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§1. Introduetion.

The spectral property of a positive operator in C(X) was investigated by
[. Sawashima and F. Niiro, by decomposing it to its irreducible components,
which are in one-to-one correspondence with extreme points of invariant prob-
ability measures on X [8]. Recently, S. Miyajima extended this result to a
positive operator in an (AM) space without an order unit [6] and in L,(X) [7].

In this paper, the decomposition theory in C(X) is extended to a positive
operator T in a simplex space. E.G. Effros obtained a representation theorem
of a simplex space and also a theorem about existence of a bijective map of
the set of all closed ideals in a simplex space onto the set of all closed faces
of its state space [3,4]. By extending the former theorem to a T-invariant
case (Th. 1) and using the latter theorem, we decompose a positive operator
to its irreducible components (Th. 2). This decomposition seems to have some
meaning, since spectral properties of positive, irreducible operators in simplex
spaces have been obtained in [11]. Theorem 3 is an application of the result
by E.G. Effros (Th. 3.1 of [3]) to a T-invariant case and also a generalization
of the result by H.H. Schaefer (Th. 2 of [9]) to a simplex space.

§2. A simplex space.

DEFINITION. An ordered Banach space E with a closed, proper cone is said
to be a simplex space if its dual space E’ is a Banach lattice of type L, that is,
for any non-negative elements f, g of E’, we have | f+gl={fl+lgl. E.B.
Davies defined an R-space E as a regular ordered Banach space with the Riesz
separation property, where a regular ordered Banach space means that it has
the properties

(i) if x,yeF and —x=y=x, then [y]|=ix]

(ii) if x=F and >0, then there is some y=FE with y=x, —x and |yl <l x|+,
and the Riesz separation property means that if when a, b=<c¢, d€E, then there
exists x€FE with

a,b=x=cd.
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An element 1 of E is called an order unit if it has the properties

(1) =1
(il for x€E, |x| =1 if and only if —1=x=1

Therefore, a simplex space is an R-space of fype M, which means for any
non-negative elements x, y of E, there exists z&E such that

zzx,y and [z|= max {|l«], i} .

Moreover a simplex space with an order unit is equivalent to an R-space with
an order unit.

We will show examples of a simplex space with an order unit which is not
a Banach lattice. Example 1 has relation with the potential theory. Example
2 is the simple one.

ExXAMPLE 1. Let 2CR® be a spin of Lebesgue and E be a Banach space of
all real valued functions which are harmonic in £ and are continuous on 2.

Since E is simplicial, £ has the Riesz separation property [5, Th. 2.17.
Therefore E is a simplex space and moreover E is not a Banach lattice, for
the Choquet boundary oF is not closed [1, Th. 13].

ExaMPLE 2. Let E denote the Banach space of all continuous real valued
functions f on the closed unit interval [0, 1], satisfying the condition f(1)=

S {r0+(4)}-

Then it is easily seen that E is a simplex space, but not a Banach lattice.

When E is a simplex space with an order unit 1, the state space S={peFE’:
=0, loll=1} is a weak*® compact, convex set in E’. The set £S5 of extreme
points of S is not necessarily closed, although in case of a Banach lattice, &5
is closed. Let &S be the weak* closure of &8S.

When E is a Banach lattice, E is isomorphic to C(&S) as a Banach lattice,
as known as the Kakutani's representation of an (AM) space. For a simplex
space the following representation theorem was obtained by E.G. Effros (Th.
2.2 of [3] and Th. 2.4 of [4]).

ProrOSITION 1 (E.G. Effros). A simplex space with an order unit is isomor-
phic to A(S), the space of all continuous affine functionals on S, and moreover to

the space {feC(ES): f(s):ffdps for all s=&S}, where p, is the maximal

probability measure on S with resultant s. Note that u, has the support in ES
and if s€&S, p; 1s a pownt measure.
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§3. A decomposition theory.

Let E be a simplex space with an order unit 1 and Te{E) be a positive,
sub-Markov and strongly ergodic operator with »(7T)=1, that is,

I) T=0

)y 711

an »(Ty=1

[T - 7771
n

We denote by P the limit operator of M,. Then P is a nonzero, positive, sub-

Markov projection with the spectral radius 7(P)=1 and the projection space PE

is the eigenspace of 7 for the eigenvalue 1. The following proposition for the

space PFE is easily proved in the similar way as the case of a Banach lattice

(see Prop. 2 of [8]).

V) =M, converges strongly.

PROPOSITION 2. PE is a simplex space with an order unit Pl.

Since the dual space of a simplex space is a Banach lattice, we have the
following in the same way as the case of a Banach lattice (see Prop. 3 of [&]).

PRroOPOSITION 3. (PE) 1is isomorphic to P'E’ as a Banach lattice.

Let @, A and A(®) be the set of all positive, normalized T'-invariant ele-
ments of E’, the set of all extreme points of @ and the space of all weak*
continuous affine functionals on @ respectively. Then we have

THEOREM 1. PFE is isomorphic to A(D), and moreover to the space {feC(A):
f(s):J'fdys for all se A} as a simplex space, where A is the weak* closure of .

PrROOF. By Prop. 2, PE is a simplex space with an order unit Pl and by
Prop. 3, the state space of PE is @. So Theorem is obtained by Prop. 1.

It is known in case of a Banach lattice, an element =@ belongs to A if
and only if ¢ is lattice homomorphic on PE. Although we can’t consider lattice
homomorphism in case of a simplex space, the corresponding result is obtained.

PROPOSITION 4. An element o=@ belongs to A if and only if for any f, g
= PE, there exists an element he PE such that

hzf, g and ()= max (o(f), ¢(g)).

ProOF. If ¢=® belongs to 4, {¢} is a one-point face of @, where a face
of @ is a convex subset F such that if ax+{(1—a)yeF with x, y=® and 0<a
<1, then x,yeF. For any f,g=PE, there exists an element k< PE such that
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k=f, g, for example, k={max (|| fl, lgl}-PLl. So by using Th. 24 of [3], we
can easily see that for any f, g€ PE, there exists an element h=PFE such that
hzf, g and ()= max (¢(f), ¢(&).

Conversely, if g=® does not belong to A, there exist ¢, ©.€9, ©:#¢,, and
a<R such that g=ap,+(1—a)p, and 1>a>0. Since A(D) separates points ¢,
and ¢, of @, there exist f, g€ A(@) such that

flon>gle)+e and fle)<glp,)—e  for some e>0.
Then for any he A(Q) satisfying A= f, g, we have
h(@)= max (flp)+e(l—a), g(@)+ea),
which means there exists no k< PE such that A= f, g and A(p)=max(f(¢), gle).

A subspace J of a simplex space E is called an ideal of E if J satisfies the
following properties (i) and (ii):

(i) if x=], then there exist ¥, z&] such that y=0,2=0 and x=y—z

(i) if 0=Zx=ye=], then x=].
An ideal J is called T-invariant, if TJCJ. An operator T is called irreducible
if there exists no closed 7T-invariant ideal of E, distinct form {0} and E. By
putting L,={f€E: h=f, —f and A(h)=0 for some Z&E} in correspondence with
{feV: A|f)=0} in a Banach lattice V, we have the following proposition.

PROPOSITION 5. I, is a T-invariant closed ideal of E.

ProoF. It is clear that I, is a T-invariant ideal by the relation LN K=
{feK:2(f)=0}, where K is the positive cone of E. We can now show that I,
is closed. Let f,=l,. Then we can find a sequence f, in [; such that |[f,—/oll
<1/2*. Then | fa—/Sfasl <1/277%. We construct a sequence h,&E such that

—far FrnEhn, B Shoe Sh,+1/2°7 and  A(h,)=0.

Suppose Ak, is given. As fry €1, so we can find %2, €E such that = SR
—fasr and A(hp.)=0. Putting A, =hns1+h,, we obtain Ay )=0, b1 Zhy, frss
<fo1/20 1< h, 41727 and — fou1Sh,+1/277Y Therefore we have —~fri1, far,
h,<h,+1/2"% hZ,.. Since E has the Riesz separation property, there exists
h..1€FE such that

—fasr Sasw hnéhn+1§hn+l/2n_l; Y.
Hence we have A, <h,. < h,-+1/2*' and A{,,,)=0. So h,—h,€E. It is clear
that —f,, fo<h, and A(h,)=0, so that f,=I; and I, is closed.
By defining S;={x=&S: f(x)=0 for all f€;} and N;={xe S: f(x)=0 for
all f=I;}, we have the following.



Decomposition of a positive operator 429

PROPOSITION 6. N, is a T'-invariant face of S and the following relations
hold ;
L={feE; [=0 on Ni}={f€E; [=0 on S;},

SXZNzﬂB_S
and
8N):N1{‘\6’S

where €N, 1s the set of extreme points of N,.

ProOOF. It is easily seen that N; is a T'-invariant face of S. Then by
Th. 3.1 of [3], the relation I,={fe E: f=0 on N,} is obtained. &N;=N;n&S
holds since N, is a face of S. By using EN;=N;N&S and S,=N,NES, we get
the relation

{feE: f=0on Nj}={f€E: /=0 on S;}.

Let = be the mapping of S into P'E’ equipped with weak* topology such
that
T x—> Ple,.

Then we have
PRrOPOSITION 7. For A A, t(x)=2 for any xN, (for any x€S,).

Proor. Suppose xN,;N\&S. For any f,g=PE, we have
max (P'e,(f), Pleg))= max (e.(f), .(£)).

Since f and g are elements of £ and x belongs to &S, there exists k€FE such
that
k=f,g and &(k)= max (e, (f), eg))

by Th. 24 of [3]. On the other hand, since A belongs to /4, there exists A€ PE
such that

hzf,g and A(h)=max (A(f), X&)

by Prop. 4. Since E has the Riesz separation property, there exists [€E such
that
k,hzl=f, g.

Then A(h—=0 and h=l, so A=I on N,. Hence e,([)=¢,(h)=e (Ph)=P’¢,(h) and
ex(B)=e, ()= max (e,(f), e.(g))=e.(k). So P’'s,(h)= max (P'e,(f), P'e.(g)), which
means P’s,= /4. Suppose P’e,# 4, then there exists fy&PE such that f,=0, A(f,)
=0 and P’e,(f;)>0. The latter inequality means f,(x)>0. Since x is in N, f;
&I, and so A(f,)#0, which is a contradiction. Therefore v(x)=2 is proved for
xe N;N\éS.
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Since N, is a weak* compact, convex subset of S, we get N;=co(N;NES)
by Prop. 6 and Krein-Milman theorem. Since 7 is linear continuous, 7(x)=2
holds for any x=co(N;N\ES)=N,.

Since I; is a closed ideal, E/I, is a simplex space and
E/L={f;eC(N): fly,=/: for some feE}
={g;=C(Sy): gls,=g: for some g<E},

where fly, is the restriction of f on N,
Since S; is T'-invariant, /=0 on S; implies T/=0 on S; and Pf=0 on S,
So (Tf)ls, is uniquely determined by fi We define this operator in E/I; by
T;. Thus
Ty fz—‘>(Tf>Isz.

Similarly we can define P,. Then we have

THEOREM 2. T, is a positive, Markov operator in E/I, with the spectral
radius v(Ty)=1 and strongly evgodic with the limit operator P,. The eigenspace
of T for the eigenvalue 1 is one-dimensional with the base 1g, and the eigenspace
of T; for the eigenvalue 1 is one-dimensional with the base 2ls,. Moreover T,
s trreducible.

ProoOF. It is clear that T, is strongly ergodic, with the limit operator P,
Prop. 7 implies P,f;=21]5,(fls, for any f&E, by the relation Pf(x)=FPe,(f)=
Als,(f2) for any xS, Hence T, is a Markov operator with 7(T;)=1 and the
eigenspace of T, is one-dimensional with the base 1ls,. By the relation Pip,(f2)
=P f)=0i{ls )| s,{ f2) for any @ =(E/L), Pip; is strictly positive and the
eigenspace of T} is one-dimensional with the base 1]s;. Hence T is irreducible
(see for example Th. 1 of [107).

For a positive ergodic Markov operator T in C(X), H.H. Schaefer inves-
tigated the relationships between extreme points of T-invariant probability meas-
ures on X and maximal T-ideals [97.

As the extension of his result, we have the following.

THEOREM 3. Suppose T is a positive ergodic Markov operator in a simplex
space E with an order unit 1 and denote by @ the set of all positive, normalized
T'-invariant elements of E', and by S the state space. Then the maps q,: A—I,
and g, I-N={x&S: f(x)=0 for all f &I} are bijections of the set A of extreme
points of @ onto the set I of all maximal T-invariant ideals in E and of I onto
the set R of all minimal closed T'-invariant faces of S, respectively.

PrROOF. By Prop. 7, it is easily seen that for A€ 4, I; is a T-invariant
maximal ideal and N, is a 7’-invariant minimal face. It is easily seen that g,
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is a bijective map in the same way as Prop. 6. Let ¢ be the map of A into N

such that
g: A—> N,, thatis, ¢=¢,-q,.

Then ¢ is injective by Prop. 7. Let N be any element of . Then I={f€E:
7=0 on N} is a T-invariant ideal in E and INKC{feK: Pe,(f)=0 for all x
eN}. Since T is a Markov operator, P’e, belongs to @. If there exists x&N
such that P’e,e A, then there exist ¢, ¢,€@ such that ag,+(1—a)p,=F’e,, 0<
a<1. Then Ple(f)=0 means ¢,(f)=0 and ¢,(f)=0 for fe€ K. Therefore
{feK: Pe,(f)=0 for all x&N}Clp,Nly,. So NDN, \JNy, holds, which contra-
dicts the minimality of N. If z(N)={P’¢,: x=N} contains at least two points
21, €4, we see easily that NDN;,\UN,, in the similar way, which is also a
contradiction. So z(N) consists of one point 1€/ which means ¢ is surjective
and therefore bijective. Then ¢, is also bijective.

REMARK 1. In case of a Banach lattice, A= A is a T’-invariant probability
measure on &S and S; is the support of 2 on &S, since €S is closed. Moreover
every T’-invariant minimal closed set in &S corresponds to an element 1 of A.
In case of a simplex space, however, not every T’-invariant minimal closed set
in €S but the restriction of a T'-invariant minimal face of S to &S corresponds
to an element 4 of A.

REMARK 2. When we replace the condition in Theorem 3 for T to be
Markov by to be sub-Markov, we cannot have the conclusion that the map ¢
is bijective (Ex. 3). But if we put S;={x=S: P’e,(1)=1}, then we have a
bijective map of A onto the set of all minimal closed T’-invariant faces of S,.

ExaMPLE 3. Let E be the Banach space of all continuous real valued func-
tions on the closed unit interval [0,1] and Te8(E) be defined as

wi(h) s}
Tf(x) =
£ 1 osxsi.

Then PE=C([ -1, 1]), 4=[-1-, 1], $=[0,17 ana S,=[-, 1]. Therefore

I={feC([0,1]): f(0()=0} is a T-invariant maximal ideal of E, but does not
correspond to any element of A.
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