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Introduction.

The aim of this note is to prove the uniform convergence of the lumped
mass finite element approximate solutions of the following inhomogeneous heat
equation with the Dirichlet boundary condition.

ﬂ%x_) =dut, D)+ ft,x), xR, >0,

(E) ‘[ ut, =0, xell, >0,
u(0, x)=a(x),

where the set £ is a bounded open set in R® (n=2) with the smooth boundary
I'. The function a(x) is assumed to be continuous on @ vanishing at I". As
usual, the totality of such functions is denoted by CO(Q), which is considered as
the Banach space X with the maximum norm. The function f(f,x) is an X-
valued continuous function for f=0. Let U(Z, x, ») be the fundamental solution
for the heat equation considered in the domain 2 satisfying the Dirichlet bound-
ary condition. Define for ueX

(Tai)(®)=[ U, %, 5)u(3)dy .

Since the boundary I” is smooth, the family of operators {7,: >0} forms a
continuous semi-group in X. In this note the X-valued continuous function

u)=Toa+ [ T, f(9)ds

is said to be the solution of the problem (E).

In addition to the reasonable restrictions on the triangulation method, the
negativity of the approximate operator A, of the generator A4 of T, is the most
crucial requirement. It will be shown that the approximate solution converges
to the solution of (E) uniformly in (¢, x)[0, T]><§, where the terms corre-

sponding to %;L and f(f) are approximated by the lumped mass method. The
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semi-discrete, and the implicit-explicit scheme in ¢ will be treated. Although
there have been many nice works concerning the finite element approximation
of the parabolic equation (e. g. Douglas-Dupont [3], Fujita-Mizutani [5], Meyer
{71, Wheeler [13], etc.), the author believes that the rigorous treatment of the
uniform convergence has not been established.

As is well known, if we have the consistency condition (A), namely, the
convergence of Az' to A7 in the suitable sense, and the stability condition (B),
namely the boundedness of the approximate solutions, then the Trotter-Kato
theorem implies the convergence of the approximate solutions to the true solu-
tion (Trotter [11], Kato [6], see also Ushijima [12]). As for the condition (B),
we have the nice result due to Fujii [4]. As for the condition (A), the result
of Ciarlet-Raviart [2] for the stationary problem is essential. It is, however,
necessary to modify their result appropriately to our settings, since they con-
sidered the stationary problem in the polyhedral domain. So the central effort
of this note is devoted to this modification.

We investigated the numerical method for the semi-linear heat equation of
blow-up type in [8], where the fundamental equation is obtained from (E) if we
replace f{#, x) with the positive convex function f(u)} which grows up sufficiently
rapidly at u=oco. Since the solution does not exist globally in ¢, it is necessary
to control the time mesh suitably in the step-by-step numerical integration. We
proposed a time-step control algorithm for the lumped mass approximation
scheme, and gave its justification. To do so, it is essential to prove the uni-
form convergence of the approximate solutions to the true solution in the in-
terval [0, T, where the true solution exists. This note is also aimed to present
the firm foundation of this treatment.

It is also remarked that the consistent mass approximation is also treated
along the same line of this note so far as the implicit-explicit scheme is comnsi-
dered. In this case the time mesh must be bounded not only above but also
below to obtain the stability condition if one follows Fujii [4].

After the formulation of the lumped mass approximation and the result are
stated in § 1, the proof of main theorem is given in §2.

§1. The formulation and the result.

Assumption 1. There is a sequence, {2,: h>0}, of polyhedral domains con-
tained in £ such that

@ 2.,2Q, i hxzh,

(2.2 max dist (x, [)—0 as A—0 where [, is the boundary of &2,.
xEp

A family 9, of finite numbers of closed nondegenerate n-simplices is said
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to be a triangulation of the bounded polyhedral domain £2, if the closure Qh is
expressed as

redy

such that the interior of any simplex of 4, is disjoint with that of another
simplex of ¥, and such that any one of faces of a simplex is either a face of
another simplex of 95, or else is a portion of the boundary of £2,.

Now let us define the notion of the lumped mass region B=DB, correspond-
ing to the nodal point b with respect to the triangulation 9,. Here we say
that a point which is a vertex for some T=9, is a nodal point. Let b,=25, by,
-+, b, be the vertices of some n-simplex T of <,. Let A; be the barycentric
coordinate corresponding to the vertex b; (0=i=<n). Namely 4; is the linear
function satisfying that

2(b)=0d;;, 0=1,j=n.

The barycentric subdivision B,y of the simplex T corresponding to the point b
is defined as follows:

_ — T /ZO(X) 717 y—
BbT_{ch. 12*&(96)—{—?(@ > 5 for any 1=1,2, ,n}.

For the notational convenience, we assume that the set B,y is empty if the
nodal point b is not the vertex of the simplex 7. The lumped mass region B,
is the union of the subdivisions B,r of simplices 7 having the point 6 as their

vertex:
Bb: U BbT-
TETy

The linear shape function corresponding to the nodal point & is denoted by
W,(x), which coincides with 4,(x) if x is a point of a simplex T having the vertex
b as b, and equals zero otherwise. The characteristic function of the region
B, is denoted by @,(x). Let us count the interior and the boundary nodal points
of 2, as by, by, -+, by, and by,y, byss, -+, byew, respectively. We write

‘I’T}j:wb]' and wj:wz;j.
Following Ciarlet-Raviart [2], the triangulation 9, is said to be a nonnegative
if and only if it holds
(T.2) (N1, Vi ;) =0 for 1#j, 1=i<N, 1<5/=N+M.

For any simplex T, its diameter and the diameter of its inscribed sphere
are denoted by A(T) and p(T) respectively.

Assumption 2. For any h>0, there is a nonnegative triangulation 9, of @2,
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such that
(T.3) max W{(TY<h,
Tegy
and that
: o) .
(T4) II)lLf min —pry =7r>0.

Now we introduce the spaces Vh and Vh as the approximate spaces of the
space V=H}{2). Namely we have
A . N RN — N
Vh:{”n:jzz a;;}, Vi={ity= Elajwj}
= j=

where the scalars a; (1<i<N) take arbitrary values. An element of the space
Vh or V, is considered to be defined on the whole 7] taking zero in the comple-
ment of its support. Linear mappings J, from T7h onto V, and K, from V., onto
Vh are defined as follows,

Hereafter correspondence @, <> #, will be frequently used. The orthogonal pro-
jections from L,(2) to V,, and to V,, are denoted by P,, and P,, respectively.
Let X be the space of real valued continuous functions in £ vanishing on I

X=C,(D)={ucsC(): ux)=0 for xel}.

The interpolation operator ﬁh from X onto I7,L is defined as

(B )(x)= ﬁélu(bj)wj(x) for ueX,

and jhﬁh is denoted by P.
We consider the semi-discrete approximation (E,) of (E) defined in the fol-
lowing weak form.

- A, )= (T, T H(Paf, 6), >0, for any $rsTi
13
ﬂh<0):ah—_—Pha .

If we introduce the negative definite self-adjoint operator A, in V, defined by
the formula

(Aron, Pn)rrgm=—(0n, Véu) oy for any on, 0ns Vi,

then the equation (E,) can be represented as the following V.-valued evolution
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equation :

E,) { ‘:iit—uh:/lhuh‘]‘fh, t>0,
n

ur()=a,<s Vh s
where f,=P.f.
Let 7 be the time mesh, and let £,=0 and t,,,=t,+7 (=0, 1, -). We con-
sider the following implicit-explicit scheme with the parameter &[0, 1].

up(t)y=u(t;), L=t <ty

(E5) (MT‘M=<1—0>Ahuh<tk>+0Ahun<fm>+fh<rk>, k20

uh(O):ah.
Let us introduce the following quantity

r = w3z
B izizy V@030,
Our main theorem is stated as follows.

THEOREM 1.1. Let u,(t, x) be the solution of (E,). Then it holds

lim max jus(f, x)—u(t, x)[=0.
h—0 0SIET, 2602y

For the solution u,(t, x) of (E}) with (1—0)v=t,, this convergence is also valid
provided that t tends to 0 as h tends to 0.

The quantity 7, plays an important role for the L= -stability criterion.
Namely we use the following result due to Fujii [4].

THEOREM 1.2. If (1—8)c=t,, then it holds for the solution u, of (E)
max [u(le, £)| = max Ju,(ty, x)| +7 max |fo(ty, 2.
rER TELH zEQp

Since 7,=0(h%), ¢ tends to 0 as & tends to 0 provided that (1—8)r<r, with
6+1.

§2. The proof of the result.

2.1. LP-estimates of approximating operators.

First we define the adjoint operators J¥<L(V,, I7h) and KFfeL(V,, V.) by
the following identities.

(2-1> (]héh; &h):<éh} ]i&h) 5
(2.2) (S0, Knfn)=(K3}$n, &1) for any .V, and F,= 7,
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where the inner product (,) is that of L*{). The operators P,, K,P, and
K#P, can be regarded to belong to L(L?(2)). The measure of the set BCR"
is denoted by m(B).

PROPOSITION 2.1. For 1=<p=co
“ﬁn”uw(g»:L HKnﬁhHL(LP<52>>§1 and ”K;Lkph”L(Lp(.Q))él'

Proor. We have for 1=p<oo

18 fitse= 3 [, () |f, ford ax

= SmBy|[

=3[ 1OPd=1 1z

_ N
Therefore || Pyl iocp,=1. Let f be the characteristic function of the set \U B, then
i=1

P, f=f. Hence |[P,lpcp=1 which is also valid for p=oco. It is easy to see that
| KuPoll == KEPoll z=ey=1. Since K}P,=L(LYRQ)) is the dual operator of K,P,

e L(LAQ) if %

The convexXity theorem implies the conclusion.

+%:1, 1=p=co, we have that |KP,lie=1K.P:l 1 1e=1

PROPOSITION 2.2. For any pE[l, oo], there is a constant C, independent of
2 and h such that

1 Jnbal oy =ColiGalloey,  for any dne V.

ProOOF. Let 4 be an arbitrary but fixed nondegenerate n-simplex. Let T
be an element of 9,. Then there is an affine transformation x=Af+b which
maps 4 onto T bijectively. Let the vertices v,, vy, --+, v, of 4 correspond to the
vertices by, by, -+, b, of T. The barycentric coordinate corresponding to v; is
denoted by 4;(8) (0=j=mn). Assume

Su0)=Da,wx) for xeT.
z
Then we have, ’
[ 1a@Pdx={ | 3 aw,(x)|7dx
T T Jj=0

=ldet Alf | X a,2,(8)172
d 4 j=0
an
J 1801 Pdx= 3 ey 1Py m(T)

1

n+1

|det A|m(4).
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» 1/p
The quantity |&], = (Ll b Oéjlj(f)lpd5> is a norm of the vector a€ R*' (n+41
J=0
dimensional Euclidean space). Hence we have for some C,,
r m(d) \¥?
<]§)Iaj[pm‘> =Cylal,.

With this constant C,, we have the desired result.

Now we define the following norm [|$,ll, on the space Vh.

23) I6allo= sup (O dnduxal_
etz Dnllrae
where %—}——Zl]—:l, 1=p=co,

The formulas (2.1), (2.3) and Proposition 2.2 directly lead to the following
proposition.

PROPOSITION 2.3. For any pe[1, oo, we have

k6l =Clldall,  for any $n& Vs,
1 14N - . . .
where the constant C, (7%—7—1) is determined in Proposition 2.2.

ProroSITION 2.4. Suppose Assumptions 1 and 2. If fEC(.@), it holds that

(2.4) I K3 Py f—Poflli~s S w(h, f),
(2.5) 1Prf—Prfliz=ySw(h, f),
where w(h, [) is the modulus of the continuity of the function f:

o(h, f)= sup |f(x)—f)].
~
Proor. Since by definition P,f= X f(b;)w;(x), we have for x€B;
J=1

KA ()= P f)= - (A5)—~e)(5)ds,
for it holds

| Dix)dx=m(B,).
Noticing the fact that
lx—b;|<h if xesupp (@),

one obtains the estimate (2.4). The estimate (2.5) is also obtained analogously
as above.
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COROLLARY 2.5. Suppose Assumptions 1 and 2. Then we have

26) lim| K3Puf—Pufli=@=0  for feC().
@7 i KiPof—Puflipc=0  for fEL¥®Q), 1=p<oo.

ProOF. The equality (2.6) is a direct consequence of the estimates (2.4)
and (2.5). Since we have established the boundedness of K¥P,—P, in Proposi-
tion 2.1, (2.6) implies (2.7).

2.2. Results of Ciarlet-Raviart.

Here we summarize the results of Ciarlet-Raviart [2], in which they con-
sidered the following problem (2.8). Let p>n.

For any given f,=L?(2) (0=<k=<n) and u,e W*?(£), find

we H(Q) such that
28 V0, 99)=(fo, )+ 3 (F5-)  forany deV
and
u—u,sV.

This problem has a unique solution ueH {HNL=(42) satisfying

@9 Jul s Sltallzcrs+C 35 1 Fll oo

with the constant C independent of u, and f, (0=k=n) (see [101). It is to be
noted that |1l 2~ makes sense owing to the condition p>n by Sobolev’s im-

bedding theorem.

Ciarlet and Raviart considered the consistent mass approximation of (2.8).
N+M

Let Wa={ly= % a;0;}. Then
=
find u,=W, satisfying

(2.10) (Y, Vé:)=(f0, bn)+ él (fk, —gi—:- for any ¢.< V.,

and
uh’—ﬁhuoe ‘Vh .
We can slightly modify their results as follows.

THEOREM 2.1. Suppose Assumptions 1 and 2, and let u, be the solution of
(2.10). There is a constant C independent of u,, f, (0=k=n) and h satisfying that
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21D lunllz=ep= Huolle(Fh)+C(lllphf0]|]p+ kzzllllfk!lw(g,p)
where Iy, is the boundary of the polyhedral domain 8,,.

PrOOF. Theorem 1 of [2] assures the inequality (2.11) in which we replace
1Bs foll, With || foll L2ceny- (It is to be remarked that the non-negativity condition
(T.2) is essential to this inequality.) The present inequality is valid according
to our definition of ||| |l, and the inequality (3.11) of [2]. The #-independence of
the constant C follows from the proof of Theorem 1 of [2].

THEOREM 2.2. Suppose Assumptions 1 and 2. If the solution u of the prob-
lem (2.8) belongs to the space WhP(), then we have

lim JJup—ullz==0.
[

ProOF. This fact was shown in Theorem 2 of [2] when £2 is a polyhedral
domain and 2,=2. We need to say a little more to our settings, since

~ Ntu PN
flp= ;21 u(b ) ;(x)
is not necessarily in Vh. Consider an element v, W, which satisfies

(Von, V8u)=fs, )+ él(fk. %if) for any S,V
(2.12)

and
Uh—ﬁhe Vh .
We have
(N(wp—1y), V{Bh):(V(u—ﬁh), Vﬁh)
< a9
- El<gk’ 78’(71 )
where

By Theorem 2.1, we have,
(2.13) v =l L=p ECHU—Tnli w00y -
Let wp=u,—v, Then it satisfies
(Ywy, Vé,)=0  for any S,=V,
and  w,+v,E V.

By Theorem 2.1 again, it holds
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||wh||L°°<.Qh>§“Uh“ L¥T ) «
Hence we have
(2.14) it —vall = = HﬁhnL“(rh) .
Therefore, by (2.13) and (2.14)
Hllh‘u“L“(Qh>§”uh—vh”L“(.Qh)‘i‘“Un—ahufmm‘*‘“ﬁh—““f‘(.@h)
= ||71h“L°°<rh>+C/“ﬁh_uuwl,m.@h) .
Since u=C,(2), we have as h— 0
iall gy = lull L=cg-g,, —> 0.
On the other hand our Assumptions 1 and 2 assure
lhlgg llﬁh—ullwl,mh):O
(see Theorem 6 of [1]). By these discussions and the inequality
g —ull 1o, = max (Jun—ull 1o, “u”L”‘(J}AQh)) s
we have the conclusion.
2.3. L=-convergence of lumped mass approximation.

Now we consider the lumped mass approximation of the problem (2.8).
Namely,

find v,& W, satisfying

7 - i 3(5 2 g4
2.15) (Von, Vo=(fo, )+ . (fos 550-)  for any S,

and o .
Uh—Phuoe Vh .

THEOREM 2.3. Suppose Assumptions 1 and 2. If the solution u of the prob-
lem (2.8) belongs to the space W P(2) and v, is the solution :f (2.15), then we
have

lhlg)l lvr—ul 2=y =0.

PrOOF. Since v, satisfies
2 23 7 7 a 5
(Yo, Vo0 =(EPufo, 800+ Z (fo 55

for any &, V,, it holds

(V@r—ur), V) =(TEP 1 fo—Prto, 64) ,
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where u, is the solution of the problem (2.10). Hence by Theorem 2.1,
lvn—unl t=om SCHTEP 1 fo—BuSollp -
By Proposition 2.3,
10n =1t e,y SCC (P~ K5 By) foll ocos -

The right hand side of this inequality converges to 0 as 4 tends to 0 by Corol-
lary 2.5. Thus Theorem 2.2 implies the assertion.

2.4, Proof of main theorem.

Consider the set Cy(2) and V, as a Banach space X, and X, with the maxi-
mum norm |lujj= max |u(x)|, respectively. Then P, maps X onto X, satisfying

xEH

that [[P,i=1, and that lim | P,ul=[lu| for any u=X. Moreover any u,<=X, can
h—0

be expressed as u,=P,#, with #,=K,u,=X. Clearly |[#,|=[u,]. Therefore we
have, in the terminology defined in [12], that the sequence of Banach spaces
{X,: h>0} H-converges to the Banach space X.

The domain D(A) of the generator A of the semi-group T,, defined in the
introduction of this note, is characterized as follows

D(A)={usCy(DNW*2(2): dusC,(2)}

where p is an arbitrarily fixed number greater than n/2. There is the bounded
inverse A'=eL(X). By Theorem 2.3, we have that

lrim VAP, f—P,A =0 for any feX,

—0

since A™YfeW"? with p>n. In other words, A;! L A7 in the terminology of
[12]. On the other hand, Theorem 12 implies that [|(1+7A4)lzcx,, S1 if <7,
Since e“4r=lim (1+-- 4,)", it holds

n—oo

le“Hrorp=1 for ¢20 and k>0,

So we have from A-B-C Theorem in [12] (a variant of Trotter-Kato Theorem),

]lim s?pTHe"AhPhu—Phe‘AuE::O for any ueX and T>0.
—0 St
Hence Theorem 5.1 of [12] implies the first part of Theorem 1.1.
Consider the discrete semi-group T4(¢) with time unit ¢ for #<[0, 1] defined
by the formula:
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Tin=L[Ti()1""
Tio)=(1—07A) A+ (1—6)r Ap)

where 7 is an arbitrary fixed positive constant satisfying (1—6)r<r7,. Let A¢
be the generator of Ti(r).” Namely

Al=c(T{(r)~-1)
=(1—-07A,)'A,.
Since (Af)"'=A4;'—6z, we have
lim (AD P f—P,A™Yfl=0  for any feX,
—0
provided that z tends to 0 as %~ tends to 0. On the other hand, Theorem 1.2

implies
ITinI=1.

Therefore A-B-C Theorem assures that

gim sup W Th()Pyu—Pret4ul =0 for any u€X and T>0.
—0 0StE

The equation (E}) is rewritten as

Ut 0)=1+z ADu, O+,
kr<t<(k+lc, £=0,1,2, -

uh@)'__ah’ O§t<f)

where f{(1)=(1—07A,)"f4(ts) for kr<t<(k+1)z. Therefore Theorem 5.2 of [12]
implies the remaining part of Theorem 1.1.

Added in proof. Recently, Mr. M. Tabata proved the O(k) convergence for
the approximate solution of the present problem and gave further results in
his article, Uniform convergence of the upwind finite element approximation
for semi-linear parabolic problems, to appear in J. Math. Kyoto Univ.
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