On a reduction of positive operators in L,

Dedicated to Professor S. Furuya on his 60th birthday

By Shizuo MIYAJIMA

§1. Introduction.

Let T be a positive operator in Ly(2, %, m). If T is induced by a measure
preserving point transformation, it is strongly mean ergodic and if the measure
space (£,2,m) is isomorphic to the unit interval with Lebesgue measure,
ergodic decomposition of the space and the operator is obtained. In a Banach
lattice theoretic view point, ergodic decomposition of T is the reduction to its
irreducible components, i.e., to the components having no proper T-invariant
closed ideal. The purpose of the present paper is to give an irreducible decom-
position for general positive, strongly mean ergodic operators on a o-finite
measure space.

In general, such an operator is not completely built up with its irreducible
components. So in the first half of §2 we specify the part of T which is
composed of irreducible components. Then such a part is given a representa-
tion in the L, space on a hyperstonean space via an isometric lattice isomor-
phism. In §3 the reduction is executed through the use of the reduction theory
for positive operator in C(X) together with the disintegration of normal meas-
ures on hyperstonean spaces. In §4, the relation between the spectrum of T
and those of its irreducible components is investigated. In §5, the classical
decomposition theory is related with the reduction in §3. Some examples and

special operators are also treated.

§2. Preliminary reduction and a representation of T.

Let E=L,(2, %, m) be the space of absolutely integrable functions on a
o-finite measure space (2,3, m). Then E is a Banach lattice with the order
f=g defined by f(0)zg(w) for ae. @ and with the L, norm. A measurable set
A defines a closed subspace L(A)={f€L; F=0 ae. on A°. Such a space
is called a closed (order)” ideal of E. Abstractly speaking, a closed subspace

D Although the term “order ideal” is used in [10] [11], we use the term “ideal” in
the sequel since there exists no fear of confusion.
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ICFE is a closed ideal if and only if f=l and |g[{=|f| imply g€l. A closed
ideal I and the quotient space E/I are both Banach lattices and if I=L,(4), E/]
is isometrically isomorphic to L,(A°) as a Banach lattice. Let T be a bounded
linear operator in E. Then the ideal [ is called T-invariant if 7/C/ holds. It
should be noted that if I is T-invariant, the operator 7 naturally induces two
operators; the one is the restriction of T to [ T'!;, and the other is the quotient map
T/I, which maps the equivalence class of f€E to the equivalence class of Tf
modulo /. If the quotient space E/I is identified with L,(A4%), the quotient map
T/I maps feL.(A°) to 1,cT/f. Such constructions and identifications are fre-
quently used throughout this paper.

Hereafter we consider the reduction of an operator 7 in E satisfying the
following conditions I) and II).

I) T is positive, i.e, T/=0 for any /=0, feE.

II) T is strongly mean ergodic, i.e., TN:—[{/—([+T—!~---+TN‘1) converges

' strongly to an operator P.

Then the operator P in II) is a positive projection having the following
properties;

a) PT=TP=P

b) PT'=T'P'=PF

¢) Tf=f is equivalent to Pf=f for f€E

d) T’u=wu is equivalent to P'u=u for uc E'=L.(2, 2, m).

Let I denote the closed ideal {f€E; P|f]=0}. It is easy to see that [
is T-invariant and there exists a measurable partition 2=2,+%, for which
I=L,(2,)={f<E; f=0 on £,}. (As to this partition see Theorem 2.1 in [1].)
The quotient operator T:=T/I in L,(£,) is also positive, strongly mean ergodic
since 71V(1+T1+'-~+Tf‘"1)f converges strongly to lp Pf for f€L,(£2,). Moreo-
ver the quotient operator P,: f&L,(2,)—1g PfeL,(&,) is strictly positive, ie.,
fel(£2) =0 and P,f=0 imply f=0, since P,f=0 implies Pf/=0 on £, and
this implies Pf=P%*f=0 on £ which in turn implies feL.(2,).

On the other hand, the restriction 7, of 7 to L.(&,) is also a positive
operator for which the mean —11\[—(1+T2+-~-+T2N“) converges strongly to zero

operator.

From now on we neglect the part 7, of T since the part T, is the essential
part of T as long as the limiting property of the iterates of T (the ergodic
property of T) is concerned. For example, there exist no nonzero T,-invariant
functions, and if 7 is uniformly mean ergodic the peripheral spectrum of T
coincides with that of 7,. Thus we assume T=7T,, which is equivalent to the
assumption of strict positivity of P.

Since the measure space (2, Y, m) is o-finite, there exists a function f,€E
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which satisfies f,>>0 a.e. Let e=Pf,. Then the support of any function in PE
is contained in that of e. It suffices to show it for positive f€PE. For such
f, fAn-f, converges in L, norm as n—oco. Hence f:Pf:},ifE P(fAn-fy), and
P(fAn-f)=n-Pfy,=n-e, which implies support(f)Csupport(e). Let 2, denote
the support of e. Then the closed ideal J={f€E; /=0 on 0¢} is T-invariant
since for positive fe/ Tf:,{“ﬂ T(fAn-e) and T(fAn-e)=<n-e hold. Hence we may
consider the restriction of 7 to J. On the other hand, if the measure mlg, is
replaced by the equivalent measure m’ (dm’=edm), the space L2, m) is
isometrically isomorphic to L,(#2,, m’) as a Banach lattice by the mapping
i: fel(, m)—f/eeL(2,, m"). By the mapping i, T is represented as an opera-
tor U in L.(2,, m") through the formula Uf=iTi"'f. Then it is easy to see
that U has the following properties;

I) U is positive.

D UN:—Zl\T([+U+---+UN“) converges strongly to @Q=iPi™' ag N-—oo,

) @ is strictly positive.

V) Ulp,=1g,.

REMARK: J is the closed ideal generated by the subspace PE.

For the same reason for which we neglected the part T,, we only consider
the reduction of U and write T instead of U. Thus we have reduced the origi-
nal situation to the following more restricted one. That is, the measure
space (2, %, m) is a finite measure space, and T is an operator in L,(£2, 2, m)
satisfying the following conditions I), II), III) and IV).

D T is positive.

i1y TN:—I{T(I+T+---+TN'1) converges strongly to an operator P as N—oco.

III) P is strictly positive.

IV) Tlg=1l,.

REMARK: i) The condition II) may be replaced by the condition s%pHTN]!

<co as we see later in Proposition 6.
ii) It should be noted that the condition IV) does not imply that T is a
contraction.

For this operator T we give a “canomnical representation” as a positive
operator in the space L,(X, ¢#) where X is a hyperstonean space® and g is a
normal measure on X. This representation is constructed as follows.

By the Kakutani representation theorem for (AM) spaces, L.(2, 2, m) is

2 A hyperstonean space is a compact Hausdorff space X such that C(X) is a Dede-

kind complete vector lattice and the union of the support of all the normal measures
on X is dense in X.
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isometrically isomorphic to the space of continuous functions on a compact Haus-
dorff space X. Then every upper-directed uniformly bounded family {f,}.c, of
rea] valued functions of C(X) has the least upper bound in C(X). (This fact is
the reflexion of the similar property of the space L.(2, 2, m).) Hence X is a
stonean space. Moreover a Radon measure ¢ on X is defined through m. Let
feLa(2, ¥, m) and f be the Kakutani representation of f. Then define x(f) by

f fdm (this definition is valid since m is a finite measure). The support of

this measure g is X, and g is normal in the sense defined in Dixmier [2], i.e.,
for every upper-directed uniformly bounded family {f,«csa of continuous
functions on X, sup g#(f,)=p(supf,) holds. And the space L,(X, ¢) of p-in-
tegrable functions fs isometricalfy isomorphic to L&, Y m), since the Kaku-
tani representation 7: L.(£2, 2, m)—C(X) is isometric with respect to the norms
in L,(, 2, m) and L,(X, p) and accordingly extended to an isometric isomor-
phism j: L,(£, Y, m)—Ly(X, 1). Hereafter we denote the representation j777?
[resp. jPj*] of T [resp. P] by the same letter T [resp. P]. Then T and P
are operators in L,(X, #), and they satisfy the conditions I), I), II) and IV).
Moreover 7 and P map C(X) to C{X) as a result of condition 1V) for the
original 7. Hence we may consider the restriction of T and P to C(X), and
denote it by T and P, respectively.

§3. Reduction theory.

In the last paragraph of the previous section, we obtained operators T,
and P, which act on C(X). These operators have the following properties.

1) P,=0 2) Pj2=P, 3) Ply=1y
4) P, is strictly positive, ie, f€C(X) f=0 and P,f=0 imply f=0.
5 T,=0 6) P,T,=T,P,=P,.

Hence we may apply the reduction theory of Sawashima and Niiro [13] to
P,. This theory asserts that there exists a weakly* compact subset 4 of the
probability measures on X and a continuous mapping 7: X—4 (z(x)=P/¢,,
where ¢, is the Dirac measure on x€X), such that P,C(X) is isometrically
isomorphic to C(A) via the mapping feC(d)—fexeC(X). Moreover for any
A€, X;=n"%(2) contains the support of A (as a measure on X) and feC(X)
/=0 on X; imply P,f=0 on X, ([13] Theorem 2).

In the present case, there exists a normal measure ¢ on X, which induces
a measure ¥ on 4 by the following formula; W f)=p(fer), feClA).

LEMMA 1. 4 is a stonean space and the measure v is normal with support(y)
=A.

PrROOF. To show that 4 is a stonean space, it suffices to verify that the
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upper bound of every uniformly bounded family {f,}.cs of functions in P,C(X)
belongs again to P,C(X), since C(4) is isomorphic to P,C(X) as a Banach lat-
tice. Let f be the upper bound of {f}.cs. Then Pyf=f since Pof=Pyfu=Fa
for any @< A. On the other hand Py(P,f—f)=0, hence P,f=f by the strict
positivity of P,. It is now clear that v is normal and support(v)=/1.

The following proposition about the disintegration is probably a known
result. However it will be stated with a proof since the author could not find
an appropriate reference.

ProrosiTiON 1. For any A< A, there exists a positive measure p; on X such
that |jp;l=1 and support(p,)CX,=n"*(2). And for each feC(X), p(f) is con-
tinuous with vespect to 2 and

#(N)=f wl v
holds.

Proor. Let feC(X) and g=L,(v). Then
[ e mdp <11l

This shows that the functional g= Ll()))ﬂjf(gﬁl‘)d/l is continuous. Hence there
exists a function ﬁfe L.{v) such that

[rteemdp={hsgav (m

holds for any g=L,(»). It is clear that ﬁf1+f2:ﬁfl+ﬁf2, ﬁah:aﬁfl hold for any
f1, [:€C(X) and a=C. Since v is normal by Lemma 1, there exists a unique
continuous function in the equivalence class of ﬁf, which will be denoted by 4y
({2] Proposition 2). Then for any f,, /,€C(X) and a<C, Ay, r,(A=hs (D) +h (),
and A,z (D)=ah, (1) hold for any 2=/ since support(¥)=4. Thus for any 14
the mapping f=C(X)—h (1) defines a positive measure g; on X, and for fixed
Fel(X) w(f) is continuous with respect to 1 since p(f)=h(2). Put g=1 in
(1). Then

[ fap=[hdv={ pl frdv,

hence f,u;dvz,a. Since it is clear that A, y=14 g:l=1. Next we show support{x,)
C X, Let feC(X) and support(/)NX,;=@. Then if we denote support(f)
by S, there exists a geC(4), g=0, such that g(A)=1 and g=0 on =(S) since 2
& 7(S) and =(S) is closed. For such g,
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fhfgdv:ffgorra’#ZO,

hence p(f)=h(2)=0. This implies support{z,)C X;.

It was pointed out before Lemma 1 that feC(X) and f=0 on X, imply
P,f=0 on X; The following proposition shows that the operator 7, has the
similar property.

PROPOSITION 2. For any A, feC(X), =0 on X; imply Tof=0 on X,.

ProoF. Clearly we may assume f=0 and f=0 on X;. Then for any >0,
the set A.={x&X; f(x)=¢} is a compact set disjoint from X;. Hence A€ x(A4,),
and there exists a function ge((A4), £=0, such that g(A)=0 and g=1 on w(4,).
Then gere P,C(X) and gox=0 on X;, gew=1 on A.. Therefore

F=elytllfll-geom
which implies
Toféelx"!_”fl]wTo(g"ﬂ) .
On the other hand T (gem)=T P(gen)=Pygen)=g-nw since T P,=P, and gere
P,C(X). Hence we have

Tofsely+ifllegen,
which shows T, f<e¢ on X; for any ¢>0.

By Proposition 2, we see that T, [resp. P,] induces an operator 7, [resp. P;]
in C(X)). Exactly speaking, T, [resp. P;] is defined by the following formula,
T2f=T,f| x; [resp. P, f=Pflx,] where feC(X,) and f€C(X) is an arbitrary con-
tinuous extension of f. It is clear that P;T,=T;P,= P, holds for any A4 and
P; is a one dimensional positive projection given by F,f=21(f)ly,. More gener-
ally let S be a bounded linear operator in L,(X, #) such that SC(X)CC(X)
and Sf=0 on X; for any fe(C(X) such that f=0 on X, Then in the same
way as T and P did, S induces an operator S; in C(X;). For convenience sake
we write Syf|x, simply as S;f for feC(X). Then for such an operator S we
have the following

PROPOSITION 3. For any 24 and feC(X)),

[18:£1dm=0SIf 1 /1 de;
holds.

ProoOF. Let f,€C(X) and geC(4). Then by the assumption about
S, S(figem)=g(2)Sf, on X,;. Then from the inequality |S(fig-m)|=!Sll-l/ig-]
and the equation (1) in the proof of Proposition 1, we have

[1e@1e1SA D= 1S {18 (1 £y .
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Therefore

f1S:Aldm=18I {1 £1dp,

holds for any A€ 4 since g=C(A) is arbitrary. Taking f, to be an extension
of feC(X,), we have the desired conclusion.

The above proposition shows that there exists a unique continuous exten-
sion of S; to the space L(X,, #t2), which will be also denoted by the same
letter S;. In particular T, and P, should be considered to be operators in
L,(X;, ¢#22) from now on. Then the following is a corollary of the above prop-
osition.

COROLLARY. Let S be as in Proposition 3. Then

%telgil SaA=1Sl.
In particular, sup|T:|=IT| and sup||Pl=]|P|.
24 24

As we stated before, A= 4 is also a probability measure whose support is
contained in X;. The following proposition shows the relation between #; and
A

PROPOSITION 4. For any A< A, the measure A is absolutely continuous with
respect to p; And let v, be the Radon-Nikodym derivative of A by p;. Then
v,€L(X,, 1) and Tivi=v,. Moreover if T is a contraction, v;=1, i.e., A=y,

PROOF. Since P,f=2(f)lx, for feC(Xy, |A(NI=IP/I=|Plplf1). This
shows that 4 is absolutely continuous with respect to g; and éi'%:v 1€ Lol X5, 222).

Moreover the fact that A(P,f)=a(f) for all f=C(X)) implies T P;v;=v; and
hence T,v,=v, since P,T,=P,. If P; is a contraction, v,=<1. From this we

get v,=1 a.e., since lzl(IXZ):fvzdm.

The following proposition asserts that the decomposition X:zUAXZ is com-
(=3
patible with the decomposition of the dual operators T, and P,

PROPOSITION 5. Let feC(X) satisfy flx,=0. Then T'f=0 as an element
of Ll Xy, p), and T fl 5, =T'fl x, hold for any feC(X).

ProOF. For any geC(X) and heC(A) we have
11 hem)dp={T' g hem)dpe,

hence
[ 1 Teyh(Ddv= p T f)M(2) .
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By the assumption about f and the arbitrariness of %, we get JT’fga’pz:
_ffT,:gd;z;:O. Thus 77f=0 in Lo(X3, #;). The same argument shows T, flx,=
T'flx, for any fel(X).

Let us consider the ergodic property of T)’s.

PROPOSITION 6. For any Aed, T, is strongly mean ergodic, ie., T,y=
—}\T(I+Tx+~-‘—l—TZN‘1) converges strongly to a positive projection Q.

Proor. Clearly T;ly,=ly, and [T,y =|Tx| by Proposition 3. Then by
Theorem 4.2 in [17, these imply that T; is strongly mean ergodic. That Q;
is a projection is easily proved by the positivity of T;.

COROLLARY. The projection Q; in the above proposition satisfies the follow-
ng equality.
T:0:=Q:T,=0Q;; PQ,=0Q;P=F;.
PrOOF. The first relation is immediate and the second follows from P,T,

=T,P,=P,.

The above corollary shows that the range of @, contains that of P; (Q; is
“finer” than P;). Under a stronger condition we have the following

ProOPOSITION 7. If T is uniformly mean ergodic, t.e., Ty converges in norm
to P, then P;=Q, for all i A.

PrOOF. By Proposition 3, |Toy—Pl=SITy—P| for any 14, hence Ty
uniformly converges to P, therefore P;=0Q,.

In general we have
PrOPOSITION 8. For any fixed feC(X), P f=Q,f for v-a.e. A.
Proor. Let feC(X). Then

Ty —P)fl={ 2| (Tay— Py

Since l]vi_rgll(TN—P)fll:O, there exists a sequence {N}i-1... for which
%1}2 2| (Tyw,—P:) f1)=0a.e. . This implies P,/=0Q,f a.e., since Q,/ is the strong
limit of Ty /.

A simple example in which P;=Q, for some 2 will be given in §5.

We are now ready to obtain the desired irreducible components. Let S;

be the support of v, namely S,={x€ X;; v:(x)=0}. Then by Proposition 4 the
closed ideal I;={feL(X,, ¢#o); f=0 on S;} is T-invariant, ie., T, ,Cl,. It is
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also clear that I, is P;- and Q,-invariant. Hence T, P; and @, respectively in-
duce operators T, f’; and 0; in L{X,, #/1, which is isomorphic to {fe
Ly X,, 12); /=0 on S;°} and will be denoted by E;. These operators are all posi-
tive, and P, and Q, are strictly positive since Igzlflzl(lf{)lm and P,0,=P,.
To get the irreducible component we have to consider the sublattice of F,.

LeMMA 2. Let F; be a closed T -invariant vector sublattice of E; on which
P,=0,. Then ’T\FX is an wrreducible positive operator.

Proor. Let I be a nonzero closed ’]N‘Z-invariant ideal in F,;. Then there
exists a nonzero f€1, f=0. By the T -invariance of I, sz:@‘/:f:Z\lvim Tonf also
belongs to [. Since ﬁlle(f)lgz and 2(f)>0, this implies 15,7, hence [=F,.
Thus T is irreducible.

COROLLARY. If ]32:@1 holds, T is irreducible. In particular if T is uni-
formly mean ergodic, T, is wrreducible for any ic A.

To choose a suitable sublattice we need the separability of the space E=
L.{(X, p). For convenience sake we call a subset V of £ a @-linear subspace
of E if V is a vector subspace of £ as a vector space over the field @ of
rational numbers.

LeMMA 3. Suppose E be separable. Then there exists a countable set V,=
{ oY wen©&C(X) containing ly, which is a T-invariant Q-linear sublattice in C(X)
and norm dense in E,

PROOF. By the separability assumption, there exists a countable dense Q-
linear space V:={g}.evCC(X) containing 1. Let U, be the Q-linear space
generated by V,\J{T'g.}ines. U, is also countable. Then let V, be the Q-
linear space generated by {fiAfs; fi, o€ U . Clearly V,CU,CV,. Continuing
this process we can define an increasing sequence of countable Q-linear subspace
of C(X), {Vibren, {Unlner which satify V,CU,CV,,,. Put VoznyNVn. Then
V, is the desired countable @Q-linear space. Indeed VOCC(X; and T-in-
variant, since if feV,, TfelU,CV,,; and hence Tf=V,. Moreover if /3, eV,
there exists an neN for which fi, /€ V,CU,. Then fi+/f,€V, and finS,
€V,.. Since fiV/Si=—(—fIA(—F.) and V, and U, are @-linear 1V /& Voii.
Thus V, is a sublattice of C(X).

Let F, be the closure of {fzls,}nev in £;. Then F; is clearly a T -invariant
vector sublattice of E,, and by Proposition 8 P,=Q; on F, for v-a.e. A
Combining Lemmas 2 and 3, we get the following

THEOREM 1. Let T be a positive operator in the L,-space on a hyperstonean
space X with a normal measure p, and T satisfy the conditions 1) to IV) in the
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previous section. Then there exists a decomposition of the space X='\J X; and
iEA

disintegration of the measure g:fpldv, support{p) = X;.  And T naturally in-
duces an operator T; in L(X,, 1) which satisfies condition 1), II) and 1V). More-
over there exists a measurable subset S, of X, and T naturally induces an
operator T, in Ly(Sy) satisfving 1) 1) LI) and IV). If the space L(X, ) is sepa-
rable there exists a closed sublattice F; of L.(Si, pi) the restriction of T; to
which is an operator satisfying 1) to IV), and irreducible for v almost every A.

COROLLARY. 1) If T is a contraction, T; satisfies conditions 1) to IV).
i) If the convergence in condition 1) is replaced by the uniform one, T, is it-
self irreducible for all A A. If we further assume that T is a contraction,
T; is irreducible for all Ae A.

PROOF. 1) is clear from Proposition 4. ii) follows from Proposition 7 and
).

The arbitrariness about the choice of the space V, in Lemma 3 is partly
justified by the following

ProposITION 9. Let L(X, p) be separable and V, and V, be Q-linear sub-
spaces satisfying the condition for V, in Lemma 3. Let F% be the closure of
{flsy; feVi} (1=1,2). Then F}=F} for v-almost every A.

Proor. It suffices to show the proposition in case V,CV,, so let V=
{8} nexC{fatnev="V,. For each f,€V,, the inﬁrnumm/e\v 2 fa—gnl) in C(A)
is 0 since V, is dense in L,(X, ¢#). This implies thaé the set O,={1e4;
inf g;(| fo—8gn|)=0} is a rare set where inf p;(] /,—gx!) denotes the pointwise in-
fimum. Hence O=1J0, is also rare and »(0)=0. This shows that for A&0

. o neEN
J:F;I'

REMARK. i) The F;'s are not too small. In fact F=L,(X, ) is identified
with a “incomplete direct product” of the spaces Vily, (V, is the set in Lemma
3). For an accurate formulation, the notion of Banach bundle or of measurable
field of Banach spaces will be convenient ([37 [4] [6]).

ii) A concrete representation of P or @, is also given in [1] Theorem 4.2. In
particular if T is a contraction, they are conditional expectation operators
with respect to sub o-fields of measurable sets.

§4. Spectral properties.

In this section spectral properties of T and T;'s will be considered. The
unbounded connected component of the resolvent set o(S) of an operator S is
denoted by 0.(S). In §2, we started with an operator T satisfying the conditions
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D, II), and picked up the part of 7, which we call T, throughout this section,
satisfying I), II), III) and IV). Thus in this section T denotes an operator in
L2, m) satisfving the conditions I), II). And T, denotes the part of T
satisfying the conditions I) to IV) acting in L,(X, #) on a hyperstonean space
X. Then by Lemma 2 in [13] p{T)Tp-(T:) holds, in particular o(TH)NI
=o(TpNI where I'={a=C; |a|=1}, since the spectral radius #{(T) of T is
less than or equal to 1 by condition II). Let Ty, T, denote the operators
obtained from T by the reduction theory in §3. Then we have the following

PROPOSITION 10. i) For any A€ A, pulTVC pulT)C 0T holds, and if the
space Ly(X, ) is separable and F, is the sublattice defined before Theorem 1,
Poo(Tz)CPm(Tleﬁ- . .
ity If acpT)) and 2€ 4, |Rla, TH|Z|R(a, TPz R(a, Tl and |Ra, THl=
|R(«, 7‘,;]”)]{ when Ly(X, ) is separable and F; is the same sublattice as in D®.
i) If asp(Ty), sup | R(a, Tl =R, THI.

Proor. If the relation p(T)Cp(T) and ||R{a, T)IZ||R(a, Tl is proved
for a<p.(T,) and 2=/, the other relations in i) and ii) follow readily from
[13] Lemma 2 and its corollary. Let a<p.(T,) and c=|R(a, T))|]. Then for
any feC(X) |(a—T)fll-¢=]f]l holds where the norm is that in Li(X, ). From
this inequality we get as in the proof of Proposition 3, [[(a—T,) fl-c=|lf] where
the norm is that in L, (X;, #z). This inequality implies that p.(T)No(TH® is
closed and open in p.(T3), hence void. In fact p.(T,)No(T;) is clearly closed
in p(Ty), and if a,=p(T)No(T,) is not an interior point of p.(TNo(T) there
exists a sequence «,< p(T)No(T;) converging to «,, this contradicts a,=0(T;)
since sup | R(ex,, Tl <co by the above inequality. To prove iii) it suffices to
show sup | Rla, TOIZ | R(a, TNl 1f dzs}éﬁ | R(a, THll and feC(X), [(a—THf-d
=1/l holds for any A= /A. Integrating this we have |(¢—T)fIl-d=]|fil, hence
| R{e, THI =d.

COROLLARY. G(T)[\FDU(TI)(\FD()\EJA a(T,:))‘mF:)()k:JA (T NI

A partial converse to iii) in the above proposition is proved by a general
property of resolvent and iii) itself (see [13] Lemma 3 and [11] Proposition
1.

ProrositioN 11. If a,e [ satisfies o, zmA‘O(TD and sup | R(a,, Tl < oo, then

= =4
a,€ p(T)).

In the rest of this section we prove that the inclusion relation in the

corollary of Proposition 10 may be replaced by equality if we replace the con-

®  R{(a,S) denotes the resolvent (a—S)~! of an operator S.
9 5(S) denotes the spectrum of an operator S.
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dition II) of strong mean ergodicity by the following stronger one.

II') T is uniformly mean ergodic, i.e., Ty converges in operator norm to P.
It is easy to see that 7, is also uniformly mean ergodic. S. Karlin [8] proved
that the condition 1I’) is equivalent to the following II?) under the condition D).

11"y #(T)=1 and R(a, T) has a pole of order at most 1 at a=1.

It is clear that 7 satisfles the same condition as for 7 ([13] Lemma 2
Cor. 2). In the remainder of this section we assume that the operator 7 hag the

properties ) and 1I') (or equivalently 1) and II7)). The theorem to be proved
is the following

THEOREM 2. Let T be an operator satisfying conditions I) and 1I), and let
(Tt aeq and {T3} 1e4 be the operators defined in the first paragraph of this section.
Then the relation

ATINT = o(T)) AT =(\ o(F) AT
holds.

Although the proof of this theorem goes almost parallel to that of Theorem
3 in [11], which is a modification of the proof of [13] Theorem 6, it will be
given here for completeness. For the proof we prepare some lemmas.

LeMmA 4 ([13] Lemma 5, [5] Lemma 5). Let T be a positive operator in

a Banach lattice E with spectral radius v(T)<1 and R(e, T) has a pole of order

at most 1 at a=1. Let P= lim{(a—1)R(a,T) and Q=I—P. Then for f,g<k,
a—1

a,eC satisfying Tf—a,f=g, the following inequality holds for any a>1.

a—la,|
a—1

fl= PiflHa—laDR(a, T)QIfI +R(a, T)igl .

Let {T,},ex be a sequence of positive uniformly mean ergodic operators,
with T, operating in a Banach lattice F,. Further we assume that ||T,] is

uniformly bounded and the convergence of A[{f :Zj Tk — P, is uniform in 7,
and P, is a one-dimensional projection for all n and sgp 1P, l<co, (An
example of such a sequence is {7,,} ,ex Which we use in the proof of Theorem 2.)
Let E={{f.}; f.€E,, sup!f.l<oc}. With linear structure and order defined
coordinatewise and norm éeﬁned by [ {f.}=sup |l fxl, E is a Banach lattice. The
product operator 7 is defined by T{fn}:{Yn’nfn}. Then 7T is also uniformly

mean ergodic with the limit projection P being the product of P,. Let & be
an ultrafilter finer than the Fréchet filter on N. Put

J5= {7} limgl Pl fol =0}
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where limg is the ultrafilter limit with respect to §¥. Let E denote the factor
space E/Js. Since the closed ideal Jy is easily seen to be T-invariant, the
operators T and P induce operators in E which we denote by T and P re-
spectively. Then we have

LEMMA 5. Let | denote the closed ideal generated by PE. Then Jis T-
invariant and T|7 is an irreducible positive operator. Moreover Tl is uniformly
mean ergodic. If sup |R{a, Tl <co for any a,e{a; 0<|l—a| <r}, p(YN‘[j):)
{a; 0<|1—al<r}.

Proor. Let 1, be the element in P,E, such that 1,=0, |1,)=1. Then
each {f,} €PE is equivalent to an element of the form {rl,} modulo Jz. This
is clear since each f, is written as 7,1, 7.€C and the sequence {y,}ney is
bounded. (Take 7 to be limg7,) Thus the space PE is one dimensional. It
is now clear that J is T-invariant. Uniform mean ergodicity of Tz is eagily
proved since T is uniformly mean ergodic, and the limit projection for 7|7 is
P{J This implies the irreducibility of TlJ Since the condition sup | Ry, T

<o implies a,= p(T), and #(T)<1, the last assertion follows from [13] Lemma 2.

LEMMA 6 (Fundamental property of irreducible positive operators) ([13]
Lemma 6). Let T be an irreducible positive operator in a Banach lattice E such
that r(T)=1 and 1 is a pole of R(a,T). Let r>0 satisfy

{a; 0<Ja—1]<rtCp(D)

and @, be in o(T)NI". Then there exists a bounded linear operator D in E such
that the inverse D™' exists and

I1D]=D"=1,
[DfI=|D7 f|=|f| for any f€E
T=o7*D*TD

and
Rla, TYy=a7'DR(a/e,, T)D™ for 0<|a—a,|<r.
LEMMA 7. Let T be an positive operator in a Banach lattice E such that

Rla,T) has a simple pole at a=1 and r be a number for which {a; 0<]a—1] <7}
Co(T). Let P=lim(a—1DR(a,T) and J={feE; Plf1=0}, B={a; la|>1—r}.
all

Then [ is a closed T-invariant ideal and the operator T/] satisfies
o(T/))NB=0o(T)NB
and a,€B is a pole of R(a,T/]) if and only if it is a pole of R(a, T).
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LEMMA 8. Let T and P be as in Lemma 7 and let I be the closed ideal
generated by PE. Then o(T|)N\B=0c(T)N\B holds, where B denotes the set de-
Jfined in Lemma 7.

(Lemma 7 and Lemma 8 are the same as Lemma 2 and Lemma 3 in [10]
respectively.)

PROOF OF THE THEOREM. First note that o(T)N =o(T)NI by Lemmas
7 and 8. So it suffices to show the equality for 7,. We first show the rela-
tion U(Tl)r\F:(lkejAa(T,-_))‘mF. Since the relation O(Tl)ﬂFD(xé/AU(Tz))_ﬂF is
proved in the corollary of Proposition 10, it suffices to show the inverse inclu-
sion, which is equivalent to

oINS, (TN
Let a"E(;QA o(TH)’NI". By Proposition 11, it is enough to show that
32161/;1) | R(a,, Tl <oo. We shall see in the following four steps that the assumption
sup | R(ety, Ty)ll=00 leads to a contradiction.

The first step: Let 7 and b be positive numbers satisfying

{a; la—ay] <7}CZQ1P(TA~),

{a; O<a—1] <r}Cp(T)
and

sup | R(a, TH(I—P)[<b .

Let s be a positive number less than » and 1/(26). Then by the same argument
as in the first step of the proof of Theorem 6 in [13], we can deduce the
existence of a sequence of elements of 4, {1,},ey and a number «, with
la;—a,] =s satisfying the following inequality for any n< N.

| Blay, To )| >0
| Ry, Ty ) >n.
The second step: The sequence of operators {7,} chosen above satisfies

the condition stated before Lemma 5, hence there exists a positive irreducible
operator 77 with 7(T'|7)=1 and 1 is a pole of R(a, T'|7) of order 1 and

{a; 0<|a—1]<ricp(T|5).

The third step: In this step we shall show that a, and a, belong to P.(T)
(the point spectrum of T. By the definition of T,, there exist f,, /'» and g,
g% in L(X;,, ;) satisfying

Ll =1/ a=1, lgal, gl <1/n

and
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Topfo=0futgn, Tuf 2= 2t8n.
Since s<1/2b, we may choose an a@>1 to meet the condition (a— e )-b<1/2.
Applying Lemma 4 for such « and using the fact
ita—D)R(a, T, Y I—Pi)ll,  Na—lai)R(a, T:,)U—P)l <1/2,
we get
IIfnll/ZSIIP;n!fniH—H!R(a, Ty 01810,

TRV e MYRIER TN SR IEAT

Since limg| R(a, Tzn)lgnill—hm%llf?(a T:)18%11=0 and [/all=1/2]=1, we have
limg| Pz, /21 [1>0 and limg|| Pi, /72 11>0. Thus the elements 7 and f’eE which
correspond to {f,} and {f’,} are mot zero. TFf=a,f and T fr= 1f’ are clear,
hence a,, a,< P(T).

The fourth step: Applying Lemma 5 to the results of the third step, we
have «,, CKIEO'(le>. This contradicts Lemma 6.

Thus we have shown a(T)r\F:(Z&EJAo(TZ))'mF. Let 7 be the number defined
in the first step, and let B={«a; la| >1—r}. Then by Proposition 10 and Lemma 7,
we have o(TyNB=o(T)NB for any i=A. This equality entails (X%O'(T,z))—
A=)yl i

P
As a special case we have the following
COROLLARY. Suppose T satisfy the conditions 1),11") and o(T)ZI'. Then

o(T)=(\J o(T)) =(Uo(T))".
i€ AsA
ProoF. By condition II’) and Proposition 10, 1), p-(T)2{a; |a| <1} holds
for any A€, which implies the conclusion.

In particular the corollary is valid for an invertible isometry having the
properties I) and II").

The following theorem is obtained from Theorem 2 exactly in the same
way as Sawashima and Niiro inferred their Theorem 7 from Theorem 6 in [13].

THEOREM 3. Let T be as in Theorem 2. Then o(T)NI" is a finite set con-
sisting of roots of unity. Moreover if a,ea(TYNT is an isolated point of o(T),
it is a pole of R(a,T) of order 1.

§5. Examples and applications.

i) Let (2,2, m) be a finite measure space and ¢: Q-—>2 be a measure
preserving invertible measurable transformation on 2. ¢ generates a positive
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operator T: L,(2, &, m)—=>L,(2, 2, m) by the following formula, T/(w)=7(¢ (®)).
It is well-known that T is strongly mean ergodic, therefore 7 satisfies the con-
ditions I), I), III) and 1V) in §2. First of all we verify that the irreducibility of
T is equivalent to ergodicity of T or ¢. Since the ergodicity of 7 means that the
limit projection P in condition II) is one dimensional and its range is the space
of constant functions, every nonzero 7T-invariant closed ideal of L.(£,2,m)
contains 1g. This shows that ergodicity implies irreducibility. The converse
implication is clear since if a non-trivial subset A=2X is ¢-invariant (i.e. o(A4)
CA), L,(A) is a proper T-invariant closed ideal of L,(£, 2, m).

In this case the “canonical representation” of 7 in §2 is also induced by a
point transformation. To see this we note that the operator 7 is multiplicative
onL(£2, 3, m). Infact, T(f-g)(w)=(f- )¢ Hw)=Fp  (w)-gl¢" (w)=THw)Tg()
for any ws£2. Moreover T,=T|..@.5m 1S continuous in L. norm. These imply
that the representation of 7 on a hyperstonean space X, which we denote T, as
in the previous section, is induced by a homeomorphism @ : X—X, ie., T, /(%)=
AP (x) for feC(X). And the decomposition X:ZLGJAX; satisfies @(X,) C X; for
any 4, since for any A, p=4, A=, there exists a Ti-invariant continuous func-
tion f such that A(X;)=/(X,).

In the present case the process of constructing a suitable sublattice in L,(X;, ¢
may be stated in terms of a sub o-algebra instead of dealing with functions.
Roughly speaking, this is done by taking the space V, in the proof of Lemma 3
in §3 as a Q-linear subspace of simple functions of the form X a;l,, A/'s
are clopen subsets of X. The details are omitted.

i) We give here a few simple examples of reduction.
@. If the measure space (2,2, m) is discrete, ie, m({w})>0 for any wef,
its representation space X is {2 itself and the reduction theory in §3 gives a
decomposition of the space £2. This shows that the reduction theory of this
paper is a generalization of irreducible decomposition for strongly mean ergo-
dic positive matrices.

®. Let £2 be the 2-dimensional torus R?/Z* with usual topology and m be the
measure induced by the Lebesgue measure on R? The points of £ will be
represented in the form (%, y), x,y€[0,1). Then if the addition in £ is de-
fined by the coordinatewise addition modulo 1, £ becomes a compact abelian
group and m is the Haar measure with respect to this structure. A. and C.
Ionescu Tulcea [17] showed the existence of a lifting p on a locally compact
group which commutes with translation. If we apply their result to the pres-
ent case, we have a mapping: M.(#2, m)—M.(£2, m) satisfying the following re-
lations (M.(£, m) denotes the space of everywhere defined m-measurable
bounded functions on 2).
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D o(NH=/;

2) f=g implies o(/)=p(Q);

3) o(lg)=1lp;

4) f=0 implies o(f)=0;

5) plaf+Bg)=ap(f)+80(8);

6) o(fe)=p(f)o(g);

7) p(f(a,b)):<,0(f)>(a,b) for any (a,b)ef.

REMARK. %1) = denotes the equivalence — equality m-a.e. —.
%2)  fia»y denotes the translation of f by (g, ),

f(a;b)(x) y):f(x-a; y_b>'

Such a lifting p is strong and of product type. Namely the following

proposition holds.

PROPOSITION 12. If p satisfies 1)~T7), then p(f)=F for fel(), and if f=
Mo(2, m) is a function of one variable p(f) has the same property.

PrROOF. Let feM.(£2, m) depends only on one variable. Then it is clear
from property 7) that o(f) has the same property. Put f(x, ¥)=e***, Then

o(f) depends only on x and
o(N)(—a, 0)=p(fia0)(0)=e "2 %p(f)(0)

by 7). This implies o(f)x, y)=c-e*™** for some constant ¢, but ¢ must be 1
since f=p(f). Similarly for each n,meZ p(@Frimetny — grrmatnyd - Thus p(f)=S
for feC(Q) since the linear combinations of such functions are dense in C(2)

in uniform norm.

Now consider the following measure preserving point transformation ¢ on
2, which maps (x,») to (x,x+y). Since ¢ is invertible it induces a positive
operator T in L,(2,m) satisfying conditions D to IV) as in i) of this section.
Let X, A denote the hyperstonean space obtained by the application of the
reduction theory to 7. It should be noted that the limit projection P is given
by Pf(x, y):ff(x, y)dy. Let p be the lifting considered in Proposition 12. Then
p gives rise to a mapping ¢ of £ to the hyperstonean space X. 7 is defined
by identifying the multiplicative linear functional feL.(2, m)—po(Hw) (ws )
with a point of X since the points of X are nothing but algebraic homomorphisms
of L(2, m) onto C. Fix a=[0,1) and consider the set C,=1{la,b); 0Zb<1}.
Then there exists a A4 such that 7(C,)CX,. In fact, assume that there
exist A, pe A, A=p and by, b,=[0,1) such that w{a, byye X;, =(a, b,)= X,.. Since
A% p, there exists a function f& PL_(£2, m) which separates z(a, b,) and 7(a, b,),
ie., p(f)a, b)=0o(f)a,bs). However f is equivalent to a function whose value



422 Shizuo MIYAJIMA

depends only on x, hence p(f)(a, b.)=p(f)a,b,), a contradiction. Thus we have
shown ¢(C,)CX; for some Z=4. The next step is to show that the space
L.(C,, m,) is embedded isometrically in L,(X,, ¢y, where m, is the ordinary
Lebesgue measure on unit interval.

In the sequel we denote the image of feC(£2) in C(X) by f. Since T is a
contraction, g¢;=2 by Proposition 4 in §3. This implies that #;.(f):,i(f):
(Pf)~(x) for x€X; and feC{2). Since Pf(x, y):f f(x, 2)dzeC(2) and t(w)e

X; for w=C, and p is a strong lifting, X(f):(Pf)N(f(w)):p(Pf)(a)):jf(a, 2)dz.

Therefore A( f):j f(a, z)dz. This shows that A(f) depends only on the values
on C, and there exists an isometric embedding 7: L.(C,, mq)—>L.(X;, p2).

C
1= Vi
fl 4
iI NEES )
4 2
1
if 250
Al 1
R ()
b
‘J
1
0 4 1
Fig. 1.

Exactly speaking, 7 is the natural extension of the mapping C(C,)—>L (X}, )
which is defined by fe C(Ca)#»flleeLl(Xz, #;) where f, is a continuous
extension of f in C(£).

Summing up the above results, we have the following

ProOPOSITION 13. Let C,={(a,b); 0=b<1}. Then C, is considered to be
contained in some X; and L (Cq, mg) is isometrically embedded in L{(X,, ).

Using the embedding in Proposition 13, we can show the following
PROPOSITION 14. There exists a Aed for which P;=Q,.

PrOOF. Let a=1/2 and 2 be the element such that z(C,)CX,. Then it is
shown that the above embedding 7: L{(C,, ms)—>L(X,, ¢t;) “commutes” with the
action of 7. To see this let f€C(C,) and f,eC(2) be an extension of f.
Then (Tfl)~[X,1:’I}f1 is clear and hence {(7Tf;]c)=T:((f)). Then it is easy to
see that T;(i{(f))=1i(f), which implies Q;((fN=(1/2)I+Ti(f). Therefore the
range of @, is infinite dimensional. This shows P;*(); since P; is a one di-
mensional projection in L,(X;, ).
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REMARK. The proof of the proposition shows that there exist countably
many A€A for which P;>Q, In fact if X;D7(C,) for some rational number
aE[O, 1): PZ#QZ-

iii) Let us return to the situation in §3, ie., T denotes an operator
satisfying D~IV) in L(X,#) on a hyperstonean space X with a finite
normal measure u. Since g is finite L,(X, #)CL,(X, p), and if we denote the
restriction of T to Ly(X, ¢) by Ty,, Ty, is also a bounded linear operator in

Lo(X, ¢) by the Riesz convexity theorem ([5]1 VL. 10). Since Sup W T, =T and
T:1x,=1x,;, T; also induces an operator in L,(X;, #;), which wﬂl be denoted by
T,1,- Then we have the following

ProrpositioN 15. If Ty, is unitary (resp. self-adjoint), then T,1, is unitary
(resp. self-adjoint) for all A€ A.

ProoF. Let feC(X) and gC(4). If Ty, is unitary
VT(fger)l =/ gomly, .

By the equation (1) in Proposition 1, we get
[1eD i Taf1dv={ 182121 1D .

Since g is arbitrary, g#;(|T:/1)=g;(1/1%) follows, hence T, is unitary. The
self-adjoint case is proved similarly.

It is also clear that the restriction Ty, (resp. T,1,) of T (resp. Ty to
L(X, 1) (resp. L,(Xy, #2)) is also a bounded linear operator in L, (X, g) (resp.
Lo( X 1)) and sup [To,|=[Tt,| holds.

If we alter the assumption that 7 is a bounded linear operator in L,(X, )
having the properties )~IV) to the one that T is a bounded linear operator
in L(X, ) satisfying D~1V), we have the following proposition in the same
way as in § 3.

PrROPOSITION 16. Let T be a bounded linear operator in L (X, u) having the
properties 1)~1V), where X is a hyperstonean space with finite normal measure
¢ (support(p)=X). Then there exists a decomposition X= _U X,. Moreover
there exists a measure p; on each X,, and T naturally mdufes an operator T,
in L(X,, p2) for which s/gg (T l=0Tl holds.
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