Decomposition of a positive operator in a simplex space to its irreducible components

Dedicated to Professor S. Furuya on his 60th birthday

By Fukiko TAKEO

§ 1. Introduction.

The spectral property of a positive operator in C(X) was investigated by I. Sawashima and F. Niiro, by decomposing it to its irreducible components, which are in one-to-one correspondence with extreme points of invariant probability measures on X [8]. Recently, S. Miyajima extended this result to a positive operator in an (AM) space without an order unit [6] and in $L_1(X)$ [7].

In this paper, the decomposition theory in C(X) is extended to a positive operator T in a simplex space. E.G. Effros obtained a representation theorem of a simplex space and also a theorem about existence of a bijective map of the set of all closed ideals in a simplex space onto the set of all closed faces of its state space [3,4]. By extending the former theorem to a T-invariant case (Th. 1) and using the latter theorem, we decompose a positive operator to its irreducible components (Th. 2). This decomposition seems to have some meaning, since spectral properties of positive, irreducible operators in simplex spaces have been obtained in [11]. Theorem 3 is an application of the result by E.G. Effros (Th. 3.1 of [3]) to a T-invariant case and also a generalization of the result by H.H. Schaefer (Th. 2 of [9]) to a simplex space.

§ 2. A simplex space.

DEFINITION. An ordered Banach space E with a closed, proper cone is said to be a *simplex space* if its dual space E' is a Banach lattice of $type\ L$, that is, for any non-negative elements f, g of E', we have $\|f+g\|=\|f\|+\|g\|$. E. B. Davies defined an R-space E as a regular ordered Banach space with the Riesz separation property, where a regular ordered Banach space means that it has the properties

- (i) if $x, y \in E$ and $-x \le y \le x$, then $||y|| \le ||x||$
- (ii) if $x \in E$ and $\varepsilon > 0$, then there is some $y \in E$ with $y \ge x$, -x and $||y|| < ||x|| + \varepsilon$, and the *Riesz separation property* means that if when $a, b \le c$, $d \in E$, then there exists $x \in E$ with

 $a, b \leq x \leq c, d$.

An element 1 of E is called an order unit if it has the properties

- (i) $\|\mathbf{1}\| = 1$
- (ii) for $x \in E$, $||x|| \le 1$ if and only if $-1 \le x \le 1$.

Therefore, a simplex space is an R-space of $type\ M$, which means for any non-negative elements x, y of E, there exists $z \in E$ such that

$$z \ge x, y$$
 and $||z|| \le \max\{||x||, ||y||\}$.

Moreover a simplex space with an order unit is equivalent to an R-space with an order unit.

We will show examples of a simplex space with an order unit which is not a Banach lattice. Example 1 has relation with the potential theory. Example 2 is the simple one.

EXAMPLE 1. Let $\Omega \subset \mathbb{R}^3$ be a spin of Lebesgue and E be a Banach space of all real valued functions which are harmonic in Ω and are continuous on $\bar{\Omega}$.

Since E is simplicial, E has the Riesz separation property [5, Th. 2.1]. Therefore E is a simplex space and moreover E is not a Banach lattice, for the Choquet boundary ∂E is not closed [1, Th. 13].

EXAMPLE 2. Let E denote the Banach space of all continuous real valued functions f on the closed unit interval [0, 1], satisfying the condition $f(1) = \frac{1}{2} \left\{ f(0) + f\left(\frac{1}{2}\right) \right\}$.

Then it is easily seen that E is a simplex space, but not a Banach lattice.

When E is a simplex space with an order unit 1, the state space $S = \{ \varphi \in E' : \varphi \ge 0, \|\varphi\| = 1 \}$ is a weak* compact, convex set in E'. The set $\mathcal{E}S$ of extreme points of S is not necessarily closed, although in case of a Banach lattice, $\mathcal{E}S$ is closed. Let $\overline{\mathcal{E}S}$ be the weak* closure of $\mathcal{E}S$.

When E is a Banach lattice, E is isomorphic to $C(\mathcal{E}S)$ as a Banach lattice, as known as the Kakutani's representation of an (AM) space. For a simplex space the following representation theorem was obtained by E.G. Effros (Th. 2.2 of [3] and Th. 2.4 of [4]).

PROPOSITION 1 (E. G. Effros). A simplex space with an order unit is isomorphic to A(S), the space of all continuous affine functionals on S, and moreover to the space $\{f \in C(\overline{\mathcal{E}S}) : f(s) = \int f \, d\mu_s \text{ for all } s \in \overline{\mathcal{E}S} \}$, where μ_s is the maximal probability measure on S with resultant s. Note that μ_s has the support in $\overline{\mathcal{E}S}$ and if $s \in \mathcal{E}S$, μ_s is a point measure.

§ 3. A decomposition theory.

Let E be a simplex space with an order unit 1 and $T \in \mathfrak{L}(E)$ be a positive, sub-Markov and strongly ergodic operator with r(T)=1, that is,

- I) $T \ge 0$
- II) T1≤1
- III) r(T)=1

IV)
$$\frac{I+T+\cdots+T^{n-1}}{n}=M_n$$
 converges strongly.

We denote by P the limit operator of M_n . Then P is a nonzero, positive, sub-Markov projection with the spectral radius r(P)=1 and the projection space PE is the eigenspace of T for the eigenvalue 1. The following proposition for the space PE is easily proved in the similar way as the case of a Banach lattice (see Prop. 2 of [8]).

PROPOSITION 2. PE is a simplex space with an order unit P1.

Since the dual space of a simplex space is a Banach lattice, we have the following in the same way as the case of a Banach lattice (see Prop. 3 of [8]).

PROPOSITION 3. (PE)' is isomorphic to P'E' as a Banach lattice.

Let Φ , Λ and $A(\Phi)$ be the set of all positive, normalized T'-invariant elements of E', the set of all extreme points of Φ and the space of all weak* continuous affine functionals on Φ respectively. Then we have

Theorem 1. PE is isomorphic to $A(\Phi)$, and moreover to the space $\{f \in C(\Lambda) : f(s) = \int f d\mu_s \text{ for all } s \in \bar{\Lambda}\}$ as a simplex space, where $\bar{\Lambda}$ is the weak* closure of Λ .

PROOF. By Prop. 2, PE is a simplex space with an order unit P1 and by Prop. 3, the state space of PE is Φ . So Theorem is obtained by Prop. 1.

It is known in case of a Banach lattice, an element $\varphi \in \Phi$ belongs to Λ if and only if φ is lattice homomorphic on PE. Although we can't consider lattice homomorphism in case of a simplex space, the corresponding result is obtained.

PROPOSITION 4. An element $\varphi \in \Phi$ belongs to Λ if and only if for any $f, g \in PE$, there exists an element $h \in PE$ such that

$$h \ge f, g \text{ and } \varphi(h) = \max(\varphi(f), \varphi(g)).$$

PROOF. If $\varphi \in \Phi$ belongs to Λ , $\{\varphi\}$ is a one-point face of Φ , where a face of Φ is a convex subset F such that if $\alpha x + (1-\alpha)y \in F$ with $x, y \in \Phi$ and $0 < \alpha < 1$, then $x, y \in F$. For any $f, g \in PE$, there exists an element $k \in PE$ such that

 $k \ge f, g$, for example, $k = \{\max(\|f\|, \|g\|)\} \cdot P1$. So by using Th. 2.4 of [3], we can easily see that for any $f, g \in PE$, there exists an element $h \in PE$ such that $h \ge f, g$ and $\varphi(h) = \max(\varphi(f), \varphi(g))$.

Conversely, if $\varphi \in \Phi$ does not belong to Λ , there exist $\varphi_1, \varphi_2 \in \Phi$, $\varphi_1 \neq \varphi_2$, and $\alpha \in R$ such that $\varphi = \alpha \varphi_1 + (1-\alpha)\varphi_2$ and $1 > \alpha > 0$. Since $A(\Phi)$ separates points φ_1 and φ_2 of Φ , there exist $f, g \in A(\Phi)$ such that

$$f(\varphi_1) > g(\varphi_1) + \varepsilon$$
 and $f(\varphi_2) < g(\varphi_2) - \varepsilon$ for some $\varepsilon > 0$.

Then for any $h \in A(\Phi)$ satisfying $h \ge f, g$, we have

$$h(\varphi) \ge \max(f(\varphi) + \varepsilon(1-\alpha), g(\varphi) + \varepsilon\alpha)$$
,

which means there exists no $h \in PE$ such that $h \ge f$, g and $h(\varphi) = \max(f(\varphi), g(\varphi))$.

A subspace J of a simplex space E is called an *ideal* of E if J satisfies the following properties (i) and (ii):

- (i) if $x \in J$, then there exist $y, z \in J$ such that $y \ge 0, z \ge 0$ and x = y z
- (ii) if $0 \le x \le y \in J$, then $x \in J$.

An ideal J is called T-invariant, if $TJ \subset J$. An operator T is called *irreducible* if there exists no closed T-invariant ideal of E, distinct form $\{0\}$ and E. By putting $I_{\lambda} = \{ f \in E : h \ge f, -f \text{ and } \lambda(h) = 0 \text{ for some } h \in E \}$ in correspondence with $\{ f \in V : \lambda(|f|) = 0 \}$ in a Banach lattice V, we have the following proposition.

PROPOSITION 5. I_{λ} is a T-invariant closed ideal of E.

PROOF. It is clear that I_{λ} is a T-invariant ideal by the relation $I_{\lambda} \cap K = \{f \in K : \lambda(f) = 0\}$, where K is the positive cone of E. We can now show that I_{λ} is closed. Let $f_0 \in \overline{I}_{\lambda}$. Then we can find a sequence f_n in I_{λ} such that $\|f_n - f_0\| < 1/2^n$. Then $\|f_n - f_{n+1}\| < 1/2^{n-1}$. We construct a sequence $h_n \in E$ such that

$$-f_n, f_n \le h_n, h_n \le h_{n+1} \le h_n + 1/2^{n-1}$$
 and $\lambda(h_n) = 0$.

Suppose h_n is given. As $f_{n+1} \in I_{\lambda}$, so we can find $h'_{n+1} \in E$ such that $h'_{n+1} \ge f_{n+1}$, $-f_{n+1}$ and $\lambda(h'_{n+1}) = 0$. Putting $h''_{n+1} = h'_{n+1} + h_n$, we obtain $\lambda(h''_{n+1}) = 0$, $h''_{n+1} \ge h_n$, $f_{n+1} \le f_n + 1/2^{n-1} \le h_n + 1/2^{n-1}$ and $-f_{n+1} \le h_n + 1/2^{n-1}$. Therefore we have $-f_{n+1}$, f_{n+1} , $h_n \le h_n + 1/2^{n-1}$, h''_{n+1} . Since E has the Riesz separation property, there exists $h_{n+1} \in E$ such that

$$-f_{n+1}$$
, f_{n+1} , $h_n \leq h_{n+1} \leq h_n + 1/2^{n-1}$, h''_{n+1} .

Hence we have $h_n \le h_{n+1} \le h_n + 1/2^{n-1}$ and $\lambda(h_{n+1}) = 0$. So $h_n \to h_0 \in E$. It is clear that $-f_0$, $f_0 \le h_0$ and $\lambda(h_0) = 0$, so that $f_0 \in I_\lambda$ and I_λ is closed.

By defining $S_{\lambda} = \{x \in \overline{\mathcal{E}S} : f(x) = 0 \text{ for all } f \in I_{\lambda}\}$ and $N_{\lambda} = \{x \in S : f(x) = 0 \text{ for all } f \in I_{\lambda}\}$, we have the following.

PROPOSITION 6. N_{λ} is a T'-invariant face of S and the following relations hold:

$$I_{i}=\{f\in E: f=0 \text{ on } N_{i}\}=\{f\in E: f=0 \text{ on } S_{i}\}.$$

$$S_2 = N_2 \cap \overline{\mathcal{E}S}$$

and

$$\mathcal{E}N_2 = N_2 \cap \mathcal{E}S$$

where $\mathcal{E}N_{\lambda}$ is the set of extreme points of N_{λ} .

PROOF. It is easily seen that N_{λ} is a T'-invariant face of S. Then by Th. 3.1 of [3], the relation $I_{\lambda} = \{ f \in E : f = 0 \text{ on } N_{\lambda} \}$ is obtained. $\mathcal{E}N_{\lambda} = N_{\lambda} \cap \mathcal{E}S$ holds since N_{λ} is a face of S. By using $\mathcal{E}N_{\lambda} = N_{\lambda} \cap \mathcal{E}S$ and $S_{\lambda} = N_{\lambda} \cap \overline{\mathcal{E}S}$, we get the relation

$$\{f \in E : f = 0 \text{ on } N_i\} = \{f \in E : f = 0 \text{ on } S_i\}.$$

Let τ be the mapping of S into P'E' equipped with weak* topology such that

$$\tau: x \longrightarrow P'\varepsilon_{\tau}$$
.

Then we have

PROPOSITION 7. For $\lambda \in \Lambda$, $\tau(x) = \lambda$ for any $x \in N_{\lambda}$ (for any $x \in S_{\lambda}$).

PROOF. Suppose $x \in N_2 \cap \mathcal{E}S$. For any $f, g \in PE$, we have

$$\max(P'\varepsilon_r(f), P'\varepsilon_r(g)) = \max(\varepsilon_r(f), \varepsilon_r(g)).$$

Since f and g are elements of E and x belongs to $\mathcal{E}S$, there exists $k \in E$ such that

$$k \ge f, g$$
 and $\varepsilon_x(k) = \max(\varepsilon_x(f), \varepsilon_x(g))$

by Th. 2.4 of [3]. On the other hand, since λ belongs to Λ , there exists $h \in PE$ such that

$$h \ge f, g$$
 and $\lambda(h) = \max(\lambda(f), \lambda(g))$

by Prop. 4. Since E has the Riesz separation property, there exists $l\!\in\!E$ such that

$$k, h \ge l \ge f, g$$
.

Then $\lambda(h-l)=0$ and $h\geq l$, so h=l on N_λ . Hence $\varepsilon_x(l)=\varepsilon_x(h)=\varepsilon_x(Ph)=P'\varepsilon_x(h)$ and $\varepsilon_x(k)\geq \varepsilon_x(l)\geq \max(\varepsilon_x(f),\varepsilon_x(g))=\varepsilon_x(k)$. So $P'\varepsilon_x(h)=\max(P'\varepsilon_x(f),P'\varepsilon_x(g))$, which means $P'\varepsilon_x\in \Lambda$. Suppose $P'\varepsilon_x\neq \lambda$, then there exists $f_0\in PE$ such that $f_0\geq 0$, $\lambda(f_0)=0$ and $P'\varepsilon_x(f_0)>0$. The latter inequality means $f_0(x)>0$. Since x is in N_λ , $f_0\in I_\lambda$ and so $\lambda(f_0)\neq 0$, which is a contradiction. Therefore $\tau(x)=\lambda$ is proved for $x\in N_\lambda\cap \mathcal{ES}$.

Since N_{λ} is a weak* compact, convex subset of S, we get $N_{\lambda} = \overline{co(N_{\lambda} \cap \mathcal{E}S)}$ by Prop. 6 and Krein-Milman theorem. Since τ is linear continuous, $\tau(x) = \lambda$ holds for any $x \in \overline{co(N_{\lambda} \cap \mathcal{E}S)} = N_{\lambda}$.

Since I_2 is a closed ideal, E/I_2 is a simplex space and

$$E/I_{\lambda} \cong \{f_{\lambda} \in C(N_{\lambda}) : f|_{N_{\lambda}} = f_{\lambda} \text{ for some } f \in E\}$$

 $\cong \{g_{\lambda} \in C(S_{\lambda}) : g|_{S_{\lambda}} = g_{\lambda} \text{ for some } g \in E\},$

where $f|_{N_{\lambda}}$ is the restriction of f on N_{λ} .

Since S_{λ} is T'-invariant, f=0 on S_{λ} implies Tf=0 on S_{λ} and Pf=0 on S_{λ} . So $(Tf)|_{S_{\lambda}}$ is uniquely determined by f_{λ} . We define this operator in E/I_{λ} by T_{λ} . Thus

$$T_i: f_i \longrightarrow (Tf)|_{S_i}$$

Similarly we can define P_{λ} . Then we have

Theorem 2. T_{λ} is a positive, Markov operator in E/I_{λ} with the spectral radius $r(T_{\lambda})=1$ and strongly ergodic with the limit operator P_{λ} . The eigenspace of T_{λ} for the eigenvalue 1 is one-dimensional with the base $\mathbf{1}_{S_{\lambda}}$ and the eigenspace of T'_{λ} for the eigenvalue 1 is one-dimensional with the base $\lambda|_{S_{\lambda}}$. Moreover T_{λ} is irreducible.

PROOF. It is clear that T_{λ} is strongly ergodic, with the limit operator P_{λ} . Prop. 7 implies $P_{\lambda}f_{\lambda}=\lambda|_{S_{\lambda}}(f_{\lambda})\mathbf{1}_{S_{\lambda}}$ for any $f\in E$, by the relation $Pf(x)=P'\varepsilon_{x}(f)=\lambda|_{S_{\lambda}}(f_{\lambda})$ for any $x\in S_{\lambda}$. Hence T_{λ} is a Markov operator with $r(T_{\lambda})=1$ and the eigenspace of T_{λ} is one-dimensional with the base $\mathbf{1}_{S_{\lambda}}$. By the relation $P'_{\lambda}\varphi_{\lambda}(f_{\lambda})=\varphi_{\lambda}(P_{\lambda}f_{\lambda})=\varphi_{\lambda}(\mathbf{1}_{S_{\lambda}})\lambda|_{S_{\lambda}}(f_{\lambda})$ for any $\varphi_{\lambda}\in (E/I_{\lambda})'$, $P'_{\lambda}\varphi_{\lambda}$ is strictly positive and the eigenspace of T'_{λ} is one-dimensional with the base $\lambda|_{S_{\lambda}}$. Hence T_{λ} is irreducible (see for example Th. 1 of [10]).

For a positive ergodic Markov operator T in C(X), H. H. Schaefer investigated the relationships between extreme points of T-invariant probability measures on X and maximal T-ideals [9].

As the extension of his result, we have the following.

THEOREM 3. Suppose T is a positive ergodic Markov operator in a simplex space E with an order unit $\mathbf{1}$ and denote by Φ the set of all positive, normalized T'-invariant elements of E', and by S the state space. Then the maps $q_1: \lambda \to I_\lambda$ and $q_2: I \to N = \{x \in S: f(x) = 0 \text{ for all } f \in I\}$ are bijections of the set Λ of extreme points of Φ onto the set \mathfrak{F} of all maximal T-invariant ideals in E and of \mathfrak{F} onto the set \mathfrak{R} of all minimal closed T'-invariant faces of S, respectively.

PROOF. By Prop. 7, it is easily seen that for $\lambda \in \Lambda$, I_{λ} is a T-invariant maximal ideal and N_{λ} is a T'-invariant minimal face. It is easily seen that q_2

is a bijective map in the same way as Prop. 6. Let q be the map of Λ into \Re such that

$$q: \lambda \longrightarrow N_2$$
, that is, $q=q_2 \cdot q_1$.

Then q is injective by Prop. 7. Let N be any element of $\mathfrak R$. Then $I=\{f\in E:f=0 \text{ on } N\}$ is a T-invariant ideal in E and $I\cap K\subset \{f\in K:P'\varepsilon_x(f)=0 \text{ for all } x\in N\}$. Since T is a Markov operator, $P'\varepsilon_x$ belongs to Φ . If there exists $x\in N$ such that $P'\varepsilon_x\in \Lambda$, then there exist $\varphi_1, \varphi_2\in \Phi$ such that $\alpha\varphi_1+(1-\alpha)\varphi_2=P'\varepsilon_x, 0<\alpha<1$. Then $P'\varepsilon_x(f)=0$ means $\varphi_1(f)=0$ and $\varphi_2(f)=0$ for $f\in K$. Therefore $\{f\in K:P'\varepsilon_x(f)=0 \text{ for all } x\in N\}\subset I_{\varphi_1}\cap I_{\varphi_2}$. So $N\supset N_{\varphi_1}\cup N_{\varphi_2}$ holds, which contradicts the minimality of N. If $\tau(N)=\{P'\varepsilon_x:x\in N\}$ contains at least two points $\lambda_1, \lambda_2\in \Lambda$, we see easily that $N\supset N_{\lambda_1}\cup N_{\lambda_2}$ in the similar way, which is also a contradiction. So $\tau(N)$ consists of one point $\lambda\in \Lambda$ which means q is surjective and therefore bijective. Then q_1 is also bijective.

REMARK 1. In case of a Banach lattice, $\lambda \in \Lambda$ is a T'-invariant probability measure on $\mathcal{E}S$ and S_{λ} is the support of λ on $\mathcal{E}S$, since $\mathcal{E}S$ is closed. Moreover every T'-invariant minimal closed set in $\mathcal{E}S$ corresponds to an element λ of Λ . In case of a simplex space, however, not every T'-invariant minimal closed set in $\overline{\mathcal{E}S}$ but the restriction of a T'-invariant minimal face of S to $\overline{\mathcal{E}S}$ corresponds to an element λ of Λ .

REMARK 2. When we replace the condition in Theorem 3 for T to be Markov by to be sub-Markov, we cannot have the conclusion that the map q_1 is bijective (Ex. 3). But if we put $S_1 = \{x \in S : P'\varepsilon_x(1) = 1\}$, then we have a bijective map of Λ onto the set of all minimal closed T'-invariant faces of S_1 .

EXAMPLE 3. Let E be the Banach space of all continuous real valued functions on the closed unit interval [0,1] and $T \in \mathfrak{L}(E)$ be defined as

$$Tf(x) = \begin{cases} 2x \cdot f(-\frac{1}{2}) & 0 \le x < -\frac{1}{2} \\ f(x) & -\frac{1}{2} - \le x \le 1. \end{cases}$$

Then $PE\cong C\left(\left[\frac{1}{2},1\right]\right)$, $\Lambda\cong\left[\frac{1}{2},1\right]$, $S\cong\left[0,1\right]$ and $S_1\cong\left[\frac{1}{2},1\right]$. Therefore $I=\{f\in C(\left[0,1\right]):f(0)=0\}$ is a T-invariant maximal ideal of E, but does not correspond to any element of Λ .

References

[1] Bauer, H., Šilovscher Rand und Dirichletsches Problem, Ann. Inst. Fourier Grenoble 11 (1961), 89-136.

- [2] Davies, E.B., The structure and ideal theory of the predual of a Banach lattice, Trans. Amer. Math. Soc. 54 (1968), 544-555.
- [3] Effros, E.G., Structure in simplexes, Acta Math. 117 (1967), 103-121.
- [4] Effros, E.G., Structure in simplexes II, J. Functional Analysis 1 (1967), 379-391.
- [5] Effros, E.G. and J.L. Kazdan, Applications of Choquet simplexes to elliptic and parabolic boundary value problems, J. Differential Equations 8 (1970), 95-134.
- [6] Miyajima, S., A note on reduction of positive operators, II, J. Fac. Sci. Univ. Tokyo, Sec. IA 23 (1976), 245-256.
- [7] Miyajima, S., On a reduction of positive operators in L_1 , J. Fac. Sci. Univ. Tokyo, Sec. IA 24 (1977), 405-424.
- [8] Sawashima, I. and F. Niiro, Reduction of a sub-Markov operator to its irreducible components, Natur. Sci. Rep. Ochanomizu Univ. 24 (1973), 35-59.
- [9] Schaefer, H.H., Invariant ideals of positive operators in C(X), I, Illinois J. Math. 11 (1967), 703-715.
- [10] Takeo, F., On proper spaces of some positive operators with the property (W), Natur. Sci. Rep. Ochanomizu Univ. 27 (1976), 89-97.
- [11] Takeo, F., Some spectral properties of positive, irreducible operators in an R-space, Natur. Sci. Rep. Ochanomizu Univ. 28 (1977), 25-28.

(Received January 10, 1977)

Department of Mathematics Faculty of Science Ochanomizu University Ōtsuka, Bunkyo-ku, Tokyo 112 Japan