On a generalized Fourier transformation

Dedicated to Professor Y. Kawada on his 60th birthday
By Tomic KUBOTA*

In this paper, we shall prove two fundamental properties (Theorems 2 and
3) of the integral transformation defined by the formula (7) which reduces to
the usual Fourier transformation when n—=2. An explicit expression of the
kernel function, defined by (1), of the integral transformation is given by Theo-
rem 1. The contents of this paper have been assumed in the previous papers
[17] and [2] of the author.

For two functions f,, /» of a complex variable, we define the multiplicative
convolution f,;Xf, by

(Fxf)@={ f{- ) Fw)dV(w)

with the Euclidean measure dV{(w). In our investigation, many integrals of this
type will not converge absolutely, but they will be well-defined in the sense of

| =lim .
C Yoo ¥ |2I<Y
For a natural number n=2, put e¢,(z)=e(z™) with
e(z)=exp (n vV =1(z+2)).

Then, our generalized Fourier transformation is obtained by means of the
kernel function

ey k(z)=n(e, X e,)(2) .
For a function ¢(r) of a positive variable », we denote by
oo s d
Mg, =] ¢

the Mellin transform of ¢, and call
-1 -5
¢n)= 2r/—1 jRes:SM(S)r ds

the inverse Mellin transformation. This integral should be understood as

lim , if it is not absolutely convergent.

T—oo ¥ Im s<T
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PROPOSITION 1. Let k(z)= ﬁ Uma(P) exp (V=1 mnb) be the Fourier expan-

ston of k(z) with respect to 8 in the polar expression z=r exp (v —18), (r=0), of
zeC; then, Ay, is the inverse Mellin transform of

(2 +lm1 F( s+2 IMI)
n
P B (B g

M@, s):_%n—w—(n—m/n

(0<Res<n—1), 1. e, we have

__ 1 . .
)= g T M@, rds,
0<S<n—1).

PROOF. Since the definition (1) of k(z) implies k(z)=%(2z) and accordingly
Aun="0_mn, W€ may assume m=0,
It follows from

ed)= 3 N =I7J2ar™) exp (v—1 mn )
that ¢,, has the integral expression

amn(r):(—l)mZEnzj: I 271'7 )]m(27tr’”)r’dr’

Y
This integral, of course in the sense of I1/irnf , actually exists, as one sees from
— oo 0
the asymptotic formula

@ (&)= JZ {eos(z =251 ) roqiz1h),
(lz}—c0), of the Bessel function.

Put
<3) amn<7,7 p):<_1)m2nnzj0w Jm 2:/7;1 )]m(27f7’/n)7’/0d7’/

with a parameter p; then, first formally,
/-1 m
2 F( 2n 5 2

F( Zn"’—nZi)

M Jn2r™), s)= -1 (2) 0

(0<Res<n/2), gives rise to

Manilr, p), 9=(=12mnt{ [ "o ZE5) Juamrmyredrys 4

=(—1)"2zn? f j Jn2ar ™) [ Ly ™ o (rr! )S—— dr’
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o+1+s dr’

= (=2 "y g ommye AL
. 28/77,—1]"( an m )
r (1—7577T7>

2(0+1+s)/n 1F( p+1_l_5 _{_%

F(l p+1+s H)

—(—1)™2mn? -%(2@-

(2 Y-lotiesn

3

which is equal to

L_ll_n—(zm)(s—(n‘(pﬂ)ﬂ)) F( 2?2 m )F( SJ—,0+1 ln_) |
. F(Z”#S m ) F(Z_”__(P—*“D—S I

The last two integrals in the above calculation converge absolutely in the
region determined, for instance, by 0<Re s<s and —2¢<Re p<—¢ with a small
e>0. Therefore, M(an,(r, ), s) is well-defined in the same region, and a,,(, p)
is equal to the inverse Mellin transform of M(a,,(r, p),s) with 0<Res<e.
Since, however, the integral in (3) exists for —2¢e<Re p<1+¢, and is holomor-
phic with respect to p, the simultaneous analytic continuation of (3) and its
inverse Mellin transform to p=1 proves the proposition. (q.e.d.)

This proposition gives an expression of 2(z) in terms of Bessel functions.

THEOREM 1. Let n=2 be a natural number, and put {=exp 2r~/—1/n);
then,

o N, , ;
k(Z)=na*(sin—-) 121(1 L ya(272"D) = | Jyn(2m2™%)]%)
-1
= e (sin =) |z (C—DHh @z AR
+E-DATRrz" M HB(2r2™?) .
PrROOF. Assume first m=0. The function M{a,., S)=My(aps, $) 0f s has a

pole of order 1 for s=—mn—2nN, i.e., s/2n+m/2=—N, (N=0, 1, 2, --), and the
residue is

n(Sin L)ﬂ (—1)mgreNmei-ym
N1 NA+m) T(N4+1—2) T(N4m1—1)

in view of I'(s)['(1—s)=n/sinns. M(a,, $) has also a pole of order 1 for s=
—mn—2nN—2, i.e., (s+2)/2n+m/2=—N, and the residue is
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i T -1 (_1)m7z.2(2N+m+1+1/n)
-—7n{ Sin T

NI(N+m) 1 TN+ 142 F(N+mt1+)

Now, ¢, satisfies @n,=a.,, as was shown in the beginning of the “proof
of Proposition 1. Therefore, for all m, we have

Amnr)=( —l)mn(sin %) -

o 7Z.2(2N+l77L1-i—1—1/n)
. 2 ylmin+eny
[ NI+ [mD D(N+1=-1) PN+ |m| +1—-1)
: ’ n n
oo 7Z_2(2N+|7)7.H-2/7L+1—1/7L)

¥ {m n+2nN+2:i .

& N!(N+Im|)!F<N+1+%) F(N+lm|+1+%)

Thus, an, is one of Meijer’s G-functions, and equal to the difference of two
hypergeometric functions.
From these results follows

o atmetynf s T N\TE
(4)  k(2)=nzm-1 <s1n~n—>

- _ (—1)™ 2, n\Imi+2 N
mzz_zwﬂéo N!(N+Iml)!F<N+1_%>F<N+Im[+l_%) (z%r™)

— - (“Dm 2, N\IT{+2N +2/1
Ago 1 1 (IL v )
NUN-+1m) I T(N+14=-) TN+ ] +1+-2-)
cexp (v —1mn @),
(z=rexp (v —18)), and the formulas
27, (Qmz ) = 3 <_1)N(ﬂ22n)z
N=o
N1T(N+1+=)
and
21/2_/4/,1_(27[2”/2):7?_1/" < (_1)N(7722n>1]\j
YEONID(N41—=-)
n
yield the factorization
mj:w<\§0 ' (_1)”; 1 (ﬁgr")’m“'ZN)
== N!(N+};ni)!I’(N+1—7> I"<N+|ml+1—7)

-exp (v —1mn6)
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[~ (—D¥(zr™)¥ — ‘
“<A§o N!F(A%lﬂ—i-) exp (v lnNz9)>

<A§3 (‘l)N'(n%n)Nl' exp (— V1 n]\f/ﬁ))
V'=0 A7/ T/}

NAT(N'4+1—=-)
=n*"|z|| [ ya(2rz"")|?

related to the first half of the right hand side of (4), as well as a similar result
related to the second half. (Sum up all those terms coming from the product
of two infinite series which correspond to pairs N, N’ satisfying N=N'+4m.)

This proves the first equality of the theorem. The second follows from the
first and from the formulas

J(2)=[HP()+HP=z)]/2,
Jou)=lexp (V—1vr)HP(z)+exp (— v —1va)HP(2)1/2
of Bessel functions. (q.e.d)

Combining this theorem and the asymptotic formulas

@)=y -2 {exp (v=1(z—-2L7)) +00121 9},

1= Zexo (—v=1(z= 21 x)) vouz1 )

of Bessel functions, we obtain
k@)=—5-n]2| " {e(22") +e(~22 ") +0(|2]

and simple computations using additionally
e(z)= f} NI Crr) exp (M —1m ), (z=rexp(~/—18),

and (2) prove the following

COROLLARY. The function a,, defined in Proposition 1 satisfies the asymptotic
formula

amn(7'):7§7 pi-GOm 069 (4%7”/2———2;‘)—5—0(71‘")
as r—-oc,
This corollary shows in particular that the Mellin transform of a,, exists
for instance in the region 0<Re s<1/2, and coincides with My(@nn, $) in Proposi-

tion 1.
If n=2, then Theorem 1 and
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V=12 ()= [ 2 exp (VE12),

— VT2 HE)= | £ exp (— V1 2)
immediately imply
(5) k(z)=e(2z)+e(—22)=2cosd4n Rez.

A similar situation exists also for an arbitrary n. Namely, we have

®) (nx -+ Xe)@D=n" T e(nC*2),

({=exp (2r+/—1/n)), where ¢,X --- Xe, is n-fold convolution, but, due to the
fact that our convolution is not associative, an expression like f;X f,X f; should
always be understood in the sense of f;X(f;Xf;). The proof of (6) is given by
using similar arguments to the proof of Proposition 1 and the multiplication
formula

F(n5>:(275)"("“1)/2n"3'1/2F(S)F<s—i—%) "'F(S+ n;L—l >

of the I'-function.

By means of the function k(z) defined in (1) and studied among others in
Theorem 1, it is now possible to introduce a generalized Fourier transformation
that is the integral linear transformation @—@* defined by

(N O*(w)= j O(@k(zw)| 2| dV(2)

for a function @ on C. If n=2, then (5) shows that ®—@* reduces to the usual
Fourier transformation.

To see the resemblance between @—®@* and the ordinary Fourier transfor-
mation, let us consider here an analogy to the Schwartz space.

Let ¢(r) be a function of #>0; then, in order that ¢({z]), (z€C), be C® on
C, it is necessary and sufficient that ¢(r) is C* and satisfies ¢(0)=¢®(0)=

k k
HO(0)= --- =0, where ¢P(0)= ;’k gb, :lim——dTgL'(T). Therefore,
v o ro0 47
9 1 — 9 —1 0
55 0=exp (VL0 5 — V=T 57 )0

:%G/’(”) + 711—9[)—&,1) exp (v —1(m—1)0)

_ 4 )
o dr¥t r o

imply via mathematical irduction that @(z)=¢(r) exp(v/—1m8) with m=0 is

for D(2)=g(r) exp(v/ =T 0), (z=r exp(~/=10)), and k-x (s
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C* on € if and only if both ¢0)=¢®(0)= - =™ (0)=0 and "™ P(0)=
GO =™D(0)= --- =0 are satisfied. If m<0, we can argue in the same
way using

R R 1Ca 1) G RVES

and consequently, for any m, a necessary and sufficient condition for @(z)=
&(r) exp(\/_IWLO) to be C* on C is given by the two series of equalities ¢(0)
=¢P(0)= --» =™ P(0)=0 and ™ P(0)="™HP(0)="™*+¥(0)=--- =0 as above.

A function ¢(), (r>0), will be called C* for r=0, if dr“[’(’)‘(,: &(0)

exists for all k& If moreover, for such a function ¢, r'¢*®(r) with arbitrarily
fixed non-negative integers [ and % is bounded for >0, then ¢ will be called a
Schwartz function of r=0. If ¢ is a Schwartz function of =0, then the Mellin
transform M(¢, s) exists for any s with Res=S>0, and is a Schwartz function

of {=Ims uniformly in S in the wide sense, i.e, for any fixed [ and &,
8
ZLZ

— M(p, S++/—1 t)’ is bounded by a constant, whenever S>>0 is restricted

in a compact set ; this fact is verified by a simple estimation using the defining
formula

M(¢, S++/—1t)= j Glrr’—— _[ d(e™yeSee 1 tudy
The partial integration shows
Mg, =g T= g L[ g L ar
=L Mg, s+D)
for Res>0, and successively

1M<¢7 S):_%‘M(Q/, 5+1>— M((r) s+2)—_— ves

s(s+1)

Hence, M(¢, s) is continued analytically onto the whole s-plane, and is holomor-
phic except possible poles of order 1 at s=—N, (N=0, 1, 2, ---). The residue at
0
s=0 is —M(¢’, 1):J &'(Ndr=¢(0), and in general the residue at s=—N is
(A/NDH(0). Furthermore, if S=Res is restricted in a compact interval on R,
then M(¢, s) is a Schwartz function of ¢, (|¢#|>const>0), uniformly in S. Con-
versely, if M(s) is a meromorphic function on C whose singularities are at most
poles of first order at s=—N with residue ay, and if M(s)=M(S+~/—11) is a
Schwartz function of ¢ uniformly in S in the wide sense just described above



8 Tomio KUBOoTA

for M(¢, s), then the function ¢(r) of >0 determined by
__ 1 -5
o= e T yReS:SM(s)r ds, (Res>0),

is, as some elementary computations based upon

$(r)=r[ ” Myt
show, a Schwartz function for =0, and d(N=a,tar-+ - +ayr¥+o(r”) is its
Maclaurin expansion. (To investigate the property of ¢(r) as r—co or as r—0,
shift the pass of complex integration to right or to left, respectively.)

Consequently, if we denote by S, the space of all functions of the form
O(2)=¢(r) exp (v/ —1m8), (z=rexp(+/—18)), for which ¢(r) is a Schwartz func-
tion of »=0 and satisfies both ¢(0)=¢(0)= - =™ 2(0)=0 and H*™"*(0)=
PPN =)= --- =0, then the Schwartz space S on C is a natural direct
sum of all &;n.

Let furthermore n=2 be a natural number, and let S, be the subspace of
Si,mn consisting of all @(2)=¢(r) exp (v ~1mn)ES, ,, for which all $®(0),
(B=|m|n), are 0 except for k=|m|n+2nN or {m|n+2nN+2, (N=0,1,2, --).
Then, as the intersection of $ and the convergent part of the full direct sum
of S,m, we have a subspace S, of S, and P(2)=¢(r) exp (V—1mn )8, is
characterized by the conditions that M(¢, s), (Re s>0), has a meromorphic con-
tinuation on the whole s-plane, that its singularities are at most poles of first
order at —{(|{m|n+2nN) and —(|m|n+2nN+2), (N=0, 1,2, ---), and that M(¢,
S++/=1t) is a Schwartz function of #, (|#|>const>0), uniformly in S in the
wide sense.

PROPOSITION 2. If ¢(r) is @ Schwartz function of v=0, then the transforma-
tion @* in the sense of (7) of PR)=d¢(r)exp (v —1mn @), (z=rexp(~/—10)), is
of the form $(r)exp (—+/—1mn ), and § is given by

M(, s)=2zM(¢, 2n—2~5)My(Cmpn, S) ,

(0<Re s<¢), where M{an,, s) is the function in Proposition 1, and e is a suitable
positive constant,

PrROOF. A direct calculation shows
@*(w):Z:f wgb(r)amn(rr’)rzn"“‘d?’-exp (—v—1mn@),
4]
(w=r"exp(+/—16"). Therefore, we have

M@, =2 [ "pr)apatrrrensdr -
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o p oo - /8 d !
:27zy0 fo D) A (7 Y23 dr :S TC

T RN O L N
=22[ gyt e S

By Corollary to Theorem 1 and by the remark just after the corollary, the

oo 4

integral j‘ Q¥ WY® CZ is absolutely convergent for 0<Res<e¢, and is equal
0

to M(amm 3>:Mo(am:m 5)- (Q e.d)

PROPOSITION 3. If @(2)=¢(r) exp (v —1 mn 0)E S, m, (z=7 exp v/ —10)), then
D* =Sy .

PROOF. Follows immediately from Proposition 2 and from the distribution
of poles and zeros of M(an,, s) given by Proposition 1. (g.e.d.)

For two functions f, f; on C, an inner product (f,, f,), depending on =, is
defined by

8 (fy fz):jc @)@z dV(z),

along with the norm |fil=(f, /)¥~
THEOREM 2. If @S, then |@)=|0*| and O**—0.

Proor. It is enough to prove the theorem for @=¢(r) exp (v/ —1mn 6) e
< .

nyme

We have
101=2x] 1617 L = [ 7 (e,

and it follows from the definition of the Mellin transformation that
Mg, n—1+ /=1 1)=| :gb(r)r“‘”“j”—d;;
:f:o emyem Dy TGy |
Therefore, a property of the Fourier transformation yields
[@=dx*{ " | M(g, n—1+ /=1 1)|%.
This formula, combined with Proposition 2 and with

(9 27 | My, n—14++/—18]=1

which is a consequence of Proposition 1, proves |@]=||@*]. The second asser-
tion @**=@ of the theorem follows from (9), too. (g.e.d.)
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This theorem shows that @—®@* has similar properties to the Fourier trans-
formation, and &,, satisfying SF =&, is an analogy to the Schwartz space. If
n=2, then ®—®@* is in fact the Fourier transformation, and the results which
we have obtained contain in particular that S, is the subspace of the Schwartz
space consisting of even functions.

Let 9, be the space of all functions f on C such that A{2)=f(z), ({=
exp (2r+/—1/n)), and [|f] <o, where the norm is in the sense of (8); then 9,
is a Hilbert space, and 9, contains as a dense subset the set of all @=S, with

compact support such that @(0)=0. Therefore, S, is dense in 9,, and Theorem
2 immediately implies

THEOREM 3. The transformation @—O@* determines a unitary and self-re-
ciprocal operator of D,.
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