar equation
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(3.1) dy=(Z, (u(x) +p " +a:(9)dx)y
where
6i-1

Alx)= 20 Appx7 01 I=i=n,
=
and
a; ()= 25 a;x*, l=iZn.
kzeg
The formal integrability condition of equation (3.1) is
(3.2 L e SN

for any 7,7 and k=e;te;.
We can get

PROPOSITION 3. (Induction Process 2). Consider a formal equation of the
Jorm (3.1). Assume that a;,=0 for any 1=i<n and |k|<N. Then there exists
a formal transformation

y=0+ 3 px)z
b =N
by which equation (3.1) is changed to

dz=(8 (W) + o’ +bu(0)dx)z, b= 3 bux*

where
b:.=0

for any 1=i=<n and {k|=<N.
We can easily verify the proposition, so we omit the proof of it.

By virtue of Proposition 3, we have

PROPOSITION 4 (Separation of Variables). Given a formally integrable equa-
tion of the form (3.1), we can find out a formal transformation of the form

y=(1+ Z pert)z
k>0
which changes it to the equation
dz=(3 () +poxr)dx)z

By combining Propositions 2 and 4, we obtain Theorem 1.



388 Kyoichi TAKANO

Chapter II. Analytic Theory

In this chapter, we shall prove Theorem 3. The proof is very complicated
and long, so it will be divided into several steps. In Section 4, we shall first
reduce the proof of Theorem 3 to solving systems of integral equations under
some conditions and we shall next show that, for this purpose, it is sufficient
to find out polysectorial domains and paths of integration suitably and to get
some inequalities so that we can apply a fixed point theorem of M. Hukuhara
to the integral equations. Paths of integration will be determined in Section 5
and the estimates of integrals will be obtained in Section 6. Section 7 will be

Tdevoted to show that we can suitably choose polysectorial domains. In the
last section, §8, we shall complete the proof of Theorem 3.

§4. Reduction of the proof of Theorem 3.

4.1. By the formal theory developed in Chapter I, we can choose large [
and small #»7>0 so that the change of variables

y:Pl<x)w E

P(x)= = P,x* being the truncated polynomial of the formal power series in

Theorem 1, takes system (E) to a system of the form
(E") dw=(3 (A,(x) + 27 By dx)w .
i=1

Here B,(x) is holomorphic in a polysector S=S(8, @,r") and admits in every
closed subpolysector of S an asymptotic expansion:

Bi(x)leéq'Bikxk.

Noting that the formal transformation w=Q(x)z with Q(x)=F,(x)"'P(x), changes
system (E’) into the system

dz=(3} (Ax)+ 7 R)dx)z,

we can assume without loss of generality that system (E) has a special form
as

dy=<§ (A (x)+ 572 Ax)dx)y

where A,(x) admits in every closed subpolysector of S(&, B, 7) an asymptotic
expansion :
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A~ 3 Apx®.
iklzog

4,2, It can be verified that go(x)(f[xﬁ) exp (i A7%(x)) is a solution of (E)
=1 =1
iff o(x)="(p(x), -+, ™(x)), ©* being a scalar function, is a solution of

4.0 dw:éag(m—27<xi>>dxi><,o“

k1

+ 3 B meg@dn)e?,  1=asm,
G=1i=1

where b2(x)=[A,(x)]*°—08p7x7¢, 85 being the Kronecker's symbol. As is easily
seen, b%¥(x) is asymptotically developable to

(4.2) bef(x)~ 3 bifx

el 207

in every closed subpolysector of S(®, @,r). Therefore, we shall seek to get a
solution ¢(x) of (4.1) with the asymptotic expansion

P (O~ X pitxF, l=a=m.
ED

Consider a change of variables

=X P e%,  1sa=sm
e <N+o
where
(4.3) o=Max {6, *-, 0,}.

Then system (4.1) is transformed to

(4Dw ds@%—*—(é@?‘(%) —A(x:))dx) 0%

38 (8 b (x) ) ofy

3=1i=1
2 i~ 1

+2 a0 e (0dxy,  1=asm
i=1

where

() =2 (AN x) = A () 2 pgTx")
12| N+o
m
b0 3 PN —ale( X pETxF)/0x; .
3=1 |kl <V +o |kl <V +o
Note that ¢ (x) admits an agymptotic expansion as

(4.5) (O~ 2 chpxt

1k 2V + 0y
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in every closed subpolysector of S(@,0,r) which is an immediate consequence
of the fact that (4.4)y has a formal power series solution go%(x):[k‘g“p‘g"xk,
I<a<m.

Then, in order to get Theorem 3, it is sufficient to prove the proposition :
For any c¢*€C, a<], and for any sufficiently small x>0, system (44)x has a
solution (@i(x), -+, ¢(x)) holomorphic in S(8,6,vy) having the Jollowing prop-
erties:

1) thIxV(ga) = Ca: 24 E]
where £%=(ry exp (v —19%), -,y exp (vV—19%) and
2) 0% (0)=0(x|")

in every closed subpolysector of S(8,8,ry) and such a solution is unique. Here
9, ac], 1<i<n, with 0,<92<8,, are suitable real numbers independent of N
and the values of c*eC,a<].

In fact, we can obtain Theorem 3 from this proposition as follows. Take
large M and keep it fixed. Let ¢*=C, a=J be arbitrary constants. Denote by
¢, 1=a=m, the unique solution of (4.4)y in S(4, 4, r,) which satisfies

puEi)=c, ag],
with 4=(ry exp (v —19%), -, vy exp (v —19%)) and
eH()=0(x|"), 1=a=m,
in every closed subpolysector of S(§, §,7,). Denote leZﬂ){ P xt - o%(x) by ¢%(x),

then ¢*(x), 1=a=m, is a solution of (4.1). In order to show that ¢*(x) admits
the asymptotic expansion ¢*(x) ~ kgopz’?x", take any N (>M) and denote by

¢%(x) a solution of (44)y in S(4, 8, 7y), 0<ry=<ry, satisfying

HEN=EEN—, 3 e, ag)

oSk <N+o
where £%=ry7%&% and
ex(0=0(|x|")
in every closed subpolysector of S(4, §,7y). Then ¢4(x)= MHg%wﬂ x4 0% (%)
is a solution of (4.6), with
RN =pul%), ae]
and
CHO=0(Ix1"), 1ZaZm,

in every closed subpolysector of S(4,d,ry). Therefore, by the uniqueness
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theorem for (4.6)y, we get

Pu(0=0fi(x), l=a=m
Le. Soa(x):\kl;ﬂ_lgﬁ%”xk—iﬁ@%(x):lkigwpi‘”ﬂc“r ©%(x), which implies that ¢*(x) is
asymptotically developable to %‘6 p¥x* in every closed subpolysecter of S, 8,7y).
The last assertion in Theorem 3 is an immediate consequence of the arbi-

trariness of ¢*=C, a=J and the uniqueness in the above proposition.

4.3. In order to prove the proposition stated in 4.2, we have to clarify
the essential role of exponential factors. For this purpose, we consider the fol-
lowing transformation

(4.6) 0% (x)=u"(x) exp (A¥7*(x))
where we set
=3 () — A (xy),  1=a, p=m.
i=1

Then system (4.4)y is changed to a system

du“’:% (i x0T beR(x) exp (A7 (x))dx)uf

4m1 i=1
+ 3 5 (1) exp (P, 1Zasm.
As is easily seen, this system is equivalent to a system of integral equations
w(@=ur e+ [ 3G HE b exp (PHONAD)

+ci(0) exp (AP (ENFAL:, 1sa=m

where the integrals in the right hand sides are line integrals. The proposition
in 4.2 can be easily rewritten for the system of these integral equations.

Considering that the desired solution satisfies the order condition in any
closed subpolysector of S(8,0,7y), we shall seek to construct a solution in a
polysectorial domain S(4,, 4, 7, r(go))Zf[ Si(4, 45,7, 7¢)) where Si(4;, 4,7, ,(0))
is a sectorial domain in the x;-plane Eéﬁned by

{rieCldi<arg x;<Jy, | x| <rexp (f:r.gzi cot 7i(g)de)} .

Here, 4; and J; are arbitrary real numbers such that
4.7 0;<4,<9¢<1,<8,

for any a<€/, and 4;—8; and §,—4; are sufficiently small and 7,(p), 1=<i<n, is
a piecewise continuous function on [4,, 4;] satisfying there sin 7 (¢)>0.
Then in order to prove the proposition in 4.2, it suffices to show the fol-
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lowing proposition; For any ¢*<C, a<], the system of integral equations of the
form

48 w=@e 516 360 exp (BHOWD)

Feiy(Q) exp(A** (O} dL,, 1=a=m,

has one and only one solution (u'(x), - , u™(x)) with the properties:
D u'(x), 1=a=m, is holomorphic in S=S(d, d, 7y, 7(¢)) and is continuous on
its closure S

2 w@=0(Zix]Mexp(w(x), x<5.
Here I' , 1=<a=<m, is a curve on S from &% to x with
§'=(ryexp(V=199), -, ryexp(v—199), ac],
xla) is a characleristic function of | defined by
Jl, acs]

x(a)=
IO, ae]
and

©¥(x)=Re 2*¥*(x) , 1=a, f=m.

In the sequel, we shall say that f is analytic on D if f is analytic in a domain
D and continuous on D.

4.4. In order to obtain the proposition in 4.3, we have only to get the
following proposition; For any sufficiently large Ky>0, if u*(x), 1<a=m, is
holomorphic on S=S(4, 4,7y, (@) with the order condition
4.9 ()| S Kn(Z 1) exp (w7(x)), x<S

then UYx), 1=a=m, defined for these u®s by the right hand side of 4.8y,
satisfies

410) U] S6Kx(S]x,1 M) exp (w(x),  x<S.

Here, £ 1s a positive constant with

(4.11) 0<e<1
independent of K.

Indeed, the existence of a solution of (4.8)y with the additional conditions
and the uniqueness of such a solution can be shown in the following way.
First, the uniqueness is an immediate consequence of (4.10), (4.11) and the
arbitrariness of Ky. Next we shall show the existence of a solution. Let &
be a family of u(x)=(u'(x), -+, 4™(x)) holomorphic on S satisfying there
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@IS ExGxl M exp (), 1=asm.

It is easy to see that & is convex. Introducing on & the topology of uniform
convergence on compact sets, & is closed in this topology. For an element
uw(x) in &, we denote by U(x)=(U(x), ---, U™(x)) defined by the right hand side of
(4.8)y. Let T be an operator which maps u(x)€F to U{x). Then if the above
proposition holds, T becomes an operator from & to itself. We can easily
verify that T is continuous in the above topology and the image of 7, T(%),
is a normal family. Then, by making use of a fixed point theorem of M.
Hukuhara ([2],[3]), we obtain a fixed point of 7, which is a desired solution.

Thus the proof of Theorem 3 has been reduced to solving the problem:
For any 4; and 4;, 1<i<n, find out (i) suitable piecewise continuous functions
(@), 1=i=n, with sinz,(¢)>0 on [4,, 4,], (ii) sufficiently small r,>0 and (iii)

paths of integration I',, 1Sa<m, so that the above proposition holds.

§5. Paths of integration [, a=1, -, m.

In this section, we shall define paths of integration /', 1<a=<m, on a closed
polysectorial domain S=S(4, 4,7y, t(¢)). In order to state how to determine

paths of integration, we first give some definitions and notation.

Recall that
#(x)=Re A{*(x;), 1=i=n, 1=Za=m

’

and
(5.1) pe(x)— pl(x) =071 2% — 20| cos (0,0, — o) | ;| ~71-0(] ;] =93+
where 0,=arg x; and o=arg (A,—2%). Now we put
g7 (p)=cos (a;9p—wi7) .
Since S, 4, ©0) is a proper domain of A7*(x,), the indices a=1, «--, m, @y can

be separated into the following five classes JF, 1=<h=5; Ji (or J3) is the set of
indices « such that

28(y<0 (or >0) for 8:;<¢<d; (or 8:<¢<8;),
J¢ (or Ji) is the set of a such that

28(@)<0 (or >0) for #;<¢<bs (or §;<e<bz)
and

g7(@)>0 (or <0) for 05<e<f; (or 0z<¢<dy),
and J? is the set of « such that

g7(e)<0 for §,<¢<bs or Ou<e<d;
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and
gf(@)>0 for 05,<o<by.
It should be noted that

f=("_\1 I

where J is the set stated in Theorem 3.
For any a<]; (or /3, we denote by 8; (or 8%, the real number defined by
g§"(02)=0 (or g#(0%)=0)
and
g8p)<0  (or gf(p)>0)

for 6;7,<§0<51 (or 6;1<(p<6_,,).
Then, since S;(6;, §;, ) is a proper domain of A7*(x,), we can take >0
depending on the choice of 4; and 4; so that the following inequalities hold

(5.2) OpiFoiin)—d;>4e;, di—Ou>4e, ac]i
(5.3) hito'm)—~d,>4e;, 4,—0i>4e;, as]?
(5.4) (Oatoi'm)—d4;>4e;, 4;—8,>4e;, a<]}
(5.5) 4~ (05 —07'n)>4ey, §,—4,>4e;, acs]h
(5.6) (Gastoin)—d;>4e;, 4;—(05—07'7)>4e,, as]l.

Moreover, we choose ¢;>0 so small that
B.7) Max{|0z—0bgl, 0} >4e;

for any «, f=]t.

5.1. Path of integration /',. I, is determined as follows:
For a point x=S(4, 4, ry, 7(¢)), let
0= lxyep] Soveee = Xy ).
Then I';={(Ly(8), -, La(®)}, is defined by
. Xl X/ Tl t 0= 1= X/ Xeem |
L=

Xicry s | X/ Xy ] ST
I'; is a polygon from the origin to x.
5.2. Paths of integration I',, axy. I',, a7, is defined as the curve

which consists of m curves [ ,=1 q+--+1 4, where [ g={{x,, -, x;.1, 5D,
E&y, o, D} Here [i(D) is a curve from £f to x; in S;=S(4;, 4;, 7y, :(9)), &%=
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(&¢, -+, &%) being the starting point of I',. I',; can be considered as a curve in

S;. We shall next explain how to determine I',;, axy, 1=<i<n,

5.2.1, I',; for a=Ji. In this case, the starting point &¢ is given by

£9=ry exp (X&: cot {@)dp+~/—19¢) .

4

The constants 9¢, 1=<i<n, a ]}, will be suitably determined later.
The path I',; consists of two parts, ie. Ip=IQ+I® where I'{) is a line
segment given by

arg Li=9¢
94 9¢
[2;]exp da,gx. cot 7(@)dp) =Ll <7y exp ( ,, cotzi@de),
and I'@ is an arc segment defined by
tlo)=lxdexp ([ cotrile)dp+v—TI¢)

for d=<o=argx; or arg x,<¢=9¢, ¢ being a parameter of I'.

(2)
ai

Fig. 1.

5.2.2. I, for a=Ji In this case, the starting point £f is the origin of
the x;-plane and I'y; is a straight line from the origin to x;.

52.3. I, for acJi\JJi\JJ5. The starting point &¢ of I',; is the origin of
the x;-plane.
In the case when

cOos (Uiﬁi*a)fﬂ) z Sin (40-7;8-[)
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4

N

Fig. 2.

where §;=arg x;, [ ,; is a straight line from the origin to x,.
In the case when

cos (0,0, —wi") <sin (4o,¢;)

with 8,=arg x;, [',; consists of two parts 'Y and I'@, ie. [ (=8 4+, which
are defined as follows:

when 05 —4e,Zarg x;<4;,

'@ argl;=0z—4e;,
0= 4eq
0<% = lxlexp ([ " eot rulp)de)
argr;

'@ Lde)=|xlexp (f;x.cot ti{@)dp+~'—1p), Ou—te,Sp=argx,

and when 4,<arg x;=65+4¢,,
rg: arg{=05+4e,

604+ dei
0%l S mlexp (7 cot wilp)dg),

4; 0
621‘48'1

0;1"%—45?1

Fig. 8. The case ac=J?
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r'g: t@=lxulexp(["  cotrip)dp), argnSe=fitde .
argxy

§$ 6. Estimates of integrals.

In this section, we shall first obtain the estimates of U%(x), 1=a=m, and
we shall next derive from them sufficient conditions in order that inequality
(4.10) holds.

Suppose (u'(x), -+, u™(x)) is holomorphic on S=SW4, 4,7y, 7(¢)) and satisfles
there inequality (4.9). From (4.2) and (4.5), we have

(6.1) LAGTEC AL
and
(6:2) el ey 3 a7, x€5

for some positive constants b and ¢y, provided 7y>0 is sufficiently small.
Then by the definition of U%(x), 1=a=m, and by the inequalities above, we
get

63) U0 <x(@)]e”]
+f Bt ome b K BIEIEIG
Fex(BIL T exp (O], 1Zasm.

Estimate of U#x). Noting that x(y)=0 and p7(x)=0, we have, by (6.3)
and by the definition of Iy,

@I=f | BILd 7 b Kn(B141 G £

en(E1 G170} L]

n ERIETIED]] .
=(mentob Ky ey S Y [0

=1 3
:(7n-n2-b-KN+n~cN)N‘1(]é[ijN). ~

Hence, if

(6.4) (m-n®b-Ky+tncy)N'<e-Ky,
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then inequality (4.10) holds for a=x.

Estimates of U%(x) for a#%. Since o;, 1=i<n, is positive, we have
(6.5) glx x7i<e, 1<i=n, x€85=5(4, 1,7y, 2(¢))
for any small ¢>0 and we have

(6.6) 3aeslgl ¥,  1ise, xe§,
j= j=

provided 5 >0 is sufficiently small. From (6.3), (6.5) and (6.6), it follows that
6.7 [U*(x) | =x(a)]c”]
+(mbeK y+ex) . B1G1 G 1) exp (7)1l
For arbitrarily given but fixed ¢*=C, a<], we choose Ky so that
(6.8) |5k K(SIE71Y) exp (7(2),  as]
holds.
For the purpose of finding out sufficient conditions in order that inequality

(4.10) holds, we shall parametrize I', by its arc length s. Note that |d{;|=ds
and df;/ds=0 for j=i on I',;, and that

@' E717) exp (£7*(EN=0

for a<J. Then by means of (6.7) and (6.8), in order to get (4.10), it suffices to
have the inequality

69) (mbeKy-+ex) | Ll (51 €517 exp (77(0))
d n,
i Ky {161 exp (2}

on each I',;, ax7%, 1=i<n. Therefore, in the rest of this section, we shall
seek to find out sufficient conditions for inequality (6.9) to be valid.

We first consider the case when {I'{y, a</i. Since ds=—d|&;|, we get

n d n
Eds*{(;l g1 exp (ﬂ”a(@)}: —-W{(ng Z;1¥yexp (/ff"(C))}
= NI xp (w7(O) ~(SIE, 1) xp (470 ()= C),

On the other hand, we have
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HC)— (L) =—07 | 28—l cos (097 — ) | "1+ 0L 7,

on 'Y, a=]i. It follows from this relation and (5.2) that

o FT (I~ )
— |2 c08 (0,95 ~f) | 5| (1+00 &)
= 12—l sin (460 | £l 3 A+0(1 D)
= |25~ 70| sin(20:6) | Co| 57

on I, ac]t, provided 7y>0 is sufficiently small. Then we have
LI ex ()
2 (1 - sin (26— NI L F=4(S1E, 1))
XL (DG 1) exp (90D
which yields
(610) SAEIL ) exp ()
Zsin (0:e) 16— 20116617 (S1E 1) exp (00,

x>0 being small. Therefore, the inequality
(6.11) mbeKy+cey=sin(o;e;)| A—h|e- Ky

is a sufficient condition for (6.8) on I'®, a=]L
We next study the case when {el'Q, asJIUJIUJIUJS In this case

ds=d|{].

It can be easily seen

dIC ] — T (L) — ()= | 2 — D cos (030 — i) | L] 77 +0(1 L 77%)

where ¢=arg {;=constant. By the definition of I'$} for ac/IJJIJJIU]I and
by (5.3), (5.4),(5.5) and (5.6), we have

cos (o,0—wi")=sin(4o.¢,) .

Therefore, it follows that

dl“ | —— (L) — p5 (&) = sin (048) [ 25— 1 L5 704,

which vields (6.10) on I'§g, as 3 JJAJJIJ]S provided 7y >0 is sufficiently small
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Hence, in order to get (6.9), it is sufficient that inequality (6.11) holds.
Finally, we consider the remaining case, ie. {=l'g, acsJIJJRAJJRUJE Re-
call the definition of I'Q that

Llp)=lxlexp(” cotrp)dp+/~To)
arg;
where ¢ is a parameter of I'Q. Since

(ds)*=(d Re {;)*+(d Im L)%,
we have

(6.12) do/ds=sign (dp/ds)| ;| ~* sin (z:(¢))
where
+1 if dp/ds>0

—1 if de/ds<0,

On the other hand, we can verify that

dIE:1/de=L:lcot (z:{e)),

sign (d;p/ds):{

hence we get

(6.13) d|L;|/ds=sign (dp/ds) cos (z,(¢)) .
By means of (6.12) and (6.13), we have

d(pl(Cs)— L))/ ds=0(pl(Co) — pe(C)) /31 L1 )(d 1L ] /ds)
(L) — 15 (L)) /00X (do/ds)
=sign(do/ds)| 2%~ cos (g;0—wf"—7 (o) | ;| 71 4+0(| ¢, | =% .

We have also from (6.14) that

%(2}31C;l”)Z(d/dlCil)(§IC;IN)(d!Cii/dS)"—‘Sign(d@/d@COS (z@NN| ;17
Then, it follows that
S 1 exp ()
z{—N!QI“‘”(;[le"v)'li*sign(d@/dS) cos (g:p—af"—7 () | 25— A4 (14-0(1L )}
X lCi!“’i'l(gilCﬂN) exp (¢"(L)) .
Therefore, if 7,(¢) is determined so that

(6.14) sign (do/ds) cos (0,0 —wi"—7(@))=sin (20,3,),

then we have (6.10) on I'J, provided 7y>0 is sufficiently small. Thus (6.11) is
a sufficient condition in order that (6.9) holds.
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The results of this section can be summed up as follows: Supposing that
7i(p), 1=i=n, is determined so that (6.14) holds, then it suffices to have (6.4)
and (6.11) in order to get (4.10).

§7. Determination of 7,(¢), 1<i<n.

The purpose of this section is to show that we can determine piecewise
continuous functions z,(¢), 1<i<n, on [4,, 4,] so that

and inequality (6.14) holds.
It is easy to see that (6.14) is equivalent to

(‘72‘@_0)?7]‘*‘2%51')—77/2§Tz'(§0)é(%?"‘wfm*‘zﬂfi) +r/2, mod 27
when de/ds>0 and
(00— awi™+20.8) 47 /250 (@) (00— wfT—20,2,)4+37/2,  mod 27

when dp/ds<0.

Let us define 0¢, axy, a3, depending on ¢;=arg x;, in the following way :
In the case when ae]l,

g {0514“0517[; 4,56, <9¢

. Ye<,<4,,
in the case when a<J3,
0¢=0,, O7i—4e; <0, <4,
in the case when a< ],
0¢=6%;, 4, <0, <05 +4e,;,
in the case when a< 3,
0%, 4,=0,<80%+4e; ,
0f= .
Gz, Ozi—4e;<0; <4, .

Then, in order that (6.14) is valid, it is sufficient to have

for any 6; on [4;, 3.
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We define Xt<6z) and Yz<0z) by
Xi(ﬁi):}\(/{i);{ai(gi"“9?1'”255)}
Yi(0)=Min{o(0;—0F—2e;)+n}.

Then, if we have

(7.3) X(0)<=, Y(0,)>0, 0,4, 47,
and
(7.4) X 0)=Y,00), 0.4, 43,

we can choose 7,(6;) so that it satisfies (7.1) and (7.2). In the rest of this sec-
tion, we shall show (7.3) and (7.4).

By the definition of #%s and by inequalities (5.2), (5.4), (5.5) and (5.6), we
have

(7.5 160, —0%| <o7'm—A4e;

and from this, we immediately deduce (7.3).
We shall next prove (74). For this purpose, it is sufficient to get

(7.6) Zi)z—=x
for any a, 3, where we set
72280 )=0(0,—0F—2¢;)—0,(8,—08+2¢;)
=g (03—0%)—4o,¢; .
If ,<6% then from (7.5), we have
Z780,) 20,0, —0F—2¢;)— 20
= —n+20,6,—20,6,=—"x.

Analogously, if 6,=260¢, we get (7.6). Hence, we have only to prove (7.6) in
the case when #8<8,< 6.

We first study the case «, f<Ji. In this case, §¢=0 (or 07=0z) implies
4,<6,<60¢ (or 0<07—6,<4¢;) and 04=05 (or 64=0%) implies 65<8,=4; (or 0<
f;=<4e;). Then it follows that

0¥ —03=65,—4; or 1,—85 or 8.
Then, by (5.4), (5.5) and (5.6), we get
G —Oi<o;i'n—4e;,

which yields (7.6).
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Next let a<Jt and B</i. Then from
0s<d;,, 0i=05
and from (5.2), it follows that
0 —08<d;,— 0 =07 't—4e;,

which implies (7.6). Analogously, we can verify (7.6) in the case when a&];
and Be i '

Finally, we study the case when @, &/i. From the definition of 6¢'s for
as/l, we have

0., <9¢, Oi=0z+oi'n
and
0,>9%,  08=05,

since 08<#,<0% Then we have
08 —08=0,+07'n—0;.

Therefore, if 9%, a=J!, are determined so that 94<8¢ when 0z>0s, then by
(5.7), we have

07 —0i=o0;'r—4de;,

which shows (7.6).

Thus we have proved that we can determine piecewise continuous functions
7,(¢), 1=i=<n, so that they satisfy (7.1) and (6.14), if 9¢, a<]J}, are chosen so
that 0z,<0z implies 97> J4.

§8. Completion of the proof of Theorem 3.

In this section, we shall show the procedure of determining various con-
stants and functions appearing in the study in the preceding sections. Then
the proof of Theorem 3 will be completed.

Let us determine, in advance, 9%, @i, 1=i<n, so that 0;<0z implies
92>9% and keep them fixed. Take 4; and 4; so that

6;<d;<9¢<d,<6;, 1=ZiZn, ac]ji,

and 4; and 4, are sufficiently close to ¢, and g, respectively. Let g, 1=i<n,
be positive constants depending on the values of 4; and 4; such that inequalities
(5.2), (5.3), (5.4), (5.5), (5.6) and (5.7) hold. Then, as was shown in §7, we can
determine piecewise continuous functions 7;(¢), 1=i=n, so that they satisfy (7.1
and (6.14).

Take any £ with 0<«£<1 and keep it fixed. Let b be a constant in ine-
quality (6.1) and let N be any large integer such that
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E—mn®bN">0.

Choose ¢>0 so small that it satisfies

sin (6;8,) | 25— A% g —mbe>0

for any 1=<i<n and a=7. Then take any sufficiently small positive 7y so that
(6.1), (6.2), (6.5) hold and (6.10) holds on any [, ax7, 1=i=n.

Now let ¢*eC, a<], be arbitrary constants. Then, depending on the values

of ¢*eC, a<], and other constants, we choose sufficiently large Ky so that
we have (6.4), (6.8) and (6.11).

For these constants and functions thus determined, the proposition in 4.4

in §4 holds, and the proof of Theorem 3 has been completed.

L1
Lz}
£33
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